封面
市場調查報告書
商品編碼
1406820

病毒過濾市場 - 2018-2028 年全球產業規模、佔有率、趨勢、機會和預測,按產品(消耗品、儀器、服務)、技術、最終用途、地區和競爭細分

Virus Filtration Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Product (Consumables, Instruments, Services), Technology, By End use, By Region and Competition

出版日期: | 出版商: TechSci Research | 英文 190 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2022 年,全球病毒過濾市場價值為 45.2 億美元,預計到 2028 年,複合CAGR將達到7.25%,預計將在預測期內實現驚人成長。在生物製藥和疫苗生產領域,確保產品安全至關重要。病毒等污染物可能會危及這些救命藥物的功效和安全性。全球病毒過濾市場已成為維護生物製藥完整性和確保患者福祉的重要參與者。

病毒過濾是生物製藥製造的關鍵步驟,特別是在疫苗、治療性蛋白質和單株抗體的生產中。病毒比大多數細菌和其他微生物都要小,這使得清除它們成為一項具有挑戰性的任務。如果不加以解決,病毒污染可能會導致嚴重的健康風險,使生物製藥產品對人類使用不安全。病毒過濾的主要目的是消除生物製藥產品中的病毒,同時保留所需分子的完整性。該過程不僅確保了最終產品的安全性,而且滿足法規要求。美國食品藥物管理局 (FDA) 和歐洲藥品管理局 (EMA) 等監管機構制定了嚴格的指導方針,以確保生物製藥的品質和安全,並強調有效病毒過濾的重要性。

由於生物藥品在治療多種疾病方面具有功效,對生物藥品的需求正在穩步成長。這種不斷成長的需求導致了生物製藥產量的增加,從而推動了對病毒過濾技術的需求。病毒過濾領域的持續研究和開發催生了更有效率、更強大的過濾技術。這些創新正在增強病毒過濾的功效,使更廣泛的生物製藥公司更容易使用它。政府和私人實體正在增加對醫療保健和製藥的投資,從而刺激生物製藥行業和病毒過濾市場的成長。

市場概況
預測期 2024-2028
2022 年市場規模 45.2億美元
2028 年市場規模 68.2億美元
2023-2028 年CAGR 7.25%
成長最快的細分市場 生物製藥和生物技術公司
最大的市場 北美洲

主要市場促進因素

目錄

第 1 章:產品概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

  • 研究目的
  • 基線方法
  • 主要產業夥伴
  • 主要協會和二手資料來源
  • 預測方法
  • 數據三角測量與驗證
  • 假設和限制

第 3 章:執行摘要

  • 市場概況
  • 主要市場細分概述
  • 主要市場參與者概述
  • 重點地區/國家概況
  • 市場促進因素、挑戰、趨勢概述

第 4 章:全球病毒過濾市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依產品(消耗品(試劑盒及試劑、其他)、儀器(過濾系統、層析系統)、服務)
    • 依技術(過濾、色譜)
    • 依最終用途(生物製藥和生物技術公司、合約研究組織、醫療器材公司、學術機構和研究實驗室)
    • 按地區
    • 按公司分類 (2022)
  • 市場地圖
    • 按產品分類
    • 依技術
    • 按最終用途
    • 按地區

第 5 章:亞太地區病毒過濾市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依技術
    • 按最終用途
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國病毒過濾
    • 印度病毒過濾
    • 澳洲病毒過濾
    • 日本病毒過濾
    • 韓國病毒過濾

第 6 章:歐洲病毒過濾市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依技術
    • 按最終用途
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 西班牙
    • 義大利
    • 英國

第 7 章:北美病毒過濾市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依技術
    • 按最終用途
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 8 章:南美洲病毒過濾市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依技術
    • 按疫苗適應症
    • 按最終用途
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 9 章:中東和非洲病毒過濾市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按產品分類
    • 依技術
    • 按最終用途
    • 按國家/地區
  • MEA:國家分析
    • 南非病毒過濾
    • 沙烏地阿拉伯病毒過濾
    • 阿拉伯聯合大公國病毒過濾
    • 埃及病毒過濾

