封面
市場調查報告書
商品編碼
1372911

光遺傳學市場 - 2018-2028 年行業規模、佔有率、趨勢、機會和預測,按照明設備、執行器、感測器(鈣、氯化物、膜門控和其他感測器)、按應用和地區、競爭細分

Optogenetics Market - Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented by Light Equipment,By Actuator, By Sensor (Calcium, Chloride, Membrane-gated, and Other Sensors), By Application, and By Region, Competition

出版日期: | 出版商: TechSci Research | 英文 181 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2022 年全球光遺傳學市場價值為5.456 億美元,預計在預測期內將出現令人印象深刻的成長,到2028 年年複合成長率為4.01%。光遺傳學是一種尖端生物技術,結合了光學(光)原理和遺傳學來控制和操縱活生物體中特定細胞的活動,通常使用稱為視蛋白的光敏蛋白質。它徹底改變了神經科學領域,並在其他各個領域都有應用,包括生物學、醫學和生物技術。光遺傳學的核心是視蛋白,它是在各種生物體中發現的光敏蛋白,包括某些類型的藻類和細菌。這些蛋白質會響應光而發生結構變化,進而影響表達它們的細胞的電活動。視蛋白可以透過基因工程引入目標細胞,使這些細胞對光產生反應。光遺傳學提供的精確控制引起了倫理上的考慮,特別是應用於人類和動物時。研究人員和機構在進行光遺傳學實驗時應遵循道德標準。

主要市場促進因素

市場概況
預測期 2024-2028
2022 年市場規模 5.456億美元
2028 年市場規模 6.9585億美元
2023-2028 年年複合成長率 4.01%
成長最快的細分市場 神經科學
最大的市場 北美洲

技術創新

視蛋白是光遺傳學中用來控制細胞活動的光敏蛋白。持續的研究導致了新的和改進的視蛋白的開發,這些視蛋白具有增強的特性,例如增加對光的敏感性、更快的反應時間和改變的光譜特性。這些創新使得能夠更精確地控制神經迴路。光遺傳學中的連接複用涉及不同神經元或神經群體中多種類型視蛋白的同時活化或抑制。這項技術使研究人員能夠研究複雜的神經迴路和相互作用。多重技術的創新提高了光遺傳學實驗的可擴展性和多功能性。先進的光纖系統和顯微鏡技術已被開發出來,可以提供高空間和時間精度的光。這些創新使研究人員能夠更準確地瞄準特定的大腦區域甚至單一神經元。研究人員開發了無線光遺傳學系統,消除了對系留光源的需求,並允許在自由移動的動物中進行更自然的實驗。這項技術增強了對不受約束條件下的行為和神經迴路的研究。光遺傳學設備和植入物的小型化允許在小動物中進行侵入性較小的實驗。這些設備可以直接植入大腦,從而實現長期和長期的研究。閉迴路光遺傳學系統結合神經活動的即時回饋來調整光刺激。這些系統能夠響應特定的神經模式進行動態實驗,從而增強對神經迴路的理解。病毒載體和基因傳遞技術的創新提高了將光遺傳學工具引入目標細胞或組織的效率和特異性。這促進了光遺傳學在更廣泛的生物體和細胞類型中的採用。

雙光子顯微鏡與光遺傳學結合可以使光更深入地滲透到腦組織中。這項創新擴大了光遺傳學實驗的空間範圍,使得靶向更深層大腦區域的神經元成為可能。抑制性光遺傳學工具的發展,例如鹽視紫質 (eNpHR) 和 Arch,可以精確抑制神經活動。研究人員現在可以雙向操縱神經迴路,根據需要激活和抑制神經元。除了用於控制的視蛋白之外,還開發了光遺傳學感測器來即時監測神經活動和生理參數。這些感測器為閉迴路實驗提供有價值的回饋,並使神經動力學的研究成為可能。光遺傳學已與電生理技術相結合,使研究人員能夠將光刺激與神經活動的記錄結合。這種整合提供了神經迴路功能的全面視圖。商業供應商透過為研究人員提供經過充分錶徵和驗證的光遺傳學工具,使更廣泛的科學界更容易使用這些工具,在推進光遺傳學方面發揮了重要作用。這一因素將有助於全球光遺傳學市場的發展。

神經科學研究的進展

近年來,在技術創新、協作努力和資金增加的推動下,神經科學研究取得了重大進展。這些進步加深了我們對大腦及其功能的理解。連接組學的進步使研究人員能夠在單一神經元和突觸層面上繪製大腦複雜的連接圖。電子顯微鏡和高解析度成像等技術正在幫助創建全面的大腦連接圖。功能性磁振造影 (fMRI) 技術在空間和時間解析度方面有所提高,能夠更精確地繪製大腦活動和連接性。靜息態功能性磁振造影揭示了大腦中的功能網路,揭示了其組織結構。單細胞 RNA 定序使研究人員能夠在單細胞層面上研究基因表達,從而深入了解大腦內的細胞多樣性和基因調控。這項技術有助於對大腦中的各種細胞類型進行分類。光遺傳學和化學遺傳學已成為神經科學的重要工具。研究人員可以以前所未有的精確度操縱和研究特定的神經迴路,從而更深入地了解大腦功能。 Crispr-Cas9基因編輯技術的使用使研究人員能夠修改動物模型中的基因,以研究它們對大腦發育和功能的影響。這項技術徹底改變了神經科學的遺傳學研究。先進的神經成像技術,如擴散張量成像 (DTI) 和正電子發射斷層掃描 (PET),提供了對大腦結構、連接性和新陳代謝的深入了解,促進了神經系統疾病的研究。經顱磁刺激 (TMS) 和經顱直流電刺激 (tDCS) 等技術因其在神經精神疾病方面的潛在治療應用而受到關注。

