6G通訊:太赫茲與光學材料、組件(2024-2044)-預測線(共32項)、技術路線圖
市場調查報告書
商品編碼
1396215

6G通訊:太赫茲與光學材料、組件(2024-2044)-預測線(共32項)、技術路線圖

6G Communications: Terahertz and Optical Materials, Components 2024-2044 with 32 Forecast Lines, Technology Roadmaps

出版日期: | 出版商: Zhar Research | 英文 355 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

本報告分析了全球6G通訊技術和市場趨勢,概述了6G技術、主要材料和零件、近期技術發展趨勢和未來前景、市場規模趨勢和預測,並描述了我們將編制和提供組件的SWOT分析等資訊。

概述

數字 211點列出的公司 96家公司預測(2023-2043) 17 個結果章節架構 第 10 章SWOT 評估,路線圖: 8點
報告統計資料

本報告分析內容:

  • 為什麼 6G 龐大的硬體成本只能透過光學元件提供的普遍性和卓越性能來證明?
  • 為什麼二氧化矽、石墨烯、氧化鋁(包括藍寶石)、3-5 化合物、氮化矽和硫屬化物等專業知識有如此多的增值機會?
  • 高價位範圍內有哪些新格式? 還有其他人嗎?
  • 隨著 6G 的到來,哪些材料會影響流行趨勢?
  • 為什麼在6G早期(2030年起)需要大量光纖和一些光無線通訊? 什麼時候?
  • 為什麼需要 6G 第二階段才能實現所承諾的無處不在的一流性能?
  • 為什麼要以0.3THz遠紅外線到紫外線的光學元件為主? 什麼時候?
  • 為什麼我們需要太赫茲光纜、RIS、遠端光學無線傳輸硬體、光伏 6G 無人機、深層光纖以及光供電和光通訊客戶端設備的龐大新市場? 什麼時候? 除此之外?
  • 詳細的預測(未來 20 年)、路線圖、新資訊圖表和 SOFT 評估是什麼?

目錄

第一章執行摘要與預測(2023-2043)

  • 6G報告系列
  • 本報告的目的
  • 擁有巨大機會的大公司
  • 本報告的主題
  • 本報告分析方法
  • 主要結論:6G光學系統-從0.3THz到UV
  • 主要結論:6G 材料和組件 - 從 0.3THz 到紫外線
  • 無線通訊的兩個階段和預計的 6G 推出
  • 6G目標:NTT、華為、三星、諾基亞、中國企業等。
  • 5G/6G無線通用參數:多重挑戰呈上升趨勢
  • 6G 傳輸硬體如何提供比 5G 更好的效能
  • 6G 第 1 階段與第 2 階段頻段
  • 4個頻段可提供的6G主要賣點(共16種)
  • 資訊圖表:6G 的大規模硬體部署、妥協以及光學的重要性
  • 航空航太6G對比:7種類型優缺點對比
  • 市場上水下/地下間隙的 6G 傳輸選項
  • 資訊圖表:可能的 6G 光學硬體供應商(包括 0.3-1THz):案例研究
  • 資訊圖表:使用紅外線、可見光和紫外線頻率的 6G 傳輸系統
  • 6G 通訊將如何改變物質需求?
  • 傳輸距離的困境
  • 資訊圖表:由於介電/主動元件選項有限而導致太赫茲間隙
  • 克服電介質、發射器和探測器不足的太赫茲間隙
  • 三種6G太赫茲通訊系統
  • 太赫茲積體電路選項
  • 克服機載自由空間光學 (FSO) 衰減問題
  • 按國家/地區劃分的合適 FSO 硬體和系統供應商範例(共 32 家)
  • RIS(可重構智慧表面)的SWOT評估:6G版本
  • 太赫茲波導在6G系統設計的SWOT評估
  • 6G系統設計中光纖FiWi的SWOT評估
  • 超材料和超表面的 SWOT 評估
  • 6G THz 低損耗材料機會的 SWOT 評估
  • 四個 6G 路線圖(2023-2043 年)
    • 遠紅外線 (0.3-1THz) 6G(以介質距離計)和 Gbps 路線圖
    • 6G RIS 路線圖(2023-2043)
    • 6G總體路線圖(2022-2031)
    • 6G總體路線圖(2032-2043)
  • 6G材料、裝置和背景:預測(共17項,2023-2043)
    • 假設
    • 6G 硬體作為概念電信市場的一部分
    • 累計安裝的 6G RIS 面板數量(2023 年至 2043 年底)
    • 6G RIS市場年擴張面積(單位:十億平方米,2023-2043)
    • 全球6G RIS市場規模(全部5種,單位:十億美元,2023-2043年):表格
    • 6G RIS全球市場規模(全部5種,單位:10億美元,2023-2043):圖表
    • 5G/6G基地台市場(年度,單位:100萬台,2023-2043)
    • 全球光纖市場:6G 的潛在影響(十億美元,2023-2043 年)
    • 全球磷化銦半導體市場:6G 的潛在影響(十億美元,2023-2043 年)
    • 全球超材料與超表面市場(單位:十億平方米,2023-2043 年)
    • 全球太赫茲硬體市場(6G除外)(單位:十億美元,2023-2043)
    • 全球行動通訊服務市場:依類別劃分(2023-2042 年)
  • 全球主要 6G 材料和零件活動的地點(2023-2043 年)