第 10 章:市場動態

  • 促進要素
  • 挑戰

第 11 章:市場趨勢與發展

  • 最近的發展
  • 產品發布
  • 併購

第 12 章:全球病毒過濾市場:SWOT 分析

第 13 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第14章:競爭格局

  • 默克公司
    • Business Overview
    • Company Snapshot
    • Product & Services
    • Current Capacity Analysis
    • Financials (In case of listed)
    • Recent Developments
    • SWOT Analysis
  • 丹納赫公司
  • 賽多利斯公司
  • 賽默飛世爾科技公司
  • GE 醫療保健科技公司
  • 查爾斯河實驗室
  • 旭化成醫療株式會社
  • 藥明康德
  • 龍沙集團公司
  • 清潔生物製劑

第 15 章:策略建議

關於我們及免責聲明

簡介目錄
Product Code: 19356

Global Virus Filtration Market has valued at USD 4.52 Billion in 2022 and is anticipated to project impressive growth in the forecast period with a CAGR of 7.25% through 2028. In the world of biopharmaceuticals and vaccine production, ensuring product safety is paramount. Contaminants such as viruses can jeopardize the efficacy and safety of these life-saving drugs. The global virus filtration market has emerged as a vital player in safeguarding the integrity of biopharmaceuticals and ensuring patient well-being.

Virus filtration is a critical step in biopharmaceutical manufacturing, particularly in the production of vaccines, therapeutic proteins, and monoclonal antibodies. Viruses are smaller than most bacteria and other microorganisms, making their removal a challenging task. Left unaddressed, viral contamination can lead to serious health risks, rendering biopharmaceutical products unsafe for human use. The primary objective of virus filtration is to eliminate viruses from biopharmaceutical products while retaining the desired molecules intact. This process not only ensures the safety of the end product but also satisfies regulatory requirements. Regulatory bodies such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have stringent guidelines in place to ensure the quality and safety of biopharmaceuticals, emphasizing the importance of effective virus filtration.

The demand for biopharmaceuticals is steadily rising due to their efficacy in treating a wide range of diseases. This growing demand has led to an increase in biopharmaceutical production, subsequently driving the demand for virus filtration technologies. Continuous research and development in the field of virus filtration have led to the creation of more efficient and robust filtration technologies. These innovations are enhancing the efficacy of virus filtration, making it more accessible to a broader range of biopharmaceutical companies. Governments and private entities are increasing their investments in healthcare and pharmaceuticals, thus stimulating the growth of the biopharmaceutical sector and the virus filtration market.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 4.52 Billion
Market Size 2028USD 6.82 Billion
CAGR 2023-20287.25%
Fastest Growing SegmentBiopharmaceutical & Biotechnology Companies
Largest MarketNorth America

Key Market Drivers

Growing Biopharmaceutical Industry is Driving the Global Virus Filtration Market

The biopharmaceutical industry is in the midst of a transformative era, marked by innovative research, breakthrough therapies, and an ever-increasing demand for high-quality biologics. This growth is not only revolutionizing the way diseases are treated but is also propelling various associated markets to new heights. One such market that has been on the rise is the global virus filtration market, driven by the continuous expansion and success of the biopharmaceutical sector. The biopharmaceutical industry encompasses a wide range of drugs and therapies, including monoclonal antibodies, vaccines, gene therapies, and other complex biologics. These treatments are designed to address some of the most challenging medical conditions, from cancer and rare diseases to autoimmune disorders and infectious diseases. What makes biopharmaceuticals unique is their complexity and specificity, often requiring precise manufacturing and quality control processes.

