全球軟體機器人材料技術的增長機會
市場調查報告書
商品編碼
1149012

全球軟體機器人材料技術的增長機會

Global Materials Technologies for Soft Robotics, Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 81 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

世界各地的機器人公司繼續建立夥伴關係和協作,以設計新的軟體機器人部件。 併購,尤其是特殊目的收購 (SPAC),正在推動創新軟材料解決方案的發展。 人口老齡化、對更好的自動化解決方案的需求、增材製造日益增長的影響以及新的應用機會等因素正在推動軟體機器人材料技術的發展。

本報告探索並分析了可用於機器人技術的新興和未來軟體機器人材料,包括各種技術方面、最終用途、技術趨勢和機遇,以及行業利益相關者生態系統的動態。 我們還探索頂級材料並提供比較基準,其中包括使這些材料具有優越性的因素。

內容

戰略要務

  • 戰略要務 8 (TM)
  • 為什麼越來越難成長?
  • 材料行業三大戰略要務對軟體機器人的影響
  • 增長機會推動增長 Pipeline Engine(TM)
  • 調查方法

增長機會分析

  • 技術儀表板
  • 調查範圍和細分
  • 調查範圍和細分、調查目的
  • 司機
  • 約束因素

行業概況

  • 工業 4.0 推動了以機器人為中心的自動化的發展步伐
  • 軟體機器人的進步取決於適用於 AM 的材料的進步
  • 更多地使用具有高機械強度的柔性可調材料來製造機器人
  • 某些工業要求為構建軟體機器人提出了先進的材料要求
  • 法規旨在將機器智能融入軟執行器以實現高性能
  • 軟體機器人和材料開發的裡程碑
  • 研究機構和材料供應商在軟體機器人部件的設計決策中發揮著關鍵作用
  • 學術界和供應商合作探索用於機器人技術的創新軟材料

技術分析

  • 聚合物賦予它們獨特的屬性,從而形成軟體機器人中的高級材料用途
  • 彈性體可提高機器人部件的柔韌性和可拉伸性,並展現彈性
  • 在金屬和合金中,軟體機器人製造商對 SMA 很感興趣,因為它具有獨特的性能
  • 受自然啟發的組織和微生物用於製造更好的機器
  • 納米結構為軟機器人微型機器提供動力,使其具有更好的運動能力來執行自動化任務
  • 製造類型決定了所用材料的類型
  • 多種製造和製造方式確保智能軟體機器人具有整體應用
  • 聚合物和彈性體材料引領著各行各業機器人驅動的軟材料潮流

創新生態系統

  • 用於軟體機器人的聚合物和彈性體的研發活動
  • 用於軟體機器人的合金和納米結構的研發活動
  • 用於軟體機器人的生物雜交體和人造組織的研發活動
  • 聚合物和彈性體的商業化創新
  • 合金和納米結構的商業化創新
  • 機器人公司繼續建立夥伴關係和協作,以設計新的軟體機器人組件
  • 通過合併和收購獲得技術

知識產權分析

  • 聚合物和彈性體在軟體機器人材料研究論文中佔據主導地位
  • 合金和納米結構引領軟體機器人材料的專利申請
  • 美國專利商標局和中國專利局在過去三年中引領知識產權申請
  • 軟致動器繼續成為專利申請的重點

融資與投資分析

  • 投資者大量押注軟體機器人材料,例如介電彈性體,以增強高速運動能力
  • 北美和亞太地區的資助計劃分別側重於軟機器人組件開發和新材料
  • 受益人將優先建造滿足機器人操作要求的軟材料
  • 軟機器人資金增加,探索更靈活的可編程材料
  • Soft Robotics Materials VC and Grants Initiative 旨在展示機器人中的軟材料並將其商業化

未來展望

  • 獲得合適的軟材料的關鍵是降低成本和提高材料性能
  • 創新的動力和競爭的存在是為軟體機器人提供有用材料的主要決策者
  • 根據需要增加對未來概念的調查
  • 推動和抓緊領導專利和資助計劃
  • 分析師觀點

增長機會領域

  • 增長機會 1:用於診斷和治療的可攝取軟體機器人
  • 增長機會 2:可切換、可編程和可重新配置的機器人技術具有多功能性
  • 增長機會 3:融合自然與工業自動化的仿生和仿生材料
  • 增長機會 4:用於軟體機器人製造的數字技術