第 2 章簡介

  • 本報告的 6G 目標和分析範圍
  • 為什麼光無線通訊對於承諾的 6G 性能至關重要
  • 資訊圖:各種環境下的 6G 願望
  • 6G:農村地區的挑戰
  • 市面上的水下和地下空間有 6G
  • 術語混亂
  • 為何 6G 需要大規模基礎設施和多種傳輸介質
  • 6G必備工具:RIS、OWC、電纜中繼(光纖/太赫茲)
    • OWC(光無線通訊)
    • RIS(可重構智慧表面)的結構與潛在功能
  • 主動 RIS 和其他 6G 基礎設施的綠色電力困境
  • 客戶端設備中的太陽能發電材料,可使 6G 基礎設施和電力翻倍
  • 6G組件/產品整合的製造技術

第 3 章 6G OWC(光無線通訊)

  • 光無線通訊(OWC)
    • 實際應用領域與新應用
    • 5G FSO 的經驗教訓
  • OWC 及其子集:定義與範圍
  • 資訊圖表:使用 OWC 的潛在 6G 傳輸系統
  • 機上 6G 的紅外線 (IR)、可見光 (VL) 和紫外線 (UV):問題和參數
  • FSO 系統基礎知識
  • 假設或預設為 LiFi
  • 航空航天 OWC 假設 6G
    • 摘要
    • 6G航空太空船(共7種):資助者、高度與傳輸選項比較(7種)
    • 6G空天飛機(共7種):優缺點
    • 6G高空作業平台選型
    • 無人機將受益於 6G,這也將有利於無人機和 UAM(城市空中交通)
    • 配備 HAPS 無人機的垂直 FSO
    • Thales-Alenia Stratobus 飛艇
    • 中航工業彩虹(彩虹)CH-T4
    • 空中巴士 Zephyr
    • 太陽能無人機在幾公裡高空的可行性:梅瑩
    • 小型無人機與6G連網飛行平台(包括集群)
  • 機載 FSO 衰減:物理特徵、挑戰與解決方案
    • 摘要
    • 大氣損失
    • 幾何損失
    • 橋樑輻射
    • 水下 6G FSO 的頻率選擇與替代方案
    • 水下6G FSO的頻率選擇
  • OWC 發射器/偵測器組件與材料
    • 摘要
    • 用於光學 6G 的新型發射元件:DFB、FP、VCSEL、OLED、LED
    • 光學6G光電探測器接收裝置
  • FSO硬體與系統供應商案例(共32個案例):包含國家分析
  • 參考文獻

第 4 章太赫茲、紅外線和可見光 6G 的超材料和超表面

  • 6G 超材料:9 個潛在應用
  • GHz/THz/紅外線/光學超材料的應用
  • 元原子和圖案選項
  • 光學超材料圖案與選項
  • 商業、營運、理論和結構方案的比較
  • 6G所需的六種超材料的格式和範例
  • 超表面
  • 超曲面
  • 活性材料的圖案化
  • 光學 ENX 超材料
  • 6G 超表面光能量收集的可能性
  • 透過操控紅外線光的超材料 6G冷卻的可能性
  • 一家可以在較高太赫茲、紅外線和光學頻率提供 6G 的超材料公司
    • Echodyne
    • Evolv Technology
    • Fractal Antenna Systems
    • iQLP
    • Kymeta
    • Meta
    • Metacept Systems
    • Metawave
    • Nano Meta Technologies
    • Pivotal Commware
    • Plasmonics
    • Radi-Cool
    • Sensormetrics
    • teraview
  • 超材料的長期整體圖景
  • 超材料和超表面的軟評估

第五章0.3-10THz遠紅外線的6G RIS

  • RIS(可重構智慧表面)基礎知識
  • Metasurface RIS 硬體的工作原理
  • 半被動和主動RIS材料和組件
    • 摘要
    • 結構電子學的 RIS 趨勢:智慧材料與薄膜技術
  • 6G RIS (0.1-1THz):成本層次問題
  • 改進 RIS:計劃到 2045 年
  • 意識到 2022 年硬體理論上將落後
  • 主要 RIS 標準計劃 ETSI
  • 6G基地台RIS
  • RIS - 整合使用者 - 中央網路:架構與最佳化
  • RG RIS控制問題
  • 對九個 RIS 同步器系列的評估 - 來自最近的研究管道
  • 2022 年後的進展
  • 6G 邁向 1THz RIS(包括石墨烯、二氧化釩、GST、GaAs)
    • 摘要
    • 用於 RIS 的 III-V 族和 SiGe
    • RIS用二氧化釩
    • RIS 硫屬化物
    • 1THz以上的遠紅外線RIS材料

第 6 章 6G RIS 用於近紅外線和可見光

  • 摘要
  • 近紅外線/可見光RIS
  • 具有放大功能的近紅外線RIS
  • RIS 相容 LiFi
  • 增強或取代 RIS 的光學設備
  • Hikari RIS:一般從 2022 年開始
  • SWOT 評估指導未來 RIS 設計

第7章6G電介質、被動光學材料與半導體(從0.3THz到可見光)

  • 電介質
    • 摘要
    • 6G 介電優化
    • 熱固性材料與熱塑性材料與無機化合物
    • 6G 的低介電常數和低損耗電介質:根據 14 個系列的 5 個標準進行選擇
    • 尋找更好的6G低損耗材料-介電常數優化
    • 19種低損耗化合物:簡化介電常數(0.1-1THz)
    • 優化 19 種材料系列跨太赫茲頻率的耗散正切
    • 用於可重編程智慧表面RIS的低損耗材料
    • 特殊情況:1THz 6G 高阻矽
    • 從5G到6G的各種電介質:更好的參數、更低的成本、更大的面積
  • 6G半導體材料的選擇
    • 5G 進步:概述與經驗教訓
    • 11種半導體/主動層候選物的現狀
    • III-V族化合物作為常見的6G材料
    • 1THz左右6G光敏感材料
    • 碳化矽電光調製器
    • 高達 1THz 6G 的相變和電敏電介質
    • 適用於多種 6G 應用的二氧化釩
    • 硫系相變材料
    • 液晶聚合物LCP向列液晶6G THz及光學NLC
  • 6G晶片和雷射用熱電溫控材料
  • 2022 年的其他趨勢
  • 研究趨勢

第8章用於6G傳輸的太赫茲電纜波導與客戶端設備波導

  • 太赫茲波導電纜:必要性與現狀
  • 6G波導電纜設計與材料
  • 含氟聚合物
    • 聚四氟乙烯
    • 全氟聚(丁烯基乙烯基醚)PBVE
  • 聚丙烯
  • 聚乙烯/聚丙烯超材料太赫茲波導
  • 長聚合物太赫茲電纜的製造
  • 金屬線上蝕刻的太赫茲波導光柵
  • 由 InAs、GaP、藍寶石等製成的太赫茲波導:用於發射極增強、感測等。
  • 6G 系統設計中太赫茲電纜和波導的 SWOT 評估

第9章6G系統光纖

  • 摘要
  • 光纖電纜設計與材料
    • 形狀、二氧化矽、藍寶石等。
    • 聚對苯二甲酸丁二醇酯、聚乙烯、聚醯亞胺、FRP
    • 函數型
  • 光纖運作中
  • 限制使用光纖和電子設備以降低成本
  • 發生嚴重攻擊
  • 摻鉺光纖放大器 (EDFA)
  • 光子學定義的太赫茲 6G 無線電和光子集成
  • 光纖在6G系統設計上的SWOT評估

第10章6G中的石墨烯和其他2D材料

  • 6G 和 6 個相關用途概述
  • 石墨烯太赫茲感測與替代方案的比較
  • 用於 6G 太赫茲超表面的石墨烯等離子體、調製器、分離器和路由器
  • 用於6G光整流器和光吸收器的石墨烯柵極太赫茲電晶體
  • 用於無線通訊的頻率高達 10THz 的其他二維材料:MoS、BN、鈣鈦礦
簡介目錄

A unique new 355-page report identifies your huge optical material and component opportunities from 6G Communications as it becomes primarily an optical system - "6G Communications: Optical Materials and Components Markets: Visible, Near IR, Far IR from 0.3THz 2023-2043". It is a drill down from the overview report on 6G called, "6G Communications: Materials and Components Markets 2023-2043".

Summary

REPORT STATISTICS
Tables and images:211
Companies mentioned:96
Forecasts 2023-2043:17
Chapters:10
SWOT appraisals, roadmaps:8

The new report answers such questions as:

  • Why can the massive hardware expense of 6G only be justified by the ubiquity at stellar performance that comes from optics?
  • Why will there be so many added value opportunities for your expertise in silicas, graphene, aluminas including sapphire, 3-5 compounds, silicon nitride, chalcogenides?
  • What new forms with premium pricing? What else?
  • What materials are trending down with the advent of 6G?
  • Why does the first 6G phase from 2030 need massive amounts of fiber optics and some optical wireless communication? When?
  • Why will the second 6G phase be necessary to achieve the promised ubiquitous stellar performance?
  • Why will that have to be primarily with optics from 0.3THz far infrared to UV? When?
  • Huge new markets for THz cable, reconfigurable intelligent surfaces, long-distance optical wireless transmission hardware, photovoltaic 6G drones, deep fiber optics, optically powered and optically communicating client devices? Why? When? What else?
  • Detailed 20-year forecasts, roadmaps, new infograms and SOFT appraisals?

This report starts with a detailed glossary and listing of 96 of the companies mentioned. The Executive Summary and Conclusions is an easy read for those in a hurry. Its 58 pages contain the necessary explanations, new infograms, opportunity identification, leading players, SOFT appraisals, roadmaps and 17 forecasts all 2023-2043. No equations. No nostalgia.

The 23-page Introduction then explains our rationale, coverage and key issues. See the severe limitations of the various candidate technologies that must be overcome - not uncritical enthusiasm. Understand why optical wireless communication must become commonplace in 6G systems and that includes overcoming the Terahertz gap of inadequate materials and device performance at far infrared (above 0.3THz). Here are the vital photovoltaic and other optical material manufacturing technologies involved with more on both later in the report.

Chapter 3 "6G Optical Wireless Communication OWC" runs to 45 pages despite the analysis being condensed into many tables and images, including 32 participants analysed by country. We cover everything from satellite-to-client device, LiFi, lessons from limited use of OWC in 5G and why it will be a key enabling technology for 6G, component and frequency choices emerging from the research pipeline, choice of solar aerospace vehicles from satellites to upper atmosphere drones, lower-level solar drone swarming. A major focus in optical carrier attenuation modes and what to do about them, including a detailed look at effects of weather and frequency choices. We predict at least tenfold improvements in range and quality of service, including underwater and aerospace-to-earth. Considerable commercial opportunity is identified. See the materials and formats of next emitters and detectors including DFB, FP, VCSEL, OLED, LED, photodetectors.