機器學習和人工智慧已被應用於分析大規模神經資料,使得解碼大腦活動模式、預測行為和診斷神經系統疾病成為可能。腦機介面(BCI)已經取得了進步,可以使用大腦訊號更精確地控制外部設備。這些介面在輔助科技和神經復健方面具有潛在的應用。腦類器官(源自幹細胞的微型 3D 腦組織模型)的發展使研究人員能夠在更真實的環境中研究早期大腦發育、建立疾病模型並測試藥物反應。人們對神經發炎在阿茲海默症和多發性硬化症等神經系統疾病中的作用的日益了解,導致針對發炎的新型治療策略的開發。人類連結組計畫和大腦計畫(透過推進創新神經技術進行大腦研究)等計畫匯集了來自不同學科的研究人員,以加速我們對大腦結構和功能的理解。該領域在解決與大腦研究相關的倫理問題方面取得了長足進步,包括負責任地使用光遺傳學和腦機介面等技術的討論。這項因素將加快全球光遺傳學市場的需求。

擴大應用領域

不斷擴大的應用領域確實是光遺傳學需求的重要驅動力。光遺傳學最初是作為神經科學的強大研究工具而開發的,現已在各個領域得到應用,擴大了其範圍和影響。光遺傳學的主要應用是在神經科學領域,它使研究人員能夠以前所未有的精確度控制和操縱特定的神經元和神經迴路。它加深了我們對大腦功能、行為和神經系統疾病潛在機制的理解。光遺傳學已應用於心臟病學來控制心臟組織並研究心臟的電活動。它在心律不整研究和心臟病新療法的開發方面具有潛在的應用。在驗光中,光遺傳學已被用來研究視覺系統和視網膜功能。研究人員已經探索了它在視網膜退化等情況下恢復視力的潛力。光遺傳學讓研究人員能夠控制幹細胞的分化和功能,從而在再生醫學中發揮重要作用。它在組織工程和基於細胞的療法的開發中具有潛在的應用。光遺傳學已被用於研究神經系統中的疼痛感知和路徑。研究人員可以操縱與疼痛相關的神經元,以更好地了解慢性疼痛狀況並開發潛在的干涉措施。光遺傳學在精神醫學研究中的應用揭示了與情緒障礙、成癮和焦慮有關的神經迴路。它提供了對治療干涉的潛在目標的見解。

光遺傳學已用於研究荷爾蒙調節和內分泌系統。研究人員可以控制荷爾蒙的釋放並研究它們對各種生理過程的影響。光遺傳學已在癌症研究中得到應用,用於控制細胞行為並研究腫瘤生長和轉移。它提供了一種操縱癌細胞並研究它們反應的工具。研究人員應用光遺傳學來研究免疫細胞的行為和反應。它提供了一種控制免疫細胞活化和研究免疫系統動態的方法。光遺傳學用於生物工程和合成生物學來設計和控制細胞過程。它允許對細胞進行精確的改造以執行所需的功能。製藥和生物技術公司在藥物發現中使用光遺傳學來篩選和測試潛在的候選藥物。它為研究細胞對藥物的反應提供了一個有價值的工具。隨著光遺傳學擴展到新的應用領域,圍繞操縱神經迴路和細胞功能的倫理影響的討論變得更加突出。這項因素將加速全球光遺傳學市場的需求。

主要市場挑戰

對神經迴路的了解有限

人腦極其複雜,擁有數十億個神經元和數兆個突觸。我們對所有這些元素如何共同產生行為和認知功能的理解仍然不完整。這種複雜性使得設計針對正確神經元和電路的光遺傳學實驗變得具有挑戰性。儘管在繪製神經迴路方面取得了重大進展,特別是在小鼠等模型生物中,但我們的知識仍然存在差距。缺乏大腦中所有神經迴路的綜合圖譜,這可能會限制光遺傳學實驗的精確度。神經迴路因人而異。在一個人的大腦中起作用的東西在另一個人的大腦中可能不會以同樣的方式運作。這種變異性會使光遺傳學技術在臨床環境中的應用變得複雜。一些深部大腦區域難以進入和研究,因此很難理解它們的電路。這些區域的光遺傳學實驗可能會受到有效地將光傳遞到目標神經元的能力的限制。將特定的神經迴路與複雜的行為和認知功能連結起來可能是一項艱鉅的挑戰。雖然光遺傳學可以操縱神經活動,但理解神經活動模式和行為之間的精確關係是一項持續的努力。

技術成本

光遺傳學實驗需要專門的設備,包括光源(例如雷射或 LED)、光纖和成像系統。這些組件可能很昂貴,特別是對於高品質的研究級系統。研究人員經常需要客製化他們的光遺傳學設定以滿足他們特定的實驗需求。客製化可能會增加整體成本,因為它可能需要工程專業知識和客製化組件。購買光遺傳學試劑,例如攜帶視蛋白的病毒載體,是持續的費用。這些試劑需要定期補充進行實驗。在動物研究中,維持基因改造動物或施用病毒載體可能會產生與動物飼養、照護和倫理監督相關的費用。進行光遺傳學實驗需要熟練的人員,從設計方案到進行實驗和資料分析。僱用訓練有素的研究人員會增加整體成本。研究人員需要光遺傳學技術的培訓和專業知識,這可能涉及研討會、課程或聘請專家的額外費用。光纖、插管和電極等消耗品需要定期更換,增加了持續的營運成本。需要定期維護和校準雷射和顯微鏡等設備,以確保結果準確可靠。維護成本會隨著時間的推移而增加。

主要市場趨勢

客製化和有針對性的方法

研究人員正在客製化光遺傳學工具以滿足他們的實驗要求。這種客製化包括開發新型視蛋白,例如具有改變的動力學、光譜特性或組織特異性表達模式的變體。這些客製化工具可以更精確、更有效地控制神經迴路。光遺傳學中的多重處理涉及在單一實驗中同時使用具有不同特性的多種視蛋白。這種方法使研究人員能夠針對同一組織或大腦區域內的不同神經群體。客製化多重光遺傳學系統增強了實驗的靈活性。客製化延伸到在光遺傳學實驗中實現細胞類型特異性。研究人員正在設計選擇性地針對特定細胞類型的視蛋白,例如興奮性或抑制性神經元,或表達特定分子標記的神經元。光遺傳學擴大用於特定電路的操作。客製化設計的視蛋白和靶向策略使研究人員能夠激活或抑制特定的神經通路或突觸,剖析複雜的電路以了解其功能。在潛在的臨床應用背景下,研究人員正在開發客製化的光遺傳學方法來針對與神經和精神疾病相關的特定神經迴路。這種有針對性的客製化對於精確治療介入的發展至關重要。

細分市場洞察

輕型設備見解

2022 年,全球光遺傳學市場最大佔有率由發光二極體 (LED) 領域主導,預計未來幾年將繼續擴大。 LED 可精確控制光的時間、強度和波長,使其成為光遺傳學實驗的熱門選擇。研究人員可以根據特定要求客製化光刺激,從而對神經迴路進行微調操作。 LED 具有多種波長,這對於激活光遺傳學中使用的各種光敏蛋白質至關重要。這種靈活性使研究人員能夠針對特定的神經群體或細胞過程。研究人員可以客製化 LED 設定以滿足他們特定的實驗需求,從而開發獨特且客製化的光遺傳學系統。多年來,LED 的光遺傳學應用已獲得科學界的認可和驗證。研究人員發表了大量使用基於 LED 的光遺傳學的研究,進一步確立了其可信度。

執行器見解

2022 年,全球光遺傳學市場將由通道視紫質細分市場主導,預計未來幾年將繼續擴大。通道視紫質,特別是通道視紫質-2 (ChR2),是最早和最廣泛使用的光遺傳學工具之一。它在該領域的先驅作用有助於其被研究人員廣泛採用和認可。 ChR2 和相關視紫質通道蛋白在控制神經元活動方面非常有效。當暴露在光線下時,它們能夠以毫秒精度精確快速地控制神經放電,這使得它們對於神經科學研究具有無價的價值。通道視紫質活化通常需要藍光,這非常適合 LED。 LED 是光遺傳學中的常見光源,其與視紫質通道的兼容性使其成為許多研究人員的實用選擇。視紫質通道可以有針對性地活化特定的神經元或神經群。這種特異性對於研究大腦區域或迴路的功能至關重要。圍繞著通道視紫質的使用進行了大量研究,為其在科學界的採用奠定了堅實的基礎。許多研究已經證明了其在各種實驗環境中的有效性。

感測器洞察

2022 年,全球光遺傳學市場將由氯化物細分市場主導,預計未來幾年將繼續擴大。氯通道可用於光遺傳學抑制,使研究人員能夠在暴露於光時沉默或抑制神經活動。這補充了興奮性光遺傳學工具(例如視紫質通道蛋白),並為控制神經迴路提供了更全面的工具包。興奮性(例如,通道視紫質)和抑制性(例如,鹽視紫質)光遺傳學工具的組合可以使研究人員透過激活和沈默特定神經元或群體來更全面地研究神經迴路。基於氯離子通道的光遺傳學的商業產品和試劑的可用性可以促進它們在研究人員中的採用。商用工具通常經過良好的特性和驗證。基於氯離子通道的光遺傳學工具的發展進步,包括具有增強特性的改進變體,可能有助於其普及。

應用洞察

2022 年,全球光遺傳學市場最大佔有率由神經科學領域主導,預計未來幾年將繼續擴大。光遺傳學最初是作為研究大腦和神經迴路的強大工具而開發的。它的主要應用是神經科學研究,使研究人員能夠精確控制和操縱體內神經元的活動。因此,大多數光遺傳學應用和研究都集中在神經科學上。大腦的複雜性和對神經迴路精確控制的需求使得光遺傳學成為神經科學家不可或缺的工具。它使研究人員能夠研究有關大腦功能、行為和神經系統疾病的基本問題。光遺傳學領域的大量研究出版物和研究都與神經科學相關。這些廣泛的研究進一步激發了人們對利用光遺傳學來增進我們對大腦的理解的興趣。

區域洞察

北美地區將在2022 年主導全球光遺傳學市場。由於該地區慢性病患病率不斷上升,光遺傳學設備的使用不斷增加,特別是在大學和研究實驗室,以及重要市場參與者的合作夥伴關係和新產品的推出。神經學領域成長的主要驅動力是不斷增加的政府措施。隨著更多的投資,更多的企業可以進入市場並提供創造性的解決方案來滿足患者的需求。不斷成長的患者群體需要更多的護理,這增​​加了對光遺傳學的需求並加速了市場的擴張。此外,預計合作夥伴關係和協議將推動該行業的發展。