附錄

下一步

簡介目錄
Product Code: DA4E

Smart Materials Gain Prominence in Manufacturing Soft Robotic Components and Parts

To promote safe interactions between humans and robots, the discipline of soft robotics incorporates low modulus yet highly dexterous materials into robotic systems. Easily deformable materials like polymers, elastomers, alloys, biohybrids, and nanostructures in the form of fluids, gels, soft electronics, and wearables (with elastic and rheological qualities similar to biological tissue and organs) make up most soft robots. The new class of elastically flexible, adaptable, and biologically inspired materials for robots has the potential to transform their use in manufacturing, logistics, healthcare, and a range of human support functions.

Industrial robots are fast and precise systems based on rigid-body mechanisms, which ensure high throughput in the production of manufactured goods. However, the emergence of Industry 4.0, need for better technical capabilities, rising workforce costs, and lack of sufficient talent have propelled end users to adopt robotics made of soft materials with new, bio-inspired features that permit morphologically adaptive interactions in unpredictable environments.

As these soft materials evolve, they will be integrated into various industry applications to conduct complex tasks via highly efficient actuators, grippers, modules, and sensors. Soft materials could also solve various robotics design challenges, especially to achieve a balance of precision, force exertion, degrees of freedom, and structural compliance. One of the biggest issues in robotics is creating simple and secure interfaces between robotic devices and humans. Improving complexity and versatility in useful soft materials to mimic human muscles and tissues for adaptability and integration is pivotal.

This This Frost & Sullivan study explores emerging and futuristic soft robotics materials that can be incorporated into robotics. The research captures various technical aspects, end applications, technology trends and opportunities, and dynamics in the industry stakeholder ecosystem. It also explores the top materials and offers comparative benchmarking, including factors that render the superiority of these materials. The report delivers a deep dive into the intellectual property and financing backdrop for soft robotics materials.

Frost & Sullivan has identified key categories of soft robotics materials, segmented as follows:

  • Soft polymers (hydrogel, electroactive, ferroelectric, shape memory, self-healing, and other smart polymers)
  • Elastomers (silicones, PEDOT:PSS, PDMS, liquid crystal elastomers, and bioelastomers)
  • Alloys and metallic materials (shape memory alloys and liquid metals)
  • Biohybrids (bacterial, protists, tissues, biopolymers, and biomimetics)
  • Nanostructures (carbon nanotubes, graphene, buckyballs, and other nanocomposites)

Robotics firms continue to forge partnerships and collaborations to design new soft robotics components. Mergers and acquisitions, specifically special purpose acquisitions (SPACs), have sparked the development of innovative soft material solutions. Factors such as the expanding aging population, need for better automation solutions, the growing impact of additive manufacturing, and emerging application opportunities are accelerating the soft robotics materials technology landscape.

Key Questions This Study Explores:

  • Which materials are top-notch candidates for use in soft robotics?
  • How have the materials' developmental milestones emerged?
  • What are the regional technology and market trends in soft robotics materials development?
  • What is the state of the soft robotics materials value chain and who are the key decision-makers?
  • What are the main manufacturing routes to obtain soft materials for robotics?
  • What R&D and commercialization initiatives are underway to explore new soft materials and for which robotics parts or components?
  • What are the IP and funding scenarios for soft robotics materials?
  • What are the growth opportunities for technology developers in the soft robotics materials arena?

Table of Contents

Strategic Imperatives

  • The Strategic Imperative 8™
  • Why Is It Increasingly Difficult to Grow?The Strategic Imperative 8™: Factors Creating Pressure on Growth
  • The Impact of the Top 3 Strategic Imperatives on Materials for the Soft Robotics Industry
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Analysis

  • Technology Dashboard
  • Research Scope and Segmentation
  • Research Scope and Segmentation and Questions the Study Answers
  • Growth Drivers
  • Growth Restraints

Industry Overview

  • Industry 4.0 Fuels the Developmental Pace of Automation Focused on Robotics
  • Progress in Soft Robotics Would Depend on the Advancement of Materials Amenable to AM
  • Increasing Use of Soft Tunable Materials with High Mechanical Strength to Fabricate Robots
  • Increasing Use of Soft Tunable Materials with High Mechanical Strength to Fabricate Robots (continued)
  • Specific Industrial Requirements Set Advanced Material Demand to Construct Soft Robotics
  • Regulations Aim to Embed Machine Intelligence into Soft Actuators to Achieve High Performance
  • Milestones in Soft Robotics and Materials Development
  • Research Institutes and Material Providers Play a Main Role in Decision-making on the Design of Soft Robotics Parts
  • Academia and Providers Collaborate to Explore Innovative Robotics Soft Materials