Chapter 4 runs to 53 pages because there are at least nine potential uses for metamaterials in 6G in contrast to their minimal use in 5G so this is a large emerging market. They are more compact antennas, THz cable, blocking THz to optical signals for privacy or interference suppression, beam shaping of laser emitters, energy harvesting, 6G reprogrammable intelligent surfaces at optical frequencies (covered in chapters 5 and 6), improving 6G response, reach, device power reduction, increasing power output of photovoltaics powering 6G infrastructure and client devices by a passive overlayer following the sun, increasing power output of photovoltaics by a passive cooling over-layer, other cooling. See 16 manufacturers profiled with their 6G positioning in all of this.

Chapter 5 is "6G reconfigurable intelligent surfaces at 0.3-10THz far infrared" with pages covering materials, economics, materials and device and chapter 6 covers, "6G reconfigurable intelligent surfaces at near infrared and visible light" with 14 pages because these are likely to appear at a later stage and are more speculative.

Chapter 7 at 40 pages concerns "Dielectrics, passive optical materials and semiconductors for 6G 0.3THz to visible". Some were covered in preceding chapters but here we see the big picture and detailed comparisons and likely choices, with reasons and a profusion of latest references for further reading. Why the reduced choice of dielectrics above 0.3THz? What is being done about it? Rational in choosing between thermosets, thermoplastics and inorganic compounds? Liquid crystal polymers? Materials and devices for temperature management of lasers and optical chips? Best phase change and semiconductor material choices for 6G? Winners and losers as we go from 5G to 6G? It is all here in comparison charts and infograms not rambling text.

Chapter 8 concerns important new devices, transformative in 6G performance if successful. It is, "THz cable waveguides for 6G transmission and client device waveguides" complementary to fiber optics in 6G by offering simpler systems. Its 15 pages give needs and likely materials, formats and performance. See silica, sapphire, fluoropolymer, polypropylene and other opportunities and manufacturing options for the first long reels of such cable.

6G will use a huge amount of fiber optics including "deep fiber" going to individual rooms in buildings and fiber underwater. Mostly that will be pre-existing shared fiber made conventionally but there are some aspects that will be peculiar to 6G so we cover fiber optics for 6G systems in the 13 pages of chapter 9 that end with a SWOT appraisal.

Having found that graphene is one of the most popular materials in the optical 6G research pipeline, we end the report with a deeper look without repetition of earlier material. Chapter 10. "Graphene and other 2D materials in 6G", in 17 pages, surfaces six potential uses in 6G with formats, alternatives, ancillary materials and analysis. The examples cover near and far infrared and visible light frequencies.

Table of Contents

1. Executive Summary and 17 forecasts 2023-2043

  • 1.1. Our 6G report series
  • 1.2. Purpose of this report
  • 1.3. Giant companies with giant opportunities
  • 1.4. The subject of this report
  • 1.5. Methodology of this analysis
  • 1.6. Key conclusions: 6G optical systems 0.3THz to ultraviolet
  • 1.7. Key conclusions: 6G materials and components for 0.3THz to ultraviolet
  • 1.8. Wireless communications and expected two phases of 6G launch
  • 1.9. Objectives for 6G of NTT, Huawei, Samsung, Nokia, the Chinese and others
  • 1.10. Typical parameters for 5G and 6G wireless showing some challenges increasing
  • 1.11. How 6G transmission hardware will achieve much better performance than 5G
  • 1.12. Spectrum for 6G phase one and two
  • 1.13. 16 primary selling features of 6G against what four frequency bands can provide
  • 1.14. Infogram: 6G massive hardware deployment, compromises, importance of optics
  • 1.15. Aerospace vehicles compared for 6G-positives and negatives compared for 7 types
  • 1.16. 6G transmission options underwater and underground-gap in the market
  • 1.17. Infogram: Probable 6G optical hardware suppliers including 0.3-1THz: examples
  • 1.18. Infogram: 6G transmission systems that will use infrared, visible and ultraviolet frequencies
  • 1.19. How material needs change with 6G communications
  • 1.20. Transmission distance dilemma
  • 1.21. Infogram: Terahertz gap of limited dielectric and active device choices
  • 1.22. Conquering the terahertz gap of inadequate dielectrics, emitters and detectors
  • 1.23. Three kinds of 6G THz communication systems
  • 1.24. THz integrated circuit choices
  • 1.25. Conquering the problematic free space optical FSO attenuation in air
  • 1.26. 32 examples of suppliers of appropriate FSO hardware and systems by country
  • 1.27. Reconfigurable intelligent surface RIS SWOT appraisal for 6G versions
  • 1.28. SWOT appraisal of terahertz waveguides in 6G system design
  • 1.29. SWOT appraisal of fiber optics FiWi in 6G system design
  • 1.30. SWOT assessment for metamaterials and metasurfaces
  • 1.31. SWOT appraisal of 6G THz low loss material opportunities
  • 1.32. Four 6G roadmaps 2023-2043
    • 1.32.1. Far infrared 0.3-1THz 6G by media range meters and Gbps roadmap
    • 1.32.2. 6G reconfigurable intelligent surface RIS roadmap 2023-2043
    • 1.32.3. 6G general roadmap 2022-2031
    • 1.32.4. 6G general roadmap 2032-2043
  • 1.33. 6G materials, devices and background - 17 forecasts 2023-2043
    • 1.33.1. Assumptions
    • 1.33.2. 6G hardware as part of a notional telecommunications market
    • 1.33.3. 6G reconfigurable intelligent surfaces cumulative panels number deployed bn year end 2023-2043
    • 1.33.4. 6G reconfigurable intelligent surfaces market yearly area added bn. sq. m. 2023-2043
    • 1.33.5. 6G reconfigurable intelligent surfaces global $ billion by 5 types 2023-2043 table
    • 1.33.6. 6G reconfigurable intelligent surfaces global $ billion by 5 types 2023-2043 graph
    • 1.33.7. Market for 5G and 6G base stations millions yearly 2023-2043
    • 1.33.8. Fiber optic cable market global with possible 6G impact $billion 2023-2043
    • 1.33.9. Indium phosphide semiconductor market global with possible 6G impact $billion 2023-2043
    • 1.33.10. Global metamaterial and metasurface market billion square meters 2023-2043
    • 1.33.11. Terahertz hardware market excluding 6G $ billion globally 2023-2043
    • 1.33.12. Mobile communications service market global $ billion by category 2023-2042
  • 1.34. Location of primary 6G material and component activity worldwide 2023-2043

2. Introduction

  • 2.1. 6G objectives and our coverage
  • 2.2. Why optical wireless communication is essential for promised 6G performance
  • 2.3. Infogram: 6G aspirations across the landscape
  • 2.4. 6G rural challenge
  • 2.5. 6G underwater and underground-gap in the market
  • 2.6. Terminology thicket
  • 2.7. Why 6G needs massive infrastructure and many transmission media
  • 2.8. Essential 6G tools: RIS, OWC, cable intermediary (fiber optic and THz)
    • 2.8.1. Optical wireless communication OWC
    • 2.8.2. Reconfigurable intelligent surface RIS construction and potential capability
  • 2.9. Green power dilemma with active RIS and other 6G infrastructure
  • 2.10. Materials for photovoltaics at 6G infrastructure and client devices with doubled power
  • 2.11. Manufacturing technologies for 6G components and product integration

