封面
市場調查報告書
商品編碼
1383734

水耕市場 - 2018-2028 年全球產業規模、佔有率、趨勢、機會和預測,按類型、設備、投入、耕作方法、作物類型、地區和競爭細分

Hydroponics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Type, By Equipment, By Input, By Farming Method, By Crop Type, By Region and Competition

出版日期: | 出版商: TechSci Research | 英文 190 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2022 年,全球水耕市場價值為 117.7 億美元,預計在預測期內將出現令人印象深刻的成長,到 2028 年CAGR為7.50%。水耕是一種先進的農業技術,正在徹底改變我們種植植物的方式。它涉及在沒有土壤的情況下種植作物,利用營養豐富的水溶液將重要的礦物質直接輸送到植物根部。這種創新方法具有許多優點。與傳統的土壤農業相比,它透過顯著減少水消耗來最大限度地提高資源效率。此外,水耕法可以精確控制溫度、濕度和光照等環境因素,最佳化植物生長並最大限度地減少對殺蟲劑或除草劑的需求。這種方法的多功能性允許在從城市屋頂到乾燥沙漠的各種環境下種植,實現全年生產並消除季節性農業的限制。此外,它還可以減輕土傳疾病,提高作物產量,並為全球糧食安全挑戰提供潛在的解決方案。隨著我們的世界努力應對日益成長的人口壓力和環境問題,水耕法逐漸成為一種領先的永續農業實踐,為實現更有效率、更有彈性和環境友善的糧食生產系統提供了一條充滿希望的道路。

主要市場促進因素

垂直農業和室內種植的上升趨勢

市場概況
預測期 2024-2028
2022 年市場規模 117.7億美元
2028 年市場規模 181.1億美元
2023-2028 年CAGR 7.50%
成長最快的細分市場 蔬菜
最大的市場 北美洲

垂直農業和室內種植的興起趨勢將顯著增加全球對水耕法的需求。隨著都市化進程的不斷加快,垂直農業(即在垂直堆疊的層中種植農作物的做法)已成為解決農業用地有限問題的永續解決方案。這種耕作方法通常在室內的受控環境中進行,可最佳化生長參數,從而實現產量最大化和浪費最小化。水耕法在這種環境中發揮關鍵作用,它允許植物在沒有土壤的情況下生長,而是使用水中的礦物質營養液。這種無土耕作方法不僅可以有效吸收養分,從而加快生長速度和提高產量,還可以降低土傳疾病的風險。此外,與傳統農業相比,水耕系統的用水量大大減少,從而促進了永續的水管理。隨著全球人口不斷成長,人們對糧食安全的擔憂加劇,垂直農業與水耕法的採用預計將持續升級。這些系統的緊湊性使其成為城市環境的理想選擇,有助於當地糧食供應並減少長途運輸的需求。因此,這些趨勢的融合預計將激增全球對水耕法的需求,標誌著農業向更永續實踐的典範轉移。

目錄

第 1 章:產品概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

  • 研究目的
  • 基線方法
  • 主要產業夥伴
  • 主要協會和二手資料來源
  • 預測方法
  • 數據三角測量與驗證
  • 假設和限制

第 3 章:執行摘要

  • 市場概況
  • 主要市場細分概述
  • 主要市場參與者概述
  • 重點地區/國家概況
  • 市場促進因素、挑戰、趨勢概述

第 4 章:客戶之聲

第 5 章:全球水耕市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型(骨材系統和液體系統)
    • 依設備(暖通空調、LED 生長燈、控制系統、灌溉系統、物料搬運等)
    • 依投入(營養物和生長培養基)
    • 依耕作方法(室內和室外)
    • 依作物類型(蔬菜、水果、花卉等)
    • 按地區
    • 按公司分類 (2022)
  • 市場地圖

第 6 章:北美水耕市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按設備分類
    • 按輸入
    • 按耕作方式
    • 按作物類型
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第 7 章:歐洲水耕市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按設備分類
    • 按輸入
    • 按耕作方式
    • 按作物類型
    • 按國家/地區
  • 歐洲:國家分析
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙

第 8 章:亞太地區水耕市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按設備分類
    • 按輸入
    • 按耕作方式
    • 按作物類型
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲

第 9 章:南美水耕市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按設備分類
    • 按輸入
    • 按耕作方式
    • 按作物類型
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲水耕市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按類型
    • 按設備分類
    • 按輸入
    • 按耕作方式
    • 按作物類型
    • 按國家/地區
  • MEA:國家分析
    • 南非水耕
    • 沙烏地阿拉伯水耕
    • 阿拉伯聯合大公國水耕
  • 促進要素
  • 挑戰

第 11 章:市場趨勢與發展

  • 近期發展
  • 併購
  • 產品發布

第 12 章:全球水耕市場:SWOT 分析

第 13 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第14章:競爭格局

  • 航空農場
    • Business Overview
    • Service Offerings
    • Recent Developments
    • Key Personnel
    • SWOT Analysis
  • 阿格斯控制系統有限公司
  • 光明農場
  • 通用水耕公司
  • 綠色科技農業有限公司
  • 成長生命公司
  • 國際流體動力學
  • 水力農場有限責任公司
  • 盧米格羅公司
  • 薩尼特地球有限公司

第 15 章:策略建議

第 16 章:關於我們與免責聲明

簡介目錄
Product Code: 1546

Global Hydroponics Market has valued at USD 11.77 Billion in 2022 and is anticipated to project impressive growth in the forecast period with a CAGR of 7.50% through 2028. Hydroponics is an advanced agricultural technique that is revolutionizing the way we cultivate plants. It involves the cultivation of crops without soil, utilizing a nutrient-rich water solution to directly deliver vital minerals to plant roots. This innovative approach offers numerous advantages. It maximizes resource efficiency by significantly reducing water consumption compared to traditional soil-based farming. Moreover, hydroponics enables precise control over environmental factors such as temperature, humidity, and light, optimizing plant growth and minimizing the need for pesticides or herbicides. The versatility of this method allows for cultivation in various settings, ranging from urban rooftops to arid deserts, enabling year-round production and eliminating the limitations of seasonal farming. Furthermore, it mitigates soil-borne diseases, enhances crop yields, and presents a potential solution to global food security challenges. As our world grapples with increasing population pressures and environmental concerns, hydroponics emerges as a leading sustainable agricultural practice, offering a promising path towards more efficient, resilient, and environmentally friendly food production systems.

Key Market Drivers

Rising Trend of Vertical Farming & Indoor Cultivation

Market Overview
Forecast Period2024-2028
Market Size 2022USD 11.77 Billion
Market Size 2028USD 18.11 Billion
CAGR 2023-20287.50%
Fastest Growing SegmentVegetables
Largest MarketNorth America

The rising trend of vertical farming and indoor cultivation is set to significantly augment global demand for hydroponics. As urbanisation continues to increase, vertical farming - the practice of growing crops in vertically stacked layers - has emerged as a sustainable solution to the problem of limited agricultural land. This method of farming is typically performed indoors, in controlled environments that optimise growth parameters, resulting in maximized yield and minimized waste. Hydroponics plays a pivotal role in such settings by allowing plants to grow without soil, using mineral nutrient solutions in water instead. This soil-less farming method, not only enables efficient nutrient uptake, leading to faster growth and higher yields, but also mitigates the risk of soil-borne diseases. Moreover, hydroponics systems use substantially less water compared to traditional farming, promoting sustainable water management. As concerns over food security intensify due to the increasing global population, the adoption of vertical farming coupled with hydroponics is projected to escalate. The compactness of these systems makes them ideal for urban environments, contributing to local food supplies and reducing the need for long-distance transportation. Hence, the convergence of these trends is expected to surge the global demand for hydroponics, signaling a paradigm shift in agriculture towards more sustainable practices.

Government Initiatives Promoting Hydroponic Farming

Government initiatives promoting hydroponic farming are expected to significantly enhance the global demand for hydroponics. As urban areas expand and arable land becomes increasingly scarce, governments worldwide are acknowledging the potential of hydroponics as an efficient, space-saving solution for crop cultivation. This soilless method of farming, which leverages nutrient-rich water solutions, offers superior yields, faster growth rates, and year-round production capabilities. Government programs are providing technical guidance, financial assistance, and policy support to encourage the adoption of hydroponics. For instance, in regions facing severe water scarcity, governments are implementing hydroponic systems to conserve water and ensure food security. Policies encouraging sustainable farming methods are further fuelling the growth of the hydroponic industry. Additionally, the introduction of tax benefits for hydroponic farmers acts as a catalyst for the adoption of this revolutionary farming technique. As a result of these initiatives, hydroponics is anticipated to see substantial growth in demand, with a significant impact on global food production and resource conservation.