目錄

第 1 章:產品概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

  • 研究目的
  • 基線方法
  • 主要產業夥伴
  • 主要協會和二手資料來源
  • 預測方法
  • 數據三角測量與驗證
  • 假設和限制

第 3 章:執行摘要

  • 市場概況
  • 主要市場細分概述
  • 主要市場參與者概述
  • 重點地區/國家概況
  • 市場促進因素、挑戰、趨勢概述

第 4 章:COVID-19 對全球光遺傳學市場的影響

第 5 章:客戶之聲

第 6 章:全球光遺傳學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 透過燈光設備(雷射和發光二極體)
    • 按下執行器(通道視紫質、鹽視紫質和古視紫質)
    • 依感測器(鈣(水母蛋白、Cameleon 和其他鈣感測器)氯化物 (Clomeleon)、膜門控(Mermaid)和其他感測器)
    • 按應用(神經科學、行為追蹤、視網膜、疾病治療和其他應用)
    • 按地區
    • 按公司分類 (2022)
  • 市場地圖

第 7 章:亞太光遺傳學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 透過燈光設備
    • 按下執行器
    • 透過感測器
    • 按應用
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國光遺傳學
    • 印度光遺傳學
    • 澳洲光遺傳學
    • 日本光遺傳學
    • 韓國光遺傳學

第 8 章:歐洲光遺傳學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 透過燈光設備
    • 按下執行器
    • 透過感測器
    • 按應用
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 西班牙
    • 義大利
    • 英國

第 9 章:北美光遺傳學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 透過燈光設備
    • 按下執行器
    • 透過感測器
    • 按應用
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 10 章:南美光遺傳學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 透過燈光設備
    • 按下執行器
    • 透過感測器
    • 按應用
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 11 章:中東和非洲光遺傳學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 透過燈光設備
    • 按下執行器
    • 透過感測器
    • 按應用
    • 按國家/地區
  • MEA:國家分析
    • 南非光遺傳學
    • 沙烏地阿拉伯光遺傳學
    • 阿拉伯聯合大公國光遺傳學

第 12 章:市場動態

  • 促進要素
  • 挑戰

第 13 章:市場趨勢與發展

  • 最近的發展
  • 產品發布
  • 併購

第 14 章:全球光遺傳學市場:SWOT 分析

第 15 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第 16 章:大環境分析

第17章:競爭格局

  • 商業概覽
  • 公司概況
  • 產品與服務
  • 財務(上市公司)
  • 最近的發展
  • SWOT分析
    • Hubner Group (Cobolt Inc.)
    • Coherent Inc.
    • Gensight Biologics SA
    • Laserglow Technologies
    • Noldus Information Technology Inc.
    • Judges' Scientific PLC (Scientifica)
    • Shanghai Laser & Optics Century Co. Ltd
    • Bruker Corporation
    • Thorlabs Inc.

第 18 章:策略建議

第 19 章:關於我們與免責聲明

簡介目錄
Product Code: 16286

Global Optogenetics Market has valued at USD 545.60 million in 2022 and is anticipated to witness an impressive growth in the forecast period with a CAGR of 4.01% through 2028. Optogenetics is a cutting-edge biological technique that combines the principles of optics (light) and genetics to control and manipulate the activity of specific cells in living organisms, typically using light-sensitive proteins called opsins. It has revolutionized the field of neuroscience and has applications in various other fields, including biology, medicine, and biotechnology. At the core of optogenetics are opsins, which are light-sensitive proteins found in various organisms, including certain types of algae and bacteria. These proteins undergo structural changes in response to light, which in turn affect the electrical activity of cells expressing them. Opsins can be genetically engineered and introduced into target cells, allowing those cells to become responsive to light. The precise control offered by optogenetics has raised ethical considerations, particularly when applied to humans and animals. Researchers and institutions are guided by ethical standards when conducting optogenetic experiments.

Optogenetics has revolutionized neuroscience by enabling precise control of neural circuits. The continuous advancement of our understanding of the brain and the need for sophisticated tools to study it has driven the adoption of optogenetic techniques. Ongoing advancements in optogenetic tools, including the development of improved opsins (light-sensitive proteins) and more precise light-delivery systems, have made optogenetics more accessible and user-friendly for researchers. The potential for translating optogenetics from a research tool into clinical applications has attracted significant interest and investment. Researchers are exploring optogenetics' therapeutic potential for treating neurological and psychiatric disorders. Many research projects in optogenetics receive funding from government agencies and institutions interested in advancing neuroscience and medical research. This financial support has fueled research and development in the field.