3. 6G Optical wireless communication OWC

  • 3.1. Optical wireless communication OWC
    • 3.1.1. Actual and emerging applications
    • 3.1.2. Lessons from 5G FSO
  • 3.2. Definitions and scope of OWC and its subsets
  • 3.3. Infogram: Potential 6G transmission systems using OWC
  • 3.4. Infrared IR, visible light VL and ultraviolet UV for 6G in air: issues and parameters
  • 3.5. FSO system basics
  • 3.6. Subsuming or defaulting to LiFi
  • 3.7. Aerospace OWC envisaged for 6G
    • 3.7.1. Overview
    • 3.7.2. Aerospace vehicles for 6G-backers, altitudes, transmission options compared for 7 types
    • 3.7.3. Aerospace vehicles for 6G-positives and negatives for 7 types
    • 3.7.4. Choice of 6G aerial platforms
    • 3.7.5. Drones benefit 6G which in turn benefits drones and urban air mobility
    • 3.7.6. Vertical FSO from HAPS drones
    • 3.7.7. Thales-Alenia Stratobus airship
    • 3.7.8. AVIC China Caihong (Rainbow) CH-T4
    • 3.7.9. Airbus Zephyr
    • 3.7.10. Feasibility of solar drones at only a few kms altitude: Mei Ying
    • 3.7.11. Small drones and networked flying platforms for 6G including swarming
  • 3.8. FSO attenuation in air: physics, issues and solutions
    • 3.8.1. Overview
    • 3.8.2. Atmospheric loss
    • 3.8.3. Geometric loss
    • 3.8.4. Background radiation
    • 3.8.5. 6G FSO frequency choices and alternatives underwater
    • 3.8.6. Choosing frequencies for 6G FSO under water
  • 3.9. OWC emitter and detector components and their materials
    • 3.9.1. Overview
    • 3.9.2. Emitter devices emerging for optical 6G: DFB, FP, VCSEL, OLED, LED
    • 3.9.3. Receiver devices for optical 6G-photodetectors
  • 3.10. 32 examples of suppliers of FSO hardware and systems with country analysis
  • 3.11. Further reading

4. Metamaterials and metasurfaces for THz, IR, visible 6G

  • 4.1. Nine potential uses for metamaterials in 6G
  • 4.2. Applications of GHz, THz, infrared and optical metamaterials
  • 4.3. The meta atom and patterning options
  • 4.4. Optical metamaterial patterns and options
  • 4.5. Commercial, operational, theoretical, structural options compared
  • 4.6. Six formats of metamaterial needed for 6G with examples
  • 4.7. Metasurfaces
  • 4.8. Hypersurfaces
  • 4.9. Active material patterning
  • 4.10. Optical ENX metamaterials
  • 4.11. Metasurface optical energy harvesting potentially for 6G
  • 4.12. Metamaterials manipulating infrared potentially for 6G cooling
  • 4.13. Metamaterial companies that could serve 6G at upper THz, IR, optical frequencies
    • 4.13.1. Echodyne
    • 4.13.2. Evolv Technology
    • 4.13.3. Fractal Antenna Systems
    • 4.13.4. iQLP
    • 4.13.5. Kymeta
    • 4.13.6. Meta
    • 4.13.7. Metacept Systems
    • 4.13.8. Metawave
    • 4.13.9. Nano Meta Technologies
    • 4.13.10. Pivotal Commware
    • 4.13.11. Plasmonics
    • 4.13.12. Radi-Cool
    • 4.13.13. Sensormetrics
    • 4.13.14. teraview
  • 4.14. The long term picture of metamaterials overall
  • 4.15. SOFT assessment of metamaterials and metasurfaces

5. 6G reconfigurable intelligent surfaces at 0.3-10THz far infrared

  • 5.1. Reconfigurable intelligent surfaces basics
  • 5.2. How metasurface RIS hardware operates
  • 5.3. Semi-passive and active RIS materials and components
    • 5.3.1. Overview
    • 5.3.2. RIS trend to structural electronics: smart materials and thin film technology
  • 5.4. Cost hierarchy challenge for 6G reconfigurable intelligent surfaces 0.1-1THz
  • 5.5. RIS improvements planned to 2045
  • 5.6. Realisation that hardware lags theory in 2022
  • 5.7. Major RIS standards initiative ETSI
  • 5.8. RIS for 6G base stations
  • 5.9. RIS- Integrated User-Centric Network: Architecture and Optimization
  • 5.10. RG RIS control issues
  • 5.11. Appraisal of 9 tuning device families for RIS from recent research pipeline
  • 5.12. Advances from 2022 onwards
  • 5.13. Progressing to 1THz RIS for 6G including graphene, vanadium dioxide, GST, GaAs
    • 5.13.1. Overview
    • 5.13.2. lll-V and SiGe for RIS
    • 5.13.3. Vanadium dioxide for RIS
    • 5.13.4. Chalcogenides for RIS
    • 5.13.5. Far infrared RIS materials above 1THz