Rising Investment in Research & Development for Hydroponic Technology

The global demand for hydroponics is predicted to surge in the coming years, largely due to an increase in investments towards research and development (R&D) in hydroponic technology. Hydroponics, a method of growing plants without soil, offers a sustainable solution to the challenges of conventional agriculture, such as scarcity of arable land and water. As researchers continue to explore and advance hydroponic technology, the efficiency and productivity of these systems are expected to improve, making them an increasingly attractive option for growers worldwide. Investments in R&D are not only refining existing hydroponic techniques but also paving the way for innovative approaches that could revolutionize the agriculture industry. This includes the development of advanced nutrient solutions, automated systems, and artificial intelligence to monitor plant health. Additionally, research is focusing on the potential of hydroponics in urban farming and vertical agriculture, which could significantly contribute to food security in heavily populated cities. As such, the rising investment in hydroponic technology R&D signals a promising future for this method of agriculture, with anticipated global market growth reflecting its increased demand.

Increased Inclination Towards Vegan & Organic Diets

The escalating shift towards vegan and organic diets worldwide is anticipated to bolster the demand for hydroponics, an innovative method of cultivating plants without soil. This surge in demand is primarily due to the increasing recognition of the myriad of benefits hydroponics offers. Foremost among these is the capability to yield high-quality, pesticide-free produce all year round, aligning with the nutritional needs and ethical values of a vegan and organic lifestyle. Moreover, hydroponics provides a solution to the challenge of growing crops in regions with limited arable land or adverse climatic conditions, echoing the sustainability ethos embraced by many vegans and organic food consumers. The method also enables precise control over nutrient distribution, ensuring the cultivation of nutritionally-rich produce. This aspect is particularly appealing to those following a vegan diet, as it aids in maintaining balanced nutrient intake. Furthermore, the sheer efficiency and eco-friendliness of hydroponics - requiring significantly less water and space compared to traditional farming - resonates with the environmentally conscious consumers who increasingly prefer vegan or organic foods. Given these factors, the nexus between the rising preference for vegan and organic diets and the burgeoning demand for hydroponic technology is not only logical but also indicative of future trends in global food production.

Key Market Challenges

High Initial Investment

High initial investment is considered one of the significant barriers to the global adoption of hydroponics farming. This innovative agricultural technique, while offering substantial benefits in terms of water usage efficiency and space optimization, requires a sizable upfront capital investment. Prospective hydroponic farmers must account for the costs associated with acquiring the necessary equipment, including growth chambers, lighting systems, and nutrient solution reservoirs. Additionally, the costs of setting up a controlled environment for crop growth, which often entails building greenhouses or indoor spaces with regulated temperature, light, and humidity, are also substantial. These high costs can be prohibitive for small-scale farmers or those in developing countries where access to capital is limited. Consequently, the demand for hydroponics could decrease globally, as farmers may opt for traditional farming methods with lower entry costs. However, it's important to note that the long-term benefits and potential profitability of hydroponics could offset initial investments, but this requires a change in perspective that prioritizes long-term sustainability over short-term expenditures.

Dependence on Electricity

The global demand for hydroponics, an innovative farming method that uses nutrient solutions instead of soil, is expected to decrease due to increasing dependence on electricity. Hydroponic systems heavily rely on electricity for regulating light, temperature, and nutrient supply, which can be costly and environmentally challenging. As countries worldwide increasingly rely on electricity for various needs, there might be less availability and higher costs for powering hydroponic systems. Additionally, the move towards renewable energy sources like solar or wind is likely to affect the energy-intensive hydroponic industry. These renewable sources often provide inconsistent energy supply, which can disrupt the hydroponic systems' proper functioning. Furthermore, the push for energy efficiency and sustainability may lead to a reduction in the use of energy-intensive farming methods, such as hydroponics. Hence, as the world becomes more electricity-dependent, the demand for hydroponics may decrease. This shift in demand can also be attributed to the potential challenges associated with the scalability and cost-effectiveness of hydroponic systems, especially when compared to conventional farming practices. Moreover, the availability of land and the need for large-scale agriculture to meet growing food demands are factors that could impact the future growth of hydroponics. These factors, combined with the increasing focus on sustainable and environmentally friendly farming practices, may contribute to a gradual decline in the global demand for hydroponics in the coming years.