Technology Analysis

  • Polymers Shape the Use of Advanced Materials in Soft Robotics by Imparting Unique Attributes
  • Elastomers Enhance the Flexibility and Stretchability of Robotic Components to Showcase Resilience
  • Among Metals and Alloys, Soft Robotic Manufacturers are Interested in SMAs Owing to Their Unique Characteristics
  • Nature-inspired Tissues and Micro-organisms See Use to Make Better Machines
  • Nanostructures Empower Soft Robotic Micromachines with Better Locomotion to Conduct Automated Tasks
  • The Type of Manufacturing Determines the Type of Material to Use
  • Various Manufacturing and Fabrication Methods Ensure Intelligent Soft Robots with Holistic Applications
  • Polymeric and Elastomeric Materials Lead the Soft Materials Bandwagon for Robotic Actuation across Industries

Innovation Ecosystem

  • R&D Activities in Polymers and Elastomers for Soft Robotics
  • R&D Activities in Alloys and Nanostructures for Soft Robotics
  • R&D Activities in Biohybrids and Artificial Tissues for Soft Robotics
  • Commercialized Innovations in Polymers and Elastomers
  • Commercialized Innovations in Alloys and Nanostructures
  • Robotics Firms Continue to Forge Partnerships and Collaborations to Design New Soft Robotic Components
  • Mergers and Acquisitions to Gain Technology Access

Intellectual Property Analysis

  • Polymers and Elastomers Dominate in Research Publications on Soft Robotics Materials
  • Alloys and Nanostructures Lead in Patent Filings for Soft Robotics Materials
  • USPTO and Chinese Patent Offices Lead IP Filings in the Last 3 Years
  • Soft Actuators Remain the Focus in Patent Filings

Funding and Investment Analysis

  • Investors Bet Big on Soft Robotics Materials, such as Dielectric Elastomers, to Reinforce Rapid Locomotion
  • Funding Initiatives in North America and Asia-Pacific Focus on Soft Robotic Component Development and New Materials, Respectively
  • Beneficiaries Prioritize Building Soft Materials that Conform to Robotics' Operational Requirements
  • Soft Robotics Financing Increases to Explore Softer Programmable Materials
  • VC and Grant Initiatives in Soft Robotics Materials Aim to Demonstrate and Commercialize Soft Materials in Robotics
  • VC and Grant Initiatives in Soft Robotics Materials Aim to Demonstrate and Commercialize Soft Materials in Robotics (continued)

Future Outlook

  • Cost Reduction and Material Performance Enhancement, the Key to Achieving Right Soft Material
  • Drive for Innovation and Presence of Competition Are Main Decision-Makers to Render a Material Useful in Soft Robotics
  • Research for Futuristic Concepts Increases to Meet Needs
  • Research for Futuristic Concepts Increases to Meet Needs (continued)
  • Actuation and Gripping Lead Patenting and Financing Initiatives
  • Actuation and Gripping Lead Patenting and Financing Initiatives (continued)
  • Analyst Perspectives
  • Analyst Perspectives (continued)

Growth Opportunity Universe

  • Growth Opportunity 1: Ingestible Soft Robotics for Diagnostics and Treatments
  • Growth Opportunity 1: Ingestible Soft Robotics for Diagnostics and Treatments (continued)
  • Growth Opportunity 2: Switchable, Programmable, and Reconfigurable Robotics to Offer Versatility
  • Growth Opportunity 2: Switchable, Programmable, and Reconfigurable Robotics to Offer Versatility (continued)
  • Growth Opportunity 3: Biomimetic and Bioinspired Materials to Converge Nature with Industrial Automation
  • Growth Opportunity 3: Biomimetic and Bioinspired Materials to Converge Nature with Industrial Automation (continued)
  • Growth Opportunity 4: Digital Technologies for Soft Robotics Manufacturing
  • Growth Opportunity 4: Digital Technologies for Soft Robotics Manufacturing (continued)

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer