封面
市場調查報告書
商品編碼
1372927

患者衍生異種移植模型市場 - 2018-2028 年全球產業規模、佔有率、趨勢、機會和預測,按腫瘤類型、類型、最終用戶、地區和競爭細分

Patient-Derived Xenograft Model Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Tumor Type, By Type, By End-User By Region and Competition

出版日期: | 出版商: TechSci Research | 英文 189 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2022 年,全球患者來源異種移植模型市場價值為 3.4519 億美元,預計在預測期內將強勁成長,到 2028 年年複合成長率為 11.09%。患者來源異種移植 (PDX) 模型市場正在經歷快速擴張其成長率為 11.09%。患者來源異種移植 (PDX) 模型市場正在經歷快速擴張其成長率在推動癌症研究和個人化醫療方面的關鍵作用推動了這一發展。 PDX 模型將人類腫瘤組織植入免疫缺陷小鼠體內,為研究癌症生物學和藥物開發提供了一個複雜的臨床相關平台。近年來,癌症研究取得了長足的進步,這要歸功於創新技術和模型,幫助科學家更好地了解疾病並開發更有效的治療方法。患者來源的異種移植(PDX)模型是一種在癌症研究中受到重視的模型。 PDX 模型正在徹底改變我們的癌症研究方法,提供更準確的人類腫瘤表徵並實現個人化醫學突破。

主要市場促進因素

市場概況
預測期 2024-2028
2022 年市場規模 3.4519億美元
2028 年市場規模 6.468億美元
2023-2028 年年複合成長率 11.09%
成長最快的細分市場 小鼠模型
最大的市場 北美洲

癌症發生率上升和醫療需求未被滿足

PDX 模型市場成長的主要驅動力之一是全球癌症發生率的增加。根據世界癌症研究基金會的數據,癌症是全世界死亡的主要原因,預計未來二十年新病例將增加約 70%。這種令人震驚的趨勢迫切需要更有效的癌症治療。 PDX 模型忠實地複製了人類腫瘤的複雜性和異質性,有助於開發新療法。它們為研究人員提供了一個平台來研究癌症的各個方面,從腫瘤生物學到藥物反應,最終有助於發現更有效的治療方案。癌症長期以來一直是全球最重大的健康挑戰之一,每年影響數百萬人的生命。患者來源的異種移植模型是一種臨床前研究工具,涉及將人類腫瘤組織植入免疫缺陷小鼠體內。這些小鼠隨後會發育出在遺傳和分子特徵、異質性和生長模式方面與原始人類腫瘤非常相似的腫瘤。 PDX 模型比傳統細胞系模型具有多種優勢,特別是在癌症發生率上升和醫療需求未滿足的背景下。由於人口老化、不健康的生活方式和環境污染等多種因素,全球癌症發生率不斷上升。 PDX 模型維持了患者腫瘤中發現的細胞類型的複雜組合,使其成為研究腫瘤異質性、疾病進展和治療抗藥性發展的寶貴資源。這反映了癌症的臨床現實,個別患者通常具有不同的腫瘤特徵。

PDX 技術的進步

PDX 技術的不斷進步顯著提高了這些模型的可靠性和多功能性。源自患者的類器官(能夠更準確地模擬人類腫瘤的3D細胞培養物)的開發擴大了 PDX 模型的應用範圍。類器官可用於以高通量方式研究藥物反應,對於精準醫療工作特別有價值。此外,植入技術的改進解決了與低植入率相關的一些挑戰,提高了 PDX 模型的整體實用性。隨著 PDX 技術的不斷發展,其對研究人員和行業利益相關者的吸引力不斷成長。

傳統的 PDX 模型需要立即將患者腫瘤組織移植到小鼠體內。然而,冷凍保存技術的最新進展使得可以長期保存源自患者的樣本。這項突破不僅使物流變得更加容易,而且使研究人員能夠建立代表多種癌症類型和亞型的 PDX 模型儲存庫。移植技術的進步提高了PDX模型建立的成功率。研究人員現在可以以更高的成功率移植較小的組織樣本,從而減少對大量患者材料的需求。在處理珍貴或有限的活體組織切片樣本時,這一點尤其重要。雖然傳統的 PDX 模型使用免疫功能低下的小鼠,但最近的進展導致了具有人源化免疫系統的 PDX 模型的開發。這些模型更準確地表示了腫瘤與人類免疫系統之間的相互作用,使其對於免疫療法的研究和開發具有無價的價值。