Key Market Trends

Reduction in Water Usage Compared to Traditional Farming

Hydroponics, an innovative method of soil-less farming, is anticipated to witness a surge in demand globally, primarily due to its remarkable efficiency in water usage as compared to traditional farming. Traditional agriculture is notorious for its excessive water consumption, largely due to inefficient irrigation systems and water loss through soil evaporation. On the other hand, hydroponics operates on a recirculation model, which considerably reduces water usage (by up to 90% in some cases) as the nutrient solution is recycled and reused. This not only makes hydroponic systems more environmentally friendly but also presents a viable solution for farming in regions with water scarcity. As global concern grows regarding dwindling fresh water supplies, the efficiency of hydroponics becomes increasingly appealing. Furthermore, the escalating effects of climate change and the urgency for more sustainable farming practices are expected to further drive the demand for hydroponic systems worldwide. The food production sector is continuously seeking ways to diminish its environmental footprint, and hydroponics offers a compelling solution, coupling efficient water usage with high crop yields. Thus, the reduction in water usage compared to conventional farming is a significant factor expected to propel the adoption of hydroponics globally.

Climate Change & Unpredictable Weather Conditions

Climate change and unpredictable weather conditions are expected to significantly increase the global demand for hydroponics. As global temperatures rise and rainfall patterns become increasingly erratic, traditional agriculture faces extreme challenges. Hydroponics, as a controlled and soil-less growing method, provides a promising alternative. It uses less water, eliminates the need for arable land, and allows for year-round crop cultivation irrespective of external weather conditions. With the frequency and intensity of droughts, floods, and heatwaves predicted to increase due to climate change, the resilience of hydroponics becomes ever more crucial. Countries with limited water resources or those facing land degradation may particularly see value in hydroponics as a sustainable agricultural solution. Additionally, the ability of hydroponics to produce higher yields in smaller spaces could help address food security issues in densely populated urban areas, where the effects of climate change are often most acutely felt. Therefore, as we grapple with the realities of our changing climate, the demand for practical, resilient, and efficient farming methods like hydroponics is set to surge across the globe.

Segmental Insights

Type Insights

Based on the Type, the aggregate systems dominated the market in 2022 due to their widespread popularity among indoor hydroponic farmers. These systems are favored for their ease of setup and cost-effectiveness. In such systems, inert and solid media like peat, rock wool, vermiculite, sand, sawdust, perlite, or coconut coir provide plant support. Drip systems, ebb and flow systems, and wick systems are the primary technologies in aggregate systems, with ebb and flow being the most commonly preferred mode due to its simplicity and affordability.

The liquid systems segment is projected to exhibit the fastest growth rate, driven by the rising adoption of closed system cultivation by growers. Deepwater culture and Nutrient Film Technique (NFT) systems are increasingly being used for cultivating lettuce and other leafy vegetables. Liquid systems eliminate the need for a solid medium, as the roots are directly immersed in the nutrient solution, making the cultivation process more convenient. Moreover, by providing nutrients directly to the plant roots, liquid systems promote accelerated growth and maximize yields. While soilless farming methods mitigate the risk of soil-borne diseases, closed systems using liquid solutions require regular maintenance to monitor and replace nutrient solutions, thereby minimizing the risk of pathogen dispersal.

Equipment Insights

Based on the Equipment, LED grow lights are the cutting-edge lighting solution that reigns supreme in the Global Hydroponics Market. With their remarkable efficiency and unparalleled effectiveness in promoting plant growth, LED grow lights have gained immense popularity in hydroponics. These lights offer the unique advantage of precise control over the light spectrum and intensity, catering perfectly to the specific needs of hydroponic systems. This ensures not only optimal growth but also maximized yield, making LED grow lights the go-to choice for hydroponic enthusiasts and professionals alike. Embrace the power of LED grow lights and witness the remarkable transformation in your hydroponic garden.

Regional Insights

Asia Pacific dominated the hydroponics market in 2022 due to the significant adoption of hydroponics in countries such as China, Australia, South Korea, and others. The hydroponics market in China and India is expected to experience substantial growth over the forecast period, driven by the emergence of urban hydroponic farms. North America presents high growth potential, attributed to the presence of numerous companies in the region and the increasing adoption of alternative farming techniques in urban areas. Notable market players in North America include AeroFarms (U.S.), AMHYDRO (U.S.), Argus Control Systems Limited (Canada), and LumiGrow (U.S.).

Europe held the second-largest market share in 2022, primarily driven by the widespread adoption of hydroponics fueled by rapid industrialization and limited land availability. The region is home to developed economies such as France, Germany, Greece, Italy, Spain, and the Netherlands. With the expanding implementation of genetically modified crop technology, Europe is expected to witness a substantial compound annual growth rate (CAGR) over the forecast period. However, the lack of government incentives and the unavailability of essential equipment for establishing large hydroponic farms might impede growth in developing countries across the Middle East, Africa, and South America.

Key Market Players

AeroFarms

Argus Control Systems Limited

BrightFarms

General Hydroponics Inc.

GreenTech Agro LLC

GrowLife Inc.

Hydrodynamics International

Hydrofarm LLC

LumiGrow Inc.

Thanet Earth Limited

Report Scope:

In this report, the Global Hydroponics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Hydroponics Market, By Type:

  • Aggregate Systems
  • Liquid Systems

Hydroponics Market, By Equipment:

  • HVAC
  • LED grow light
  • Control systems
  • Irrigation systems
  • Material handling
  • Others

Hydroponics Market, By Input:

  • Nutrient
  • Growth Media

Hydroponics Market, By Farming Method:

  • Indoor
  • Outdoor

Hydroponics Market, By Crop Type:

  • Vegetables
  • Fruits
  • Flowers
  • Others

Hydroponics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey
  • Egypt

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Hydroponics Market.

Available Customizations:

  • Global Hydroponics market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validations
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Hydroponics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Aggregate Systems and Liquid Systems)
    • 5.2.2. By Equipment (HVAC, LED grow light, Control systems, Irrigation systems, Material handling, and Others)
    • 5.2.3. By Input (Nutrient and Growth Media)
    • 5.2.4. By Farming Method (Indoor and Outdoor)
    • 5.2.5. By Crop Type (Vegetables, Fruits, Flowers, and Others)
    • 5.2.6. By Region
    • 5.2.7. By Company (2022)
  • 5.3. Market Map

6. North America Hydroponics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Equipment
    • 6.2.3. By Input
    • 6.2.4. By Farming Method
    • 6.2.5. By Crop Type
    • 6.2.6. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Hydroponics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Equipment
        • 6.3.1.2.3. By Input
        • 6.3.1.2.4. By Farming Method
        • 6.3.1.2.5. By Crop Type
    • 6.3.2. Canada Hydroponics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Equipment
        • 6.3.2.2.3. By Input
        • 6.3.2.2.4. By Farming Method
        • 6.3.2.2.5. By Crop Type
    • 6.3.3. Mexico Hydroponics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Equipment
        • 6.3.3.2.3. By Input
        • 6.3.3.2.4. By Farming Method
        • 6.3.3.2.5. By Crop Type

7. Europe Hydroponics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Equipment
    • 7.2.3. By Input
    • 7.2.4. By Farming Method
    • 7.2.5. By Crop Type
    • 7.2.6. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Hydroponics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Equipment
        • 7.3.1.2.3. By Input
        • 7.3.1.2.4. By Farming Method
        • 7.3.1.2.5. By Crop Type
    • 7.3.2. United Kingdom Hydroponics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Equipment
        • 7.3.2.2.3. By Input
        • 7.3.2.2.4. By Farming Method
        • 7.3.2.2.5. By Crop Type
    • 7.3.3. Italy Hydroponics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecasty
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Equipment
        • 7.3.3.2.3. By Input
        • 7.3.3.2.4. By Farming Method
        • 7.3.3.2.5. By Crop Type
    • 7.3.4. France Hydroponics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Equipment
        • 7.3.4.2.3. By Input
        • 7.3.4.2.4. By Farming Method
        • 7.3.4.2.5. By Crop Type
    • 7.3.5. Spain Hydroponics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Equipment
        • 7.3.5.2.3. By Input
        • 7.3.5.2.4. By Farming Method
        • 7.3.5.2.5. By Crop Type

8. Asia-Pacific Hydroponics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Equipment
    • 8.2.3. By Input
    • 8.2.4. By Farming Method
    • 8.2.5. By Crop Type
    • 8.2.6. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Hydroponics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Equipment
        • 8.3.1.2.3. By Input
        • 8.3.1.2.4. By Farming Method
        • 8.3.1.2.5. By Crop Type
    • 8.3.2. India Hydroponics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Equipment
        • 8.3.2.2.3. By Input
        • 8.3.2.2.4. By Farming Method
        • 8.3.2.2.5. By Crop Type
    • 8.3.3. Japan Hydroponics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Equipment
        • 8.3.3.2.3. By Input
        • 8.3.3.2.4. By Farming Method
        • 8.3.3.2.5. By Crop Type
    • 8.3.4. South Korea Hydroponics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Equipment
        • 8.3.4.2.3. By Input
        • 8.3.4.2.4. By Farming Method
        • 8.3.4.2.5. By Crop Type
    • 8.3.5. Australia Hydroponics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Equipment
        • 8.3.5.2.3. By Input
        • 8.3.5.2.4. By Farming Method
        • 8.3.5.2.5. By Crop Type

9. South America Hydroponics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Equipment
    • 9.2.3. By Input
    • 9.2.4. By Farming Method
    • 9.2.5. By Crop Type
    • 9.2.6. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Hydroponics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Equipment
        • 9.3.1.2.3. By Input
        • 9.3.1.2.4. By Farming Method
        • 9.3.1.2.5. By Crop Type
    • 9.3.2. Argentina Hydroponics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Equipment
        • 9.3.2.2.3. By Input
        • 9.3.2.2.4. By Farming Method
        • 9.3.2.2.5. By Crop Type
    • 9.3.3. Colombia Hydroponics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Equipment
        • 9.3.3.2.3. By Input
        • 9.3.3.2.4. By Farming Method
        • 9.3.3.2.5. By Crop Type

10. Middle East and Africa Hydroponics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Equipment
    • 10.2.3. By Input
    • 10.2.4. By Farming Method
    • 10.2.5. By Crop Type
    • 10.2.6. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Hydroponics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Equipment
        • 10.3.1.2.3. By Input
        • 10.3.1.2.4. By Farming Method
        • 10.3.1.2.5. By Crop Type
    • 10.3.2. Saudi Arabia Hydroponics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Equipment
        • 10.3.2.2.3. By Input
        • 10.3.2.2.4. By Farming Method
        • 10.3.2.2.5. By Crop Type
    • 10.3.3. UAE Hydroponics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Equipment
        • 10.3.3.2.3. By Input
        • 10.3.3.2.4. By Farming Method
        • 10.3.3.2.5. By Crop Type
  • 10.4. Drivers
  • 10.5. Challenges

11. Market Trends & Developments

  • 11.1. Recent Development
  • 11.2. Mergers & Acquisitions
  • 11.3. Product Launches

12. Global Hydroponics Market: SWOT Analysis

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. AeroFarms
    • 14.1.1. Business Overview
    • 14.1.2. Service Offerings
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel
    • 14.1.5. SWOT Analysis
  • 14.2. Argus Control Systems Limited
  • 14.3. BrightFarms
  • 14.4. General Hydroponics Inc.
  • 14.5. GreenTech Agro LLC
  • 14.6. GrowLife Inc.
  • 14.7. Hydrodynamics International
  • 14.8. Hydrofarm LLC
  • 14.9. LumiGrow Inc.
  • 14.10. Thanet Earth Limited

15. Strategic Recommendations

16. About Us & Disclaimer