In recent years, the biopharmaceutical industry has experienced exponential growth, fueled by advancements in molecular biology, genomics, and recombinant DNA technology. The result has been a steady influx of novel therapies, as well as an ever-increasing demand for existing ones. This surge in biopharmaceutical research and development has opened doors for various auxiliary industries, and the virus filtration market is no exception. The biopharmaceutical industry is characterized by an extensive drug pipeline, with numerous potential treatments in various stages of development. As these therapies progress through clinical trials and reach the market, the demand for virus filtration technologies increases. The increasing acceptance and efficacy of biologics in treating complex diseases, including cancer, autoimmune disorders, and infectious diseases, drive the growth of the biopharmaceutical industry. This expansion further amplifies the demand for virus filtration solutions. Ongoing advancements in filtration technologies have led to more efficient and reliable virus filtration methods, making them increasingly attractive to biopharmaceutical manufacturers.

Expanding Research and Development Activities is Driving the Global Virus Filtration Market

Research and development activities across the pharmaceutical, biotechnology, and life sciences sectors have seen substantial growth in recent years. Several factors are contributing to this expansion. Biopharmaceuticals, including monoclonal antibodies, gene therapies, and cell-based therapies, are gaining prominence. As the demand for these products grows, so does the need for advanced virus filtration technologies to ensure their safety and efficacy. The world has witnessed the emergence of various infectious diseases, such as COVID-19. These global health crises highlight the importance of virus filtration in vaccine production and diagnostic testing. Consequently, increased R&D efforts are directed toward improving virus filtration methods and technologies. Gene therapy is an evolving field with the potential to revolutionize medical treatments. To meet the stringent safety standards for gene therapy products, R&D activities are dedicated to enhancing virus filtration techniques. Automation in bioprocessing is becoming more prevalent. Advanced virus filtration technologies are needed to keep pace with the automation trend and maintain product quality.

The expanding R&D activities are driving the global virus filtration market in several ways. R&D investments enable the development of cutting-edge virus filtration technologies that are more efficient, cost-effective, and adaptable to various applications. Regulatory authorities are continually raising the bar for product safety and purity. This compels companies to invest in research and development to meet these standards, which often necessitate advanced virus filtration techniques. Collaborations between research institutions, biotech companies, and pharmaceutical giants foster innovation and contribute to the growth of the virus filtration market. The competitive nature of the pharmaceutical and biotechnology industries encourages companies to invest in R&D to gain a competitive edge by offering superior virus filtration solutions.

Expanding research and development activities have become the engine driving the global virus filtration market. As industries such as pharmaceuticals, biotechnology, and life sciences continue to evolve and grow, the demand for reliable and efficient virus filtration solutions will persist. The relentless pursuit of product safety and purity, along with the emergence of new infectious diseases and the rise of biopharmaceuticals and gene therapies, all contribute to the sustained expansion of the virus filtration market. To stay at the forefront of this dynamic industry, companies must continue to invest in R&D and innovation, ensuring that the safety and efficacy of their products remain uncompromised.

Key Market Challenges

Evolving Virus Strains

One of the primary challenges in the virus filtration market is the ever-evolving nature of viruses. Viruses mutate and adapt to their environments, leading to the emergence of new strains and variants. For virus filtration products to remain effective, they must be capable of capturing and removing these newly identified viruses. This necessitates continuous research and development efforts to keep pace with the changing landscape of viral threats.

Regulatory Compliance

The virus filtration market is highly regulated, particularly in industries like biopharmaceuticals and healthcare. Meeting the stringent regulatory requirements and quality standards set by organizations such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) is a significant challenge. Manufacturers must invest substantial resources in compliance and validation processes, which can be time-consuming and costly.

Cost-Effectiveness

Balancing the need for stringent virus removal with cost-effectiveness is a constant challenge in the virus filtration market. Developing and implementing filtration processes that efficiently remove viruses without significantly increasing production costs is a delicate balance. High production costs can ultimately impact the affordability of pharmaceuticals, vaccines, and other products, potentially limiting their accessibility to the wider population.

Scalability

As the demand for biopharmaceuticals and vaccines increases, the virus filtration market must address issues related to scalability. Processes that work effectively on a laboratory scale may not be easily transferable to large-scale manufacturing. Achieving consistency and scalability without compromising filtration efficiency can be a major challenge.