生物標記發現和藥物開發

PDX 模型為生物標記發現提供了獨特的機會,這對於開發標靶癌症療法至關重要。研究人員可以研究 PDX 腫瘤的分子和遺傳特徵,以確定與藥物反應和抗藥性相關的新生物標記。這些知識對於設計更有效、有針對性的療法來改善患者的治療效果非常寶貴。生物標記驅動的藥物開發正在蓄勢待發,而 PDX 模型處於這些努力的最前線。患者來源的異種移植(PDX)模型是癌症研究和藥物開發的強大工具。 PDX 模型是透過將患者的腫瘤細胞移植到小鼠或其他動物體內而創建的。這使得研究人員能夠在更自然的環境中研究腫瘤,並在比傳統體外模型更相關的環境中測試新藥。 PDX 模型擴大用於發現和驗證癌症生物標記。生物標記是可用於識別、診斷或監測疾病的生物分子。 PDX 模型可用於識別特定癌症類型的生物標記或預測患者對治療反應的生物標記。 PDX 模型也被用來開發癌症新藥。 PDX 模型可用於篩選新藥的有效性和安全性。它們還可用於研究藥物的作用機制並確定比單一藥物更有效的藥物組合。

PDX 模型採用激增背後最重要的驅動力之一是其促進生物標記發現的能力。生物標記是可測量的生物指標,可提供有關疾病進展、治療反應和預後的重要資訊。識別和驗證生物標記對於了解疾病機制和針對個別患者制定治療方案至關重要。 PDX 模型在這方面具有獨特的優勢,因為它們密切複製了人類腫瘤的分子和細胞特徵,使研究人員能夠在體內環境中研究疾病途徑、基因突變和蛋白質表現。

主要市場挑戰

異質性和變異性

PDX 模型的主要挑戰之一是人類腫瘤固有的異質性和變異性。人類癌症具有高度多樣性,即使在同一癌症類型中也是如此,因此很難創建準確代表疾病各個方面的 PDX 模型。腫瘤異質性可能導致藥物反應的變化,使得僅基於 PDX 模型預測療法的有效性變得具有挑戰性。這種限制可能會阻礙臨床前結果轉換成臨床結果的。人類癌症因其多樣性而臭名昭著,即使是同一類型或亞型的腫瘤也是如此。這種多樣性源自於基因突變、細胞組成、微環境因素和許多其他複雜的生物學方面的變化。因此,創建忠實代表整個異質性的 PDX 模型成為一項艱鉅的任務。挑戰在於從患者身上選擇一小塊腫瘤組織,將其移植到免疫缺陷小鼠體內,並期望它能準確地反映原始腫瘤的複雜性。雖然 PDX 模型確實捕捉了這種多樣性的許多方面,但它們無法完全複製患者腫瘤內發生的全部基因突變和細胞相互作用。

時間和資源強度

PDX 模型的產生和維護是一個耗時且資源密集的過程。建立單一 PDX 模型可能需要幾個月的時間,包括初始植入、擴展和表徵階段。此外,PDX 模型需要持續監控和維護,從而增加了營運成本。這種時間和資源強度會限制 PDX 模型研究的可擴展性,特別是對於預算和資源有限的學術和小型研究機構。建立和維護 PDX 模型是一個費力且耗時的過程。它通常從將患者腫瘤組織移植到免疫缺陷小鼠開始。雖然最初的植入階段可能需要幾週的時間,但這只是漫長旅程的開始。 PDX 模型需要持續監測,包括追蹤腫瘤生長、評估治療反應以及管理小鼠的健康和福祉。這種持續的關注和監督增加了營運成本並消耗了研究人員寶貴的時間。

成本和可近性

建立和維護 PDX 模型的成本可能很高,特別是對於預算有限的機構。與獲取免疫缺陷小鼠、飼養和照顧它們以及進行實驗相關的成本可能成為許多研究人員進入的障礙。此外,處理 PDX 模型所需的專用設備和專業知識也增加了整體成本。高額的前期投資和持續開支可能會限制 PDX 模型向更廣泛的研究界的開放。創建和維護 PDX 模型是一項昂貴的工作。它包含幾個昂貴的組成部分,包括獲取免疫缺陷小鼠、在受控環境中飼養和照顧它們、獲取患者腫瘤樣本以及進行實驗。對於許多學術機構、小型研究組織和預算有限的新興生物技術公司來說,前期投資和持續的營運費用可能導致 PDX 模型無法負擔。 PDX 模式的高成本造成了可近性的差異,限制了其主要向資金雄厚的研究機構和大型製藥公司提供。

主要市場趨勢

對個人化醫療的興趣日益濃厚

個人化醫療,即根據患者的基因組成和特定疾病特徵為個別患者量身定做治療方案,正在獲得發展勢頭。 PDX 模型透過提供一個針對患者特定腫瘤樣本測試療法的平台,在這項範式轉移中發揮關鍵作用。利用來自個別患者的腫瘤創建「阿凡達小鼠」的能力可以更準確地預測治療反應,降低不良反應的風險並最佳化治療結果。 PDX 模式非常適合支援個人化醫療的原則。透過將患者腫瘤組織直接移植到免疫缺陷小鼠體內,研究人員可以創造出攜帶來自個別患者的腫瘤的「阿凡達小鼠」。這些模型忠實地複製了原始腫瘤的遺傳和分子複雜性,從而可以對潛在療法進行高度個人化的臨床前測試。因此,PDX 模型使研究人員能夠預測個別患者的腫瘤對特定治療的反應,為更有效和更有針對性的治療鋪平道路。

個人化醫療的好處是多方面的。患者將從不僅更有效而且不太可能產生不良副作用的治療中獲益,因為治療可以根據他們的遺傳和分子特徵進行客製化。製藥公司透過提高臨床試驗的成功率和減少歷史上困擾藥物開發的昂貴的後期失敗而受益。

基因組分析的進展

基因組定序技術以驚人的速度發展,使研究人員能夠更深入地研究腫瘤的遺傳和分子基礎。這些豐富的基因組資料正在被整合到 PDX 模型研究中,可以更全面地了解基因突變、生物標記和癌症驅動途徑。這種整合透過促進潛在治療標靶和預測生物標記的識別,增強了 PDX 模型在藥物開發中的實用性。此外,基因組分析為識別可指導藥物開發的特定生物標記和治療標靶打開了大門。 PDX 模型與基因組學整合後,將成為驗證這些目標並預測患者對新療法的反應的強大工具。這種預測能力對於降低臨床試驗期間候選藥物的損耗率並確保正確的治療方法到達正確的患者至關重要。

免疫療法革命

免疫療法已成為治療癌症和其他疾病的突破性方法。 PDX 模型有助於研究腫瘤與免疫系統之間的複雜相互作用。研究人員正在使用這些模型來評估免疫療法(例如檢查點抑制劑和 CAR-T 細胞療法)的療效,並探索新型聯合療法。因此,PDX 模型在免疫治療領域的發展中發揮關鍵作用。 PDX 模型在研究免疫療法方面具有獨特的優勢,因為它們密切模擬體內腫瘤微環境,包括腫瘤細胞和免疫細胞之間的複雜相互作用。研究人員可以使用這些模型來評估免疫療法在忠實複製人類腫瘤複雜性的環境中的有效性。這種能力對於最佳化免疫治療策略、預測患者反應以及識別免疫治療成功的潛在生物標記至關重要。推動 PDX 模型在免疫療法研究中採用的關鍵因素之一是它們創建個人化模型的能力。研究人員可以使用患者特異性腫瘤樣本產生 PDX 模型,從而能夠測試與個別患者的腫瘤非常相似的腫瘤的免疫療法。

細分市場洞察

腫瘤類型見解

根據腫瘤類型,乳癌細分市場將在 2022 年成為全球患者來源異種移植模型市場的主導者。這是由於全球乳癌病例不斷增加。首先,乳癌是全世界最常見的癌症之一,每年影響數百萬人。它的高發病率使其成為研究和藥物開發工作的優先事項,推動大量投資以了解其複雜性並確定有效的治療方法。 PDX 模型已被證明在乳癌研究中特別有價值,因為它們能夠忠實地複製患者腫瘤的遺傳和分子特徵。研究人員可以使用這些模型來研究乳癌亞型的異質性,並測試針對個別患者量身定做的潛在療法。

模型類型見解

根據模型類型,小鼠模型細分市場將在2022 年成為全球患者來源異種移植模型市場的主導者。這歸因於幾個關鍵因素,包括生物學相關性、小鼠模型擁有完善的基礎設施以及小鼠模型使研究人員能夠在較長時間內進行縱向研究等。小鼠模型密切模仿人類腫瘤的生理和生物學方面,使其成為 PDX 研究的首選。將患者腫瘤組織植入免疫缺陷小鼠體內,研究人員可以重建腫瘤微環境,包括與免疫細胞、基質成分和血管的相互作用。這種生物學相關性對於研究疾病進展和評估潛在療法的療效至關重要。

區域洞察

2022年,北美成為全球患者來源異種移植模型市場的主導者,佔據最大的市場佔有率。這是由於先進的醫療基礎設施、強大的研發生態系統和高度的監管接受度等幾個關鍵因素。北美是包括癌症在內的各種疾病的發生率相對較高的地區,因此需要深入的研究工作並開發更有效的治療方法。 PDX 模型在腫瘤學研究中發現了特別的相關性,與該地區對癌症治療和藥物發現的關注一致。

北美擁有全球最先進的醫療基礎設施之一,擁有最先進的醫院、醫療設施和研究機構。這個強大的醫療保健生態系統促進了需要 HGH 治療的疾病的診斷和治療,有助於該地區在市場上的突出地位。

目錄

第 1 章:產品概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

  • 研究目的
  • 基線方法
  • 主要產業夥伴
  • 主要協會和二手資料來源
  • 預測方法
  • 數據三角測量與驗證
  • 假設和限制

第 3 章:執行摘要

  • 市場概況
  • 主要市場細分概述
  • 主要市場參與者概述
  • 重點地區/國家概況
  • 市場促進因素、挑戰、趨勢概述

第 4 章:客戶之聲

第 5 章:全球病患衍生異種移植模型市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依腫瘤類型(肺癌、胰臟癌、攝護腺癌、乳癌、其他癌症)
    • 按類型(小鼠、大鼠)
    • 依最終使用者(住院設定、社區設定)
    • 按公司分類 (2022)
    • 按地區
  • 市場地圖

第 6 章:北美患者來源的異種移植模型市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按腫瘤類型
    • 按類型
    • 按最終用戶
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 7 章:歐洲病患來源異種移植模型市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按腫瘤類型
    • 按類型
    • 按最終用戶
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 英國
    • 義大利
    • 西班牙

第 8 章:亞太地區病患來源的異種移植模型市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按腫瘤類型
    • 按類型
    • 按最終用戶
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 韓國
    • 日本
    • 澳洲

第 9 章:南美洲患者來源的異種移植模型市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按腫瘤類型
    • 按類型
    • 按最終用戶
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲病患來源的異種移植模型市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按腫瘤類型
    • 按類型
    • 按最終用戶
    • 按國家/地區
  • MEA:國家分析
    • 南非患者來源的異種移植模型
    • 沙烏地阿拉伯患者來源的異種移植模型
    • 阿拉伯聯合大公國病患來源的異種移植模型

第 11 章:市場動態

  • 促進要素
  • 挑戰

第 12 章:市場趨勢與發展

  • 最近的發展
  • 產品發布
  • 併購

第 13 章:大環境分析

第 14 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第15章:競爭格局

  • 商業概覽
  • 公司概況
  • 產品與服務
  • 財務(上市公司)
  • 最近的發展
  • SWOT分析
    • Charles River Laboratories Inc.
    • The Jackson Laboratory
    • Crown Bioscience,Inc.
    • Altogen Labs
    • Envigo
    • WuxiAppTec
    • Oncodesign
    • Hera BioLabs
    • XenTech
    • Abnova Corporation

第 16 章:策略建議

簡介目錄
Product Code: 16332

Global Patient-Derived Xenograft Model Market has valued at USD 345.19 Million in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 11.09% through 2028. The Patient-Derived Xenograft (PDX) Model Market is experiencing a rapid expansion driven by its pivotal role in advancing cancer research and personalized medicine. PDX models, where human tumor tissues are implanted into immunodeficient mice, offer a sophisticated and clinically relevant platform for studying cancer biology and drug development. Cancer research has come a long way in recent years, thanks to innovative techniques and models that help scientists understand disease better and develop more effective treatments. One such model gaining prominence in cancer research is the Patient-Derived Xenograft (PDX) model. PDX models are revolutionizing our approach to cancer studies, offering a more accurate representation of human tumors and enabling personalized medicine breakthroughs.

Patient-Derived Xenograft (PDX) models have gained immense popularity in the realm of preclinical research and drug development. These models, involving the transplantation of patient tumor tissue into immunodeficient mice, closely mimic the complexity of human tumors, offering invaluable insights into disease mechanisms and potential therapeutic strategies. A Patient-Derived Xenograft model involves implanting tumor tissue directly from a cancer patient into an immunodeficient mouse. This model faithfully recapitulates the tumor's genetic and molecular characteristics, as well as its growth patterns and response to therapies. By preserving the original tumor's heterogeneity and complexity, PDX models provide a reliable platform for investigating cancer biology, drug testing, and therapeutic development. Firstly, the rising incidence of cancer worldwide has created an urgent need for more effective treatments. PDX models provide an invaluable tool for testing new cancer therapies, as they faithfully replicate the heterogeneity and complexity of human tumors, allowing researchers to assess drug efficacy and safety more accurately. Secondly, the era of personalized medicine has significantly contributed to the demand for PDX models. Tailoring treatments to individual patients based on their tumor's genetic and molecular characteristics has become a focal point in oncology. PDX models enable researchers and clinicians to predict a patient's response to specific therapies, paving the way for more targeted and effective treatment strategies.

Key Market Drivers

Market Overview
Forecast Period2024-2028
Market Size 2022USD 345.19 Million
Market Size 2028USD 646.80 Million
CAGR 2023-202811.09%
Fastest Growing SegmentMice Model
Largest MarketNorth America

Rising Cancer Incidence and Unmet Medical Needs

One of the primary drivers behind the growth of the PDX model market is the global increase in cancer incidence. According to the World Cancer Research Fund, cancer is a leading cause of death worldwide, with new cases expected to rise by approximately 70% over the next two decades. This alarming trend has created an urgent need for more effective cancer treatments. PDX models, which faithfully replicate the complex and heterogeneous nature of human tumors, are instrumental in the development of novel therapies. They provide a platform for researchers to study various aspects of cancer, from tumor biology to drug response, ultimately contributing to the discovery of more effective treatment options. Cancer has long been one of the most significant global health challenges, with millions of lives affected each year. The Patient-Derived Xenograft model is a preclinical research tool that involves the implantation of human tumor tissues into immunodeficient mice. These mice then develop tumors that closely resemble the original human tumors in terms of genetic and molecular characteristics, heterogeneity, and growth patterns. PDX models offer several advantages over traditional cell line models, particularly in the context of rising cancer incidence and unmet medical needs. The global cancer incidence is increasing due to a number of factors, including aging populations, unhealthy lifestyles, and environmental pollution. PDX models maintain the complex mix of cell types found in patient tumors, making them an invaluable resource for studying tumor heterogeneity, disease progression, and the development of treatment resistance. This mirrors the clinical reality of cancer, where individual patients often have diverse tumor profiles.

Advancements in PDX Technology

Continuous advancements in PDX technology have significantly improved the reliability and versatility of these models. The development of patient-derived organoids, three-dimensional cell cultures that more accurately mimic human tumors, has expanded the range of applications for PDX models. Organoids can be used to study drug responses in a high-throughput manner and are particularly valuable for precision medicine efforts. Additionally, improvements in engraftment techniques have addressed some of the challenges associated with low engraftment rates, enhancing the overall utility of PDX models. As PDX technology continues to evolve, its attractiveness to researchers and industry stakeholders continues to grow.

Traditional PDX models required immediate transplantation of patient tumor tissue into mice. However, recent advancements in cryopreservation techniques have allowed for the long-term storage of patient-derived samples. This breakthrough not only facilitates easier logistics but also enables researchers to establish a repository of PDX models representing a wide range of cancer types and subtypes. Enhancements in engraftment techniques have increased the success rates of PDX model establishment. Researchers can now transplant smaller tissue samples with higher success rates, reducing the need for large amounts of patient material. This is particularly crucial when dealing with precious or limited biopsy samples. While traditional PDX models use immunocompromised mice, recent advances have led to the development of PDX models with humanized immune systems. These models offer a more accurate representation of the interactions between tumors and the human immune system, making them invaluable for immunotherapy research and development.

Biomarker Discovery and Drug Development

PDX models offer a unique opportunity for biomarker discovery, which is essential for developing targeted cancer therapies. Researchers can study the molecular and genetic profiles of PDX tumors to identify novel biomarkers associated with drug response and resistance. This knowledge is invaluable for designing more effective, targeted therapies that improve patient outcomes. Biomarker-driven drug development is gaining momentum, and PDX models are at the forefront of these efforts. The patient-derived xenograft (PDX) model is a powerful tool for cancer research and drug development. PDX models are created by transplanting tumor cells from a patient into a mouse or other animal. This allows researchers to study the tumor in a more natural environment and to test new drugs in a more relevant setting than traditional in vitro models. PDX models are increasingly being used to discover and validate biomarkers for cancer. Biomarkers are biological molecules that can be used to identify, diagnose, or monitor a disease. PDX models can be used to identify biomarkers that are specific to a particular cancer type or that are predictive of patient response to treatment. PDX models are also being used to develop new drugs for cancer. PDX models can be used to screen new drugs for efficacy and safety. They can also be used to study the mechanisms of action of drugs and to identify drug combinations that are more effective than single drugs.

One of the most significant driving forces behind the surge in PDX model adoption is its ability to facilitate biomarker discovery. Biomarkers are measurable biological indicators that provide critical information about disease progression, response to therapy, and prognosis. Identifying and validating biomarkers is crucial in understanding disease mechanisms and tailoring treatments to individual patients. PDX models offer a unique advantage in this context as they closely replicate the molecular and cellular characteristics of human tumors, enabling researchers to study disease pathways, genetic mutations, and protein expressions within an in vivo setting.

Key Market Challenges

Heterogeneity and Variability

One of the primary challenges with PDX models is the inherent heterogeneity and variability of human tumors. Human cancers are highly diverse, even within the same cancer type, making it difficult to create PDX models that accurately represent all aspects of the disease. Tumor heterogeneity can result in variations in drug responses, making it challenging to predict the effectiveness of therapies based on PDX models alone. This limitation can hinder the translatability of preclinical results to clinical outcomes. Human cancers are notorious for their diversity, even among tumors of the same type or subtype. This diversity arises from variations in genetic mutations, cellular composition, microenvironmental factors, and many other intricate biological aspects. As a result, creating PDX models that faithfully represent the entirety of this heterogeneity becomes a formidable task. The challenge lies in selecting a small piece of tumor tissue from a patient, engrafting it into immunodeficient mice, and expecting it to accurately mirror the complexity of the original tumor. While PDX models do capture many aspects of this diversity, they cannot fully replicate the full spectrum of genetic mutations and cellular interactions that occur within a patient's tumor.

Time and Resource Intensity

The generation and maintenance of PDX models are time-consuming and resource-intensive processes. It can take several months to establish a single PDX model, including the initial engraftment, expansion, and characterization phases. Furthermore, PDX models require continuous monitoring and care, adding to the operational costs. This time and resource intensity can limit the scalability of PDX model studies, especially for academic and smaller research institutions with limited budgets and resources. Establishing and maintaining PDX models is a laborious and time-consuming process. It typically begins with the transplantation of patient tumor tissue into immunodeficient mice. While this initial engraftment phase can take several weeks, it represents only the beginning of a prolonged journey. PDX models require continuous monitoring, including tracking tumor growth, evaluating treatment responses, and managing the health and well-being of the mice. This ongoing care and oversight add to the operational costs and consume valuable researcher time.

Costs and Accessibility

Establishing and maintaining PDX models can be expensive, particularly for institutions with limited budgets. The costs associated with acquiring immunodeficient mice, housing and caring for them, and conducting experiments can be a barrier to entry for many researchers. Furthermore, the need for specialized equipment and expertise in handling PDX models adds to the overall costs. The high upfront investment and ongoing expenses can limit the accessibility of PDX models to a broader research community. Creating and maintaining PDX models is an expensive endeavor. It encompasses several costly components, including acquiring immunodeficient mice, housing and caring for them in controlled environments, procuring patient tumor samples, and conducting experiments. The upfront investment and ongoing operational expenses can place PDX models out of reach for many academic institutions, smaller research organizations, and emerging biotech companies with constrained budgets. The high costs associated with PDX models create a disparity in accessibility, limiting their availability primarily to well-funded research institutions and large pharmaceutical companies.

Key Market Trends

Rising Interest in Personalized Medicine

Personalized medicine, which tailors medical treatments to individual patients based on their genetic makeup and specific disease characteristics, is gaining momentum. PDX models play a pivotal role in this paradigm shift by offering a platform for testing therapies on patient-specific tumor samples. The ability to create "avatar mice" with tumors derived from individual patients allows for more accurate prediction of treatment responses, reducing the risk of adverse reactions and optimizing therapeutic outcomes. PDX models are uniquely suited to support the principles of personalized medicine. By transplanting patient tumor tissue directly into immunodeficient mice, researchers can create "avatar mice" that carry tumors derived from individual patients. These models faithfully replicate the genetic and molecular complexity of the original tumors, allowing for highly personalized preclinical testing of potential therapies. As a result, PDX models enable researchers to predict how an individual patient's tumor will respond to specific treatments, paving the way for more effective and targeted therapies.

The benefits of personalized medicine are manifold. Patients stand to gain from treatments that are not only more effective but also less likely to produce adverse side effects, as therapies can be tailored to their genetic and molecular profiles. Pharmaceutical companies benefit by increasing the success rates of clinical trials and reducing the costly late-stage failures that have plagued drug development historically.

Advances in Genomic Profiling

Genomic sequencing technologies have advanced at an astonishing pace, enabling researchers to delve deeper into the genetic and molecular underpinnings of tumors. This wealth of genomic data is being integrated into PDX model studies, allowing for a more comprehensive understanding of the genetic mutations, biomarkers, and pathways driving cancer. This integration enhances the utility of PDX models in drug development by facilitating the identification of potential therapeutic targets and predictive biomarkers. Moreover, genomic profiling has opened the door to the identification of specific biomarkers and therapeutic targets that can guide drug development. PDX models, when integrated with genomics, become powerful tools for validating these targets and predicting patient responses to novel treatments. This predictive capability is essential for reducing the attrition rates of drug candidates during clinical trials and ensuring that the right therapies reach the right patients.

Immunotherapy Revolution

Immunotherapy has emerged as a groundbreaking approach in the treatment of cancer and other diseases. PDX models are instrumental in studying the complex interactions between tumors and the immune system. Researchers are using these models to assess the efficacy of immunotherapies, such as checkpoint inhibitors and CAR-T cell therapies, and to explore novel combination therapies. PDX models are thus playing a pivotal role in advancing the field of immunotherapy. PDX models offer a unique advantage in studying immunotherapies because they closely mimic the in vivo tumor microenvironment, including the intricate interplay between tumor cells and immune cells. Researchers can use these models to assess the effectiveness of immunotherapies in a setting that faithfully replicates the complexity of human tumors. This capability is critical for optimizing immunotherapeutic strategies, predicting patient responses, and identifying potential biomarkers of immunotherapy success. One of the key factors driving the adoption of PDX models in immunotherapy research is their ability to create personalized models. Researchers can generate PDX models using patient-specific tumor samples, allowing them to test immunotherapies on tumors that closely resemble those of individual patients.

Segmental Insights

Tumor Type Insights

Based on the tumor types, the breast cancer segment emerged as the dominant player in the global market for Patient-Derived Xenograft Model in 2022.This is attributed to increasing breast cancer cases across the world. First and foremost, breast cancer is one of the most prevalent cancers worldwide, affecting millions of individuals each year. Its high incidence has made it a priority for research and drug development efforts, driving significant investments into understanding its complexities and identifying effective treatments. PDX models have proven to be particularly valuable in breast cancer research due to their ability to faithfully replicate the genetic and molecular characteristics of patient tumors. Researchers can use these models to study the heterogeneity of breast cancer subtypes and test potential therapies tailored to individual patients.

Model Type Insights

Based on the model type, the mice model segment emerged as the dominant player in the global market for Patient-Derived Xenograft Model in 2022. This is attributed to several key factors including Biological Relevance, Mice models have a well-established infrastructure, and mice models enable researchers to conduct longitudinal studies over an extended period, etc. Mice models closely mimic the physiological and biological aspects of human tumors, making them a preferred choice for PDX studies. The engraftment of patient tumor tissue into immunodeficient mice allows researchers to recreate the tumor microenvironment, including interactions with immune cells, stromal components, and blood vessels. This biological relevance is essential for studying disease progression and evaluating the efficacy of potential therapies.

Regional Insights

North America emerged as the dominant player in the global Patient-Derived Xenograft Model market in 2022, holding the largest market share. This is on account of several key factors such as advanced healthcare infrastructure, Strong Research and Development Ecosystem and high regulatory acceptance. North America has a relatively high incidence of various diseases, including cancer, which necessitates intensive research efforts and the development of more effective therapies. PDX models have found particular relevance in oncology research, aligning with the region's focus on cancer treatment and drug discovery.

North America boasts one of the most advanced healthcare infrastructures globally, with state-of-the-art hospitals, medical facilities, and research institutions. This robust healthcare ecosystem facilitates the diagnosis and treatment of conditions that require HGH therapy, contributing to the region's prominence in the market.

Key Market Players

  • Charles River Laboratories Inc.
  • The Jackson Laboratory
  • Crown Bioscience,Inc.
  • Altogen Labs
  • Envigo
  • WuxiAppTec
  • Oncodesign
  • Hera BioLabs
  • XenTech
  • Abnova Corporation

Report Scope:

In this report, the Global Patient-Derived Xenograft Model Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Patient-Derived Xenograft Model Market, By Tumor Type:

  • Lung Cancer
  • Pancreatic Cancer
  • Prostate Cancer
  • Breast Cancer
  • Other Cancer

Patient-Derived Xenograft Model Market, By End User:

  • Biotechnology & Pharmaceutical Companies
  • Academic & Research Institutions

Patient-Derived Xenograft Model Market, By Type:

  • Rats
  • Mice

Patient-Derived Xenograft Model Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey
  • Egypt

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Patient-Derived Xenograft Model Market.

Available Customizations:

  • Global Patient-Derived Xenograft Model market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Patient-Derived Xenograft Model Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Tumor Type (Lung Cancer, Pancreatic Cancer, Prostate Cancer, Breast Cancer, Other Cancer)
    • 5.2.2. By Type (Mice, Rats)
    • 5.2.3. By End-User (Inpatient Settings, Community Settings)
    • 5.2.4. By Company (2022)
    • 5.2.5. By Region
  • 5.3. Market Map

6. North America Patient-Derived Xenograft Model Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Tumor Type
    • 6.2.2. By Type
    • 6.2.3. By End-user
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Patient-Derived Xenograft Model Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Tumor Type
        • 6.3.1.2.2. By Type
        • 6.3.1.2.3. By End-user
    • 6.3.2. Mexico Patient-Derived Xenograft Model Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Tumor Type
        • 6.3.2.2.2. By Type
        • 6.3.2.2.3. By End-user
    • 6.3.3. Canada Patient-Derived Xenograft Model Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Tumor Type
        • 6.3.3.2.2. By Type
        • 6.3.3.2.3. By End-user

7. Europe Patient-Derived Xenograft Model Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Tumor Type
    • 7.2.2. By Type
    • 7.2.3. By End-user
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Patient-Derived Xenograft Model Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Tumor Type
        • 7.3.1.2.2. By Type
        • 7.3.1.2.3. By End-user
    • 7.3.2. Germany Patient-Derived Xenograft Model Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Tumor Type
        • 7.3.2.2.2. By Type
        • 7.3.2.2.3. By End-user
    • 7.3.3. United Kingdom Patient-Derived Xenograft Model Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Tumor Type
        • 7.3.3.2.2. By Type
        • 7.3.3.2.3. By End-user
    • 7.3.4. Italy Patient-Derived Xenograft Model Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Tumor Type
        • 7.3.4.2.2. By Type
        • 7.3.4.2.3. By End-user
    • 7.3.5. Spain Patient-Derived Xenograft Model Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Tumor Type
        • 7.3.5.2.2. By Type
        • 7.3.5.2.3. By End-user

8. Asia-Pacific Patient-Derived Xenograft Model Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Tumor Type
    • 8.2.2. By Type
    • 8.2.3. By End-user
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Patient-Derived Xenograft Model Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Tumor Type
        • 8.3.1.2.2. By Type
        • 8.3.1.2.3. By End-user
    • 8.3.2. India Patient-Derived Xenograft Model Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Tumor Type
        • 8.3.2.2.2. By Type
        • 8.3.2.2.3. By End-user
    • 8.3.3. South Korea Patient-Derived Xenograft Model Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Tumor Type
        • 8.3.3.2.2. By Type
        • 8.3.3.2.3. By End-user
    • 8.3.4. Japan Patient-Derived Xenograft Model Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Tumor Type
        • 8.3.4.2.2. By Type
        • 8.3.4.2.3. By End-user
    • 8.3.5. Australia Patient-Derived Xenograft Model Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Tumor Type
        • 8.3.5.2.2. By Type
        • 8.3.5.2.3. By End-user

9. South America Patient-Derived Xenograft Model Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Tumor Type
    • 9.2.2. By Type
    • 9.2.3. By End-user
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Patient-Derived Xenograft Model Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Tumor Type
        • 9.3.1.2.2. By Type
        • 9.3.1.2.3. By End-user
    • 9.3.2. Argentina Patient-Derived Xenograft Model Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Tumor Type
        • 9.3.2.2.2. By Type
        • 9.3.2.2.3. By End-user
    • 9.3.3. Colombia Patient-Derived Xenograft Model Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Tumor Type
        • 9.3.3.2.2. By Type
        • 9.3.3.2.3. By End-user

10. Middle East and Africa Patient-Derived Xenograft Model Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Tumor Type
    • 10.2.2. By Type
    • 10.2.3. By End-user
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Patient-Derived Xenograft Model Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Tumor Type
        • 10.3.1.2.2. By Type
        • 10.3.1.2.3. By End-user
    • 10.3.2. Saudi Arabia Patient-Derived Xenograft Model Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Tumor Type
        • 10.3.2.2.2. By Type
        • 10.3.2.2.3. By End-user
    • 10.3.3. UAE Patient-Derived Xenograft Model Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Tumor Type
        • 10.3.3.2.2. By Type
        • 10.3.3.2.3. By End-user

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Developments
  • 12.2. Product Launches
  • 12.3. Mergers & Acquisitions

13. PESTLE Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Business Overview
  • 15.2. Company Snapshot
  • 15.3. Products & Services
  • 15.4. Financials (In case of listed companies)
  • 15.5. Recent Developments
  • 15.6. SWOT Analysis
    • 15.6.1. Charles River Laboratories Inc.
    • 15.6.2. The Jackson Laboratory
    • 15.6.3. Crown Bioscience,Inc.
    • 15.6.4. Altogen Labs
    • 15.6.5. Envigo
    • 15.6.6. WuxiAppTec
    • 15.6.7. Oncodesign
    • 15.6.8. Hera BioLabs
    • 15.6.9. XenTech
    • 15.6.10. Abnova Corporation

16. Strategic Recommendations