Key Market Drivers

Market Overview
Forecast Period2024-2028
Market Size 2022USD 545.60 Million
Market Size 2028USD 695.85 Million
CAGR 2023-20284.01%
Fastest Growing SegmentNeuroscience
Largest MarketNorth America

Technological Innovations

Opsins are light-sensitive proteins used in optogenetics to control cellular activity. Continuous research has led to the development of new and improved opsins with enhanced properties, such as increased sensitivity to light, faster response times, and altered spectral properties. These innovations have allowed for more precise control of neural circuits. Multiplexing in optogenetics involves the simultaneous activation or inhibition of multiple types of opsins in different neurons or neural populations. This technology allows researchers to study complex neural circuits and interactions. Innovations in multiplexing techniques have improved the scalability and versatility of optogenetic experiments. Advanced optical fiber systems and microscopy techniques have been developed to deliver light with high spatial and temporal precision. These innovations enable researchers to target specific brain regions or even individual neurons with greater accuracy. Researchers have developed wireless optogenetic systems that eliminate the need for tethered light sources and allow for more naturalistic experiments in freely moving animals. This technology enhances the study of behaviors and neural circuits in unrestrained conditions. Miniaturization of optogenetic devices and implants has allowed for less invasive experiments in small animals. These devices can be implanted directly into the brain, enabling long-term and chronic studies. Closed loop optogenetic systems incorporate real-time feedback from neural activity to adjust light stimulation. These systems enable dynamic experiments in response to specific neural patterns, enhancing the understanding of neural circuitry. Innovations in viral vectors and gene delivery techniques have improved the efficiency and specificity of introducing optogenetic tools into target cells or tissues. This has facilitated the adoption of optogenetics in a wider range of organisms and cell types.

Two-photon microscopy combined with optogenetics allows for deeper penetration of light into brain tissue. This innovation has expanded the spatial reach of optogenetic experiments, making it possible to target neurons in deeper brain regions. The development of inhibitory optogenetic tools, such as Halorhodopsin (eNpHR) and Arch, has allowed for the precise inhibition of neural activity. Researchers can now manipulate neural circuits bidirectionally, activating, and inhibiting neurons as needed. In addition to opsins for control, optogenetic sensors have been developed to monitor neural activity and physiological parameters in real-time. These sensors provide valuable feedback for closed-loop experiments and enable the study of neural dynamics. Optogenetics has been integrated with electrophysiological techniques, allowing researchers to combine light stimulation with the recording of neural activity. This integration provides a comprehensive view of neural circuit function. Commercial suppliers have played a significant role in advancing optogenetics by providing researchers with well-characterized and validated optogenetic tools, making them more accessible to a broader scientific community. This factor will help in the development of Global Optogenetics Market.

Advancements in Neuroscience Research

Neuroscience research has seen significant advancements in recent years, driven by technological innovations, collaborative efforts, and increased funding. These advancements have deepened our understanding of the brain and its functions. Advances in connectomics have allowed researchers to map the intricate connectivity of the brain at the level of individual neurons and synapses. Techniques like electron microscopy and high-resolution imaging are helping create comprehensive brain connectivity maps. Functional Magnetic Resonance Imaging (fMRI) techniques have improved in spatial and temporal resolution, enabling more precise mapping of brain activity and connectivity. Resting-state fMRI has revealed functional networks in the brain, shedding light on its organization. Single-cell RNA sequencing has allowed researchers to study gene expression at the single-cell level, providing insights into cell diversity and gene regulation within the brain. This technology has been instrumental in classifying various cell types in the brain. Optogenetics and chemogenetics have become essential tools in neuroscience. Researchers can manipulate and study specific neural circuits with unprecedented precision, enabling a deeper understanding of brain function. The use of Crispr-Cas9 gene editing technology has enabled researchers to modify genes in animal models to study their effects on brain development and function. This technology has revolutionized genetics research in neuroscience. Advanced neuroimaging techniques, such as diffusion tensor imaging (DTI) and positron emission tomography (PET), have provided insights into brain structure, connectivity, and metabolism, facilitating research on neurological disorders. Techniques like transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have gained prominence for their potential therapeutic applications in neuropsychiatric disorders.

Machine learning and artificial intelligence have been applied to analyze large-scale neural data, making it possible to decode brain activity patterns, predict behavior, and diagnose neurological conditions. Brain-Computer Interfaces (BCIs) have advanced, allowing for more precise control of external devices using brain signals. These interfaces have potential applications in assistive technology and neurorehabilitation. The development of brain organoids, miniaturized 3D brain tissue models derived from stem cells, has enabled researchers to study early brain development, model diseases, and test drug responses in a more realistic environment. Growing understanding of neuroinflammation's role in neurological diseases, such as Alzheimer's and multiple sclerosis, has led to the development of novel therapeutic strategies targeting inflammation. Initiatives like the Human Connectome Project and the BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies) have brought together researchers from various disciplines to accelerate our understanding of the brain's structure and function. The field has made strides in addressing ethical considerations related to brain research, including discussions about the responsible use of technologies like optogenetics and brain-computer interfaces. This factor will pace up the demand of Global Optogenetics Market.

Expanding Application Areas

Expanding application areas have indeed been a significant driver for the demand of optogenetics. Originally developed as a powerful research tool for neuroscience, optogenetics has found applications in various fields, expanding its reach and impact. Optogenetics' primary application has been in neuroscience, where it has enabled researchers to control and manipulate specific neurons and neural circuits with unprecedented precision. It has deepened our understanding of brain function, behavior, and the underlying mechanisms of neurological disorders. Optogenetics has been applied in cardiology to control cardiac tissue and study the heart's electrical activity. It has potential applications in arrhythmia research and the development of novel therapies for heart conditions. In optometry, optogenetics has been used to study the visual system and retinal function. Researchers have explored its potential for restoring vision in conditions like retinal degeneration. Optogenetics plays a role in regenerative medicine by allowing researchers to control the differentiation and function of stem cells. It has potential applications in tissue engineering and the development of cell-based therapies. Optogenetics has been used to study pain perception and pathways in the nervous system. Researchers can manipulate pain-related neurons to better understand chronic pain conditions and develop potential interventions. The application of optogenetics in psychiatry research has shed light on the neural circuits involved in mood disorders, addiction, and anxiety. It offers insights into potential targets for therapeutic interventions.