Variability in Product Quality

The quality and performance of virus filtration products can vary between manufacturers and even between batches of the same product. Variability in product quality can result from differences in manufacturing processes, materials, or quality control measures. This inconsistency can undermine the reliability of virus filtration processes, making it necessary for manufacturers to invest in rigorous quality control and assurance measures.

Emerging Technologies

The virus filtration market faces competition from emerging technologies that may offer alternative methods of virus removal or inactivation. These technologies, such as nanofiltration and innovative biopharmaceutical manufacturing processes, challenge the traditional virus filtration methods. Staying competitive in a rapidly evolving technological landscape is a significant challenge for established virus filtration companies.

Global Supply Chain Issues

The COVID-19 pandemic highlighted the vulnerability of global supply chains. For the virus filtration market, this has meant disruptions in the availability of critical materials and components. Ensuring a stable supply chain is a challenge that directly impacts the ability to manufacture and deliver virus filtration products on time.

Key Market Trends

Technological Advancements

The global virus filtration market is experiencing a remarkable surge, largely attributed to the relentless pace of technological advancements. Virus filtration has become an indispensable process in pharmaceuticals, biotechnology, and research industries. It plays a pivotal role in ensuring the safety and purity of biopharmaceutical products and protecting against potential viral contaminants. As the world continues to grapple with infectious diseases and the quest for cutting-edge therapies intensifies, the demand for advanced virus filtration solutions is skyrocketing.

One of the most significant technological advancements in virus filtration is the development of advanced nanofiltration membranes. These highly specialized filters have smaller pore sizes, making them more effective in removing even the smallest of viruses. The use of nanofiltration has become increasingly common in the biopharmaceutical industry. Single-use virus filtration systems have gained prominence due to their cost-effectiveness and convenience. These systems incorporate disposable components that reduce the risk of cross-contamination and alleviate the need for extensive cleaning and validation processes. The advent of viral clearance technology has revolutionized the virus filtration process. It enables the efficient removal of viruses while preserving the integrity of biopharmaceutical products. This technology has improved the overall safety and efficacy of biopharmaceuticals. Improved detection methods, including advanced analytical instruments and real-time monitoring systems, allow for the early identification and tracking of potential viral contaminants. These advancements enable pharmaceutical companies to take prompt action to prevent contamination.

Segmental Insights

Product Insights

Based on the category of product, Consumables emerged as the dominant player in the global market for Virus Filtration in 2022. Consumables are used in large quantities in the biopharmaceutical manufacturing process. Their consistent and frequent use, often as single-use items, generates a constant demand. The stringent regulatory requirements for virus filtration necessitate the use of high-quality consumables to ensure product safety and compliance. This has led to increased investment in consumables that meet industry standards. Ongoing research and development have led to the creation of innovative consumables designed to improve filtration efficiency, reduce costs, and enhance product yield. The consumables segment offers cost-effective solutions for virus filtration, which is vital for the biopharmaceutical industry striving to reduce production costs without compromising quality. The application of virus filtration is not limited to pharmaceuticals but also includes industries like food and beverage, biotechnology, and water purification. This diversification has led to a broader market for consumables.

Technology Insights

The Filtration segment is projected to experience rapid growth during the forecast period. Filtration technology offers an exceptional level of efficiency in removing viruses from various solutions. It can effectively clear viruses, even those as small as 20 nanometers, ensuring the highest product quality and safety. Filtration technology is versatile, making it applicable across a range of industries. It is used in pharmaceutical manufacturing to clear viral contaminants from biopharmaceutical products, vaccines, and gene therapies. It is also employed in the food and beverage industry to ensure virus-free products and in water treatment facilities to provide safe drinking water. Stringent regulations exist to ensure the safety and quality of products in the aforementioned industries. Filtration technology is designed to meet and exceed these regulatory requirements, making it the go-to choice for businesses looking to stay compliant. Filtration technology can be easily scaled up to meet the demands of large-scale manufacturing processes. This scalability is crucial in industries such as pharmaceuticals, where the production of life-saving drugs and vaccines must occur on a massive scale. The use of filtration technology ensures that the final product remains intact and free from damage or alteration, maintaining the highest possible quality. This is especially critical in pharmaceuticals and biotechnology.