6. 6G reconfigurable intelligent surfaces at near infrared and visible light

  • 6.1. Overview
  • 6.2. Near IR and visible light RIS
  • 6.3. Near infrared RIS with amplification capabilities
  • 6.4. RIS enabled LiFi
  • 6.5. Optical devices enhancing or replacing RIS
  • 6.6. Optical RIS generally from 2022
  • 6.7. SWOT appraisal that must guide future RIS design

7. Dielectrics, passive optical materials and semiconductors for 6G 0.3THz to visible

  • 7.1. Dielectrics
    • 7.1.1. Overview
    • 7.1.2. Dielectric optimisation for 6G
    • 7.1.3. Thermoset vs thermoplastic vs inorganic compounds
    • 7.1.4. Choice of 14 families of low permittivity, low loss dielectrics for 6G against five criteria
    • 7.1.5. The quest for better 6G low loss materials-permittivity optimisation
    • 7.1.6. Permittivity 0.1-1THz for 19 low loss compounds simplified
    • 7.1.7. Dissipation factor optimisation across THz frequency for 19 material families
    • 7.1.8. Low loss materials for reprogrammable intelligent surfaces RIS
    • 7.1.9. Special case: high resistivity silicon for 6G at 1THz
    • 7.1.10. Different dielectrics from 5G to 6G: better parameters, lower costs, larger areas
  • 7.2. Semiconductor material choices for 6G
    • 7.2.1. Overview and lessons from 5G advances
    • 7.2.2. Status of 11 semiconductor and active layer candidates
    • 7.2.3. lll-V compounds as general 6G materials
    • 7.2.4. Photoactive materials for 6G around 1THz
    • 7.2.5. Silicon carbide electro-optic modulator
    • 7.2.6. Phase change and electric-sensitive dielectrics for up to 1THz 6G
    • 7.2.7. Vanadium dioxide for many 6G uses
    • 7.2.8. Chalcogenide phase change materials
    • 7.2.9. Liquid crystal polymers LCP nematic liquid crystals NLC for 6G THz and optics
  • 7.3. Thermoelectric temperature control materials for 6G chips and lasers
  • 7.4. Other advances in 2022
  • 7.5. Research trends

8. THz cable waveguides for 6G transmission and client device waveguides

  • 8.1. Terahertz waveguide cables: need and state of play
  • 8.2. Design and materials of 6G waveguide cables
  • 8.3. Fluoropolymers
    • 8.3.1. PTFE
    • 8.3.2. Perfluorinated poly(butenyl vinyl ether) PBVE
  • 8.4. Polypropylene
  • 8.5. Polyethylene polypropylene metamaterial THz waveguides
  • 8.6. Manufacturing polymer THz cable in long reels
  • 8.7. THz waveguide gratings etched on metal-wires
  • 8.8. THz waveguides from InAs, GaP, sapphire etc. for boosting emitters, sensing etc.
  • 8.9. SWOT appraisal of THz cables and waveguides in 6G system design

9. Fiber optics for 6G systems

  • 9.1. Overview
  • 9.2. Fiber optic cable design and materials
    • 9.2.1. Format, silica, sapphire and more
    • 9.2.2. Polybutylene terephthalate, polyethylene, polyimide, FRP
    • 9.2.3. Functional types
  • 9.3. Fiber optics in action
  • 9.4. Limiting use of the fiber and electronics to save cost
  • 9.5. Serious attacks occurring
  • 9.6. Erbium-doped fiber amplifiers EDFA
  • 9.7. Photonics defined radio and photonic integration for THz 6G
  • 9.8. SWOT appraisal of fiber optics in 6G system design

10. Graphene and other 2D materials in 6G

  • 10.1. Overview and six relevant uses for 6G
  • 10.2. Graphene THz sensing compared with alternatives
  • 10.3. Graphene plasmonics for 6G THz metasurfaces, modulators, splitters, routers
  • 10.4. Graphene gated THz transistors for 6G optical rectification, optical absorbers
  • 10.5. Other 2D materials to 10THz for wireless communications: MoS, BN, perovskite