Optogenetics has been used to study hormonal regulation and endocrine systems. Researchers can control the release of hormones and investigate their effects on various physiological processes. Optogenetics has found applications in cancer research, where it has been used to control cell behavior and study tumor growth and metastasis. It offers a tool for manipulating cancer cells and studying their responses. Researchers have applied optogenetics to investigate immune cell behavior and responses. It provides a means to control immune cell activation and study immune system dynamics. Optogenetics is used in bioengineering and synthetic biology to design and control cellular processes. It allows for the precise engineering of cells to perform desired functions. Pharmaceutical and biotechnology companies use optogenetics in drug discovery to screen and test potential drug candidates. It provides a valuable tool for studying cellular responses to drugs. As optogenetics expands into new application areas, discussions around the ethical implications of manipulating neural circuits and cellular functions have become more prominent. This factor will accelerate the demand of Global Optogenetics Market.

Key Market Challenges

Limited Understanding of Neural Circuits

The human brain is incredibly complex, with billions of neurons and trillions of synapses. Our understanding of how all these elements work together to produce behaviors and cognitive functions is still incomplete. This complexity makes it challenging to design optogenetic experiments that target the right neurons and circuits. Although significant progress has been made in mapping neural circuits, especially in model organisms like mice, there are still gaps in our knowledge. Comprehensive maps of all the neural circuits in the brain are lacking, which can limit the precision of optogenetic experiments. Neural circuits can vary significantly from one individual to another. What works in one person's brain may not work the same way in another person's brain. This variability can complicate the application of optogenetic techniques in clinical settings. Some deep brain regions are challenging to access and study, making it difficult to understand their circuitry. Optogenetic experiments in these regions may be limited by the ability to deliver light to the target neurons effectively. Linking specific neural circuits to complex behaviors and cognitive functions can be a formidable challenge. While optogenetics can manipulate neural activity, understanding the precise relationship between neural activity patterns and behavior is an ongoing endeavor.

Cost of Technology

Optogenetics experiments require specialized equipment, including light sources (e.g., lasers or LEDs), optical fibers, and imaging systems. These components can be expensive, especially for high-quality, research-grade systems. Researchers often need to customize their optogenetic setups to suit their specific experimental needs. Customization can add to the overall cost, as it may require engineering expertise and bespoke components. The purchase of optogenetic reagents, such as viral vectors carrying opsins, is an ongoing expense. These reagents need to be regularly replenished for experiments. In animal studies, maintaining transgenic animals or administering viral vectors can incur costs related to animal housing, care, and ethical oversight. Skilled personnel are needed to conduct optogenetics experiments, from designing protocols to carrying out experiments and data analysis. Employing trained researchers adds to the overall cost. Researchers require training and expertise in optogenetics techniques, which can involve additional costs for workshops, courses, or hiring experts. Consumables such as optical fibers, cannulas, and electrodes need to be regularly replaced, adding to ongoing operational costs. Regular maintenance and calibration of equipment like lasers and microscopes are necessary to ensure accurate and reliable results. Maintenance costs can add up over time.

Key Market Trends

Customization and Targeted Approaches

Researchers are customizing optogenetic tools to suit their experimental requirements. This customization includes the development of novel opsins, such as variants with altered kinetics, spectral properties, or tissue-specific expression patterns. These tailored tools enable more precise and effective control of neural circuits. Multiplexing in optogenetics involves the simultaneous use of multiple opsins with different properties in a single experiment. This approach allows researchers to target distinct neural populations within the same tissue or brain region. Customizing multiplexed optogenetic systems enhances the flexibility of experiments. Customization extends to achieving cell-type specificity in optogenetic experiments. Researchers are designing opsins that selectively target specific cell types, such as excitatory or inhibitory neurons, or neurons expressing specific molecular markers. Optogenetics is increasingly being used for circuit-specific manipulation. Custom-designed opsins and targeting strategies allow researchers to activate or inhibit specific neural pathways or synapses, dissecting complex circuits to understand their function. In the context of potential clinical applications, researchers are developing customized optogenetic approaches to target specific neural circuits associated with neurological and psychiatric disorders. This targeted customization is crucial for the development of precise therapeutic interventions.

Segmental Insights

Light Equipment Insights

In 2022, the Global Optogenetics Market largest share was dominated by Light-emitting Diode (LED) segment in the forecast period and is predicted to continue expanding over the coming years. LEDs offer precise control over the timing, intensity, and wavelength of light, making them a popular choice for optogenetics experiments. Researchers can tailor the light stimulation to specific requirements, allowing for fine-tuned manipulation of neural circuits. LEDs are available in a wide range of wavelengths, which is crucial for activating various light-sensitive proteins used in optogenetics. This flexibility allows researchers to target specific neural populations or cellular processes. Researchers can customize LED setups to suit their specific experimental needs, allowing for the development of unique and tailored optogenetic systems. Over the years, LEDs have gained acceptance and validation in the scientific community for optogenetic applications. Researchers have published numerous studies using LED-based optogenetics, further establishing their credibility.