Regional Insights

North America emerged as the dominant player in the global Virus Filtration market in 2022, holding the largest market share in terms of value. One of the key factors contributing to North America's dominance in the virus filtration market is its advanced technological infrastructure. The region boasts a wealth of research and development capabilities, state-of-the-art facilities, and a robust biopharmaceutical industry. North American companies have a long-standing tradition of innovation and a strong commitment to quality assurance, making them leaders in virus filtration technology. North America is known for its rigorous regulatory standards, especially in the pharmaceutical and biotechnology sectors. The United States, in particular, is home to the Food and Drug Administration (FDA), which enforces stringent guidelines for product safety and efficacy. These regulations have prompted companies in the region to invest heavily in virus filtration processes to meet and exceed these demanding standards. The biopharmaceutical industry in North America is booming, with major pharmaceutical companies and biotech startups driving innovation. The region is a hotspot for research and development, attracting top talent and significant investment. As the biopharmaceutical industry expands, so does the need for advanced virus filtration technologies to maintain the integrity of these complex and often sensitive products.

Key Market Players

Merck KGaA

Danaher Corporation

Sartorius AG

Thermo Fisher Scientific Inc.

GE Healthcare Technologies, Inc.

Charles River Laboratories

Asahi Kasei Medical Co., Ltd.

WuXi AppTec

Lonza Group AG

Clean Biologics

Report Scope:

In this report, the Global Virus Filtration Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Virus Filtration Market, By Product:

  • Consumables
  • Instruments
  • Services

Virus Filtration Market, By Technology:

  • Filtration
  • Chromatography

Virus Filtration Market, By End use:

  • Biopharmaceutical & biotechnology companies
  • Contract research organizations
  • Medical device companies
  • Academic institutes & research laboratories

Virus Filtration Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Virus Filtration Market.

Available Customizations:

  • Global Virus Filtration market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Global Virus Filtration Market Outlook

  • 4.1. Market Size & Forecast
    • 4.1.1. By Value
  • 4.2. Market Share & Forecast
    • 4.2.1. By Product (Consumables (Kits and reagents, Others), Instruments (Filtration systems, Chromatography systems), Services)
    • 4.2.2. By Technology (Filtration, Chromatography)
    • 4.2.3. By End use (Biopharmaceutical & biotechnology companies, Contract research organizations, Medical device companies, Academic institutes & research laboratories)
    • 4.2.4. By Region
    • 4.2.5. By Company (2022)
  • 4.3. Market Map
    • 4.3.1. By Product
    • 4.3.2. By Technology
    • 4.3.3. By End use
    • 4.3.4. By Region

5. Asia Pacific Virus Filtration Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product
    • 5.2.2. By Technology
    • 5.2.3. By End use
    • 5.2.4. By Country
  • 5.3. Asia Pacific: Country Analysis
    • 5.3.1. China Virus Filtration Market Outlook
      • 5.3.1.1. Market Size & Forecast
        • 5.3.1.1.1. By Value
      • 5.3.1.2. Market Share & Forecast
        • 5.3.1.2.1. By Product
        • 5.3.1.2.2. By Technology
        • 5.3.1.2.3. By End use
    • 5.3.2. India Virus Filtration Market Outlook
      • 5.3.2.1. Market Size & Forecast
        • 5.3.2.1.1. By Value
      • 5.3.2.2. Market Share & Forecast
        • 5.3.2.2.1. By Product
        • 5.3.2.2.2. By Technology
        • 5.3.2.2.3. By End use
    • 5.3.3. Australia Virus Filtration Market Outlook
      • 5.3.3.1. Market Size & Forecast
        • 5.3.3.1.1. By Value
      • 5.3.3.2. Market Share & Forecast
        • 5.3.3.2.1. By Product
        • 5.3.3.2.2. By Technology
        • 5.3.3.2.3. By End use
    • 5.3.4. Japan Virus Filtration Market Outlook
      • 5.3.4.1. Market Size & Forecast
        • 5.3.4.1.1. By Value
      • 5.3.4.2. Market Share & Forecast
        • 5.3.4.2.1. By Product
        • 5.3.4.2.2. By Technology
        • 5.3.4.2.3. By End use
    • 5.3.5. South Korea Virus Filtration Market Outlook
      • 5.3.5.1. Market Size & Forecast
        • 5.3.5.1.1. By Value
      • 5.3.5.2. Market Share & Forecast
        • 5.3.5.2.1. By Product
        • 5.3.5.2.2. By Technology
        • 5.3.5.2.3. By End use

6. Europe Virus Filtration Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product
    • 6.2.2. By Technology
    • 6.2.3. By End use
    • 6.2.4. By Country
  • 6.3. Europe: Country Analysis
    • 6.3.1. France Virus Filtration Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Product
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By End use
    • 6.3.2. Germany Virus Filtration Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Product
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By End use
    • 6.3.3. Spain Virus Filtration Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Product
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By End use
    • 6.3.4. Italy Virus Filtration Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Product
        • 6.3.4.2.2. By Technology
        • 6.3.4.2.3. By End use
    • 6.3.5. United Kingdom Virus Filtration Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Product
        • 6.3.5.2.2. By Technology
        • 6.3.5.2.3. By End use

7. North America Virus Filtration Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product
    • 7.2.2. By Technology
    • 7.2.3. By End use
    • 7.2.4. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Virus Filtration Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Product
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By End use
    • 7.3.2. Mexico Virus Filtration Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Product
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By End use
    • 7.3.3. Canada Virus Filtration Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Product
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By End use

8. South America Virus Filtration Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product
    • 8.2.2. By Technology
    • 8.2.3. By Vaccines Indication
    • 8.2.4. By End use
    • 8.2.5. By Country
  • 8.3. South America: Country Analysis
    • 8.3.1. Brazil Virus Filtration Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Product
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By End use
    • 8.3.2. Argentina Virus Filtration Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Product
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By End use
    • 8.3.3. Colombia Virus Filtration Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Product
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By End use

9. Middle East and Africa Virus Filtration Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Product
    • 9.2.2. By Technology
    • 9.2.3. By End use
    • 9.2.4. By Country
  • 9.3. MEA: Country Analysis
    • 9.3.1. South Africa Virus Filtration Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Product
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By End use
    • 9.3.2. Saudi Arabia Virus Filtration Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Product
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By End use
    • 9.3.3. UAE Virus Filtration Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Product
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By End use
    • 9.3.4. Egypt Virus Filtration Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Product
        • 9.3.4.2.2. By Technology
        • 9.3.4.2.3. By End use

10. Market Dynamics

  • 10.1. Drivers
  • 10.2. Challenges

11. Market Trends & Developments

  • 11.1. Recent Developments
  • 11.2. Product Launches
  • 11.3. Mergers & Acquisitions

12. Global Virus Filtration Market: SWOT Analysis

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. Merck KGaA
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Product & Services
    • 14.1.4. Current Capacity Analysis
    • 14.1.5. Financials (In case of listed)
    • 14.1.6. Recent Developments
    • 14.1.7. SWOT Analysis
  • 14.2. Danaher Corporation
  • 14.3. Sartorius AG
  • 14.4. Thermo Fisher Scientific Inc.
  • 14.5. GE Healthcare Technologies, Inc.
  • 14.6. Charles River Laboratories
  • 14.7. Asahi Kasei Medical Co., Ltd.
  • 14.8. WuXi AppTec
  • 14.9. Lonza Group AG
  • 14.10. Clean Biologics

15. Strategic Recommendations

About Us & Disclaimer