Actuator Insights

In 2022, the Global Optogenetics Market dominated by Channel rhodopsin segment and is predicted to continue expanding over the coming years. Channel Rhodopsin, particularly Channelrhodopsin-2 (ChR2), was one of the earliest and most widely used optogenetic tools. Its pioneering role in the field contributed to its widespread adoption and recognition by researchers. ChR2 and related Channel Rhodopsin proteins are highly effective at controlling neuronal activity. They enable precise and rapid control of neural firing with millisecond precision when exposed to light, making them invaluable for neuroscience research. Channel Rhodopsin activation typically requires blue light, which is well-suited for LEDs. LEDs are a common light source in optogenetics, and their compatibility with Channel Rhodopsin makes it a practical choice for many researchers. Channel Rhodopsin allows for targeted activation of specific neurons or neural populations. This specificity is crucial for studying the function of brain regions or circuits. A significant body of research has been built around the use of Channel Rhodopsin, providing a strong foundation for its adoption in the scientific community. Numerous studies have demonstrated its effectiveness in various experimental contexts.

Sensor Insights

In 2022, the Global Optogenetics Market dominated by Chloride segment and is predicted to continue expanding over the coming years. Chloride channels can be used for optogenetic inhibition, allowing researchers to silence or inhibit neural activity when exposed to light. This complements the excitatory optogenetic tools (e.g., Channelrhodopsin) and provides a more comprehensive toolkit for controlling neural circuits. The combination of excitatory (e.g., Channelrhodopsin) and inhibitory (e.g., Halorhodopsin) optogenetic tools can enable researchers to study neural circuits more comprehensively by both activating and silencing specific neurons or populations. The availability of commercial products and reagents for chloride channel-based optogenetics can facilitate their adoption among researchers. Commercially available tools are often well-characterized and validated. Advancements in the development of chloride channel-based optogenetic tools, including improved variants with enhanced properties, may have contributed to their popularity.

Application Insights

In 2022, the Global Optogenetics Market largest share was dominated by Neuroscience segment in the forecast period and is predicted to continue expanding over the coming years. Optogenetics was originally developed as a powerful tool for studying the brain and neural circuits. Its primary application has been in neuroscience research, allowing researchers to precisely control and manipulate the activity of neurons in vivo. As a result, the majority of optogenetics applications and studies have been focused on neuroscience. The complexity of the brain and the need for precise control over neural circuits have made optogenetics an indispensable tool for neuroscientists. It enables researchers to investigate fundamental questions about brain function, behaviour, and neurological disorders. A significant number of research publications and studies in the field of optogenetics have been related to neuroscience. This extensive body of research has further fuelled interest in using optogenetics to advance our understanding of the brain.

Regional Insights

The North America region dominates the Global Optogenetics Market in 2022. Due to the rising prevalence of chronic diseases in the area, the increasing use of optogenetic devices, particularly in university and research labs, and the partnerships and new product launches by important market participants. The main drivers of growth in the neurological field are rising government initiatives. With more investment, more businesses can enter the market and offer creative solutions to meet patient requirements. More care is needed for the growing patient population, which raises the need for optogenetics and accelerates the market's expansion. Additionally, it is projected that partnerships and agreements will propel the industry.

Key Market Players

  • Hubner Group (Cobolt Inc.)
  • Coherent Inc.
  • Gensight Biologics S.A.
  • Laserglow Technologies
  • Noldus Information Technology Inc.
  • Judges' Scientific PLC (Scientifica)
  • Shanghai Laser & Optics Century Co. Ltd
  • Bruker Corporation
  • Thorlabs Inc

Report Scope:

In this report, the Global Optogenetics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Optogenetics Market, By Light Equipment:

  • Laser
  • Light-emitting Diode

Optogenetics Market, By Actuator:

  • Channel rhodopsin
  • Halorhodopsin
  • Archaerhodopsin

Optogenetics Market, By Sensor:

  • Calcium (Aequorin, Cameleon, and Other Calcium Sensors)
  • Chloride (Clomeleon)
  • Membrane-gated (Mermaid)
  • Other Sensors

Optogenetics Market, By Application:

  • Neuroscience
  • Behavioral Tracking
  • Retinal Disease Treatment
  • Other Applications

Global Optogenetics Market, By region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • China
  • India
  • South Korea
  • Australia
  • Japan
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Italy
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Optogenetics Market.

Available Customizations:

  • Global Optogenetics Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Impact of COVID-19 on Global Optogenetics Market

5. Voice of Customer

6. Global Optogenetics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Light Equipment (Laser and Light-emitting Diode
    • 6.2.2. By Actuator (Channelrhodopsin, Halorhodopsin, and Archaerhodopsin)
    • 6.2.3. By Sensor (Calcium (Aequorin, Cameleon, and Other Calcium Sensors) Chloride (Clomeleon), Membrane-gated (Mermaid), and Other Sensors)
    • 6.2.4. By Application (Neuroscience, Behavioral Tracking, Retinal, Disease Treatment, and Other Applications)
    • 6.2.5. By Region
    • 6.2.6. By Company (2022)
  • 6.3. Market Map

7. Asia Pacific Optogenetics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Light Equipment
    • 7.2.2. By Actuator
    • 7.2.3. By Sensor
    • 7.2.4. By Application
    • 7.2.5. By Country
  • 7.3. Asia Pacific: Country Analysis
    • 7.3.1. China Optogenetics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Light Equipment
        • 7.3.1.2.2. By Actuator
        • 7.3.1.2.3. By Sensor
        • 7.3.1.2.4. By Application
    • 7.3.2. India Optogenetics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Light Equipment
        • 7.3.2.2.2. By Actuator
        • 7.3.2.2.3. By Sensor
        • 7.3.2.2.4. By Application
    • 7.3.3. Australia Optogenetics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Light Equipment
        • 7.3.3.2.2. By Actuator
        • 7.3.3.2.3. By Sensor
        • 7.3.3.2.4. By Application
    • 7.3.4. Japan Optogenetics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Light Equipment
        • 7.3.4.2.2. By Actuator
        • 7.3.4.2.3. By Sensor
        • 7.3.4.2.4. By Application
    • 7.3.5. South Korea Optogenetics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Light Equipment
        • 7.3.5.2.2. By Actuator
        • 7.3.5.2.3. By Sensor
        • 7.3.5.2.4. By Application

8. Europe Optogenetics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Light Equipment
    • 8.2.2. By Actuator
    • 8.2.3. By Sensor
    • 8.2.4. By Application
    • 8.2.5. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. France Optogenetics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Light Equipment
        • 8.3.1.2.2. By Actuator
        • 8.3.1.2.3. By Sensor
        • 8.3.1.2.4. By Application
    • 8.3.2. Germany Optogenetics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Light Equipment
        • 8.3.2.2.2. By Actuator
        • 8.3.2.2.3. By Sensor
        • 8.3.2.2.4. By Application
    • 8.3.3. Spain Optogenetics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Light Equipment
        • 8.3.3.2.2. By Actuator
        • 8.3.3.2.3. By Sensor
        • 8.3.3.2.4. By Application
    • 8.3.4. Italy Optogenetics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Light Equipment
        • 8.3.4.2.2. By Actuator
        • 8.3.4.2.3. By Sensor
        • 8.3.4.2.4. By Application
    • 8.3.5. United Kingdom Optogenetics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Light Equipment
        • 8.3.5.2.2. By Actuator
        • 8.3.5.2.3. By Sensor
        • 8.3.5.2.4. By Application

9. North America Optogenetics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Light Equipment
    • 9.2.2. By Actuator
    • 9.2.3. By Sensor
    • 9.2.4. By Application
    • 9.2.5. By Country
  • 9.3. North America: Country Analysis
    • 9.3.1. United States Optogenetics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Light Equipment
        • 9.3.1.2.2. By Actuator
        • 9.3.1.2.3. By Sensor
        • 9.3.1.2.4. By Application
    • 9.3.2. Mexico Optogenetics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Light Equipment
        • 9.3.2.2.2. By Actuator
        • 9.3.2.2.3. By Sensor
        • 9.3.2.2.4. By Application
    • 9.3.3. Canada Optogenetics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Light Equipment
        • 9.3.3.2.2. By Actuator
        • 9.3.3.2.3. By Sensor
        • 9.3.3.2.4. By Application

10. South America Optogenetics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Light Equipment
    • 10.2.2. By Actuator
    • 10.2.3. By Sensor
    • 10.2.4. By Application
    • 10.2.5. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Optogenetics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Light Equipment
        • 10.3.1.2.2. By Actuator
        • 10.3.1.2.3. By Sensor
        • 10.3.1.2.4. By Application
    • 10.3.2. Argentina Optogenetics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Light Equipment
        • 10.3.2.2.2. By Actuator
        • 10.3.2.2.3. By Sensor
        • 10.3.2.2.4. By Application
    • 10.3.3. Colombia Optogenetics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Light Equipment
        • 10.3.3.2.2. By Actuator
        • 10.3.3.2.3. By Sensor
        • 10.3.3.2.4. By Application

11. Middle East and Africa Optogenetics Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Light Equipment
    • 11.2.2. By Actuator
    • 11.2.3. By Sensor
    • 11.2.4. By Application
    • 11.2.5. By Country
  • 11.3. MEA: Country Analysis
    • 11.3.1. South Africa Optogenetics Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Light Equipment
        • 11.3.1.2.2. By Actuator
        • 11.3.1.2.3. By Sensor
        • 11.3.1.2.4. By Application
    • 11.3.2. Saudi Arabia Optogenetics Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Light Equipment
        • 11.3.2.2.2. By Actuator
        • 11.3.2.2.3. By Sensor
        • 11.3.2.2.4. By Application
    • 11.3.3. UAE Optogenetics Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Light Equipment
        • 11.3.3.2.2. By Actuator
        • 11.3.3.2.3. By Sensor
        • 11.3.3.2.4. By Application

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends & Developments

  • 13.1. Recent Developments
  • 13.2. Product Launches
  • 13.3. Mergers & Acquisitions

14. Global Optogenetics Market: SWOT Analysis

15. Porter's Five Forces Analysis

  • 15.1. Competition in the Industry
  • 15.2. Potential of New Entrants
  • 15.3. Power of Suppliers
  • 15.4. Power of Customers
  • 15.5. Threat of Substitute Product

16. PESTLE Analysis

17. Competitive Landscape

  • 17.1. Business Overview
  • 17.2. Company Snapshot
  • 17.3. Products & Services
  • 17.4. Financials (In case of listed companies)
  • 17.5. Recent Developments
  • 17.6. SWOT Analysis
    • 17.6.1. Hubner Group (Cobolt Inc.)
    • 17.6.2. Coherent Inc.
    • 17.6.3. Gensight Biologics S.A.
    • 17.6.4. Laserglow Technologies
    • 17.6.5. Noldus Information Technology Inc.
    • 17.6.6. Judges' Scientific PLC (Scientifica)
    • 17.6.7. Shanghai Laser & Optics Century Co. Ltd
    • 17.6.8. Bruker Corporation
    • 17.6.9. Thorlabs Inc.

18. Strategic Recommendations

19. About Us & Disclaimer