封面
市場調查報告書
商品編碼
1372719

生物光子市場 - 2018-2028 年全球產業規模、佔有率、趨勢、機會和預測,按技術、地區、競爭預測和機會細分,2018-2028 年

Biophotonics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Technology, By Region, By Competition Forecast & Opportunities, 2018-2028F

出版日期: | 出版商: TechSci Research | 英文 170 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2022年,全球生物光子學市場估值達到541.8億美元,預計在預測期內將呈現顯著成長,預計到2028年年複合成長率(CAGR)為11.38%。生物光子學代表了一個跨學科領域,融合生物學和光子學(即光的研究),以培育適合生物和醫學應用的開創性技術。這些技術利用光和生物組織之間的相互作用來促進廣泛的成像、感測和診斷解決方案。

主要市場促進因素

對非侵入性技術的需求不斷成長

市場概況
預測期 2024-2028
2022 年市場規模 541.8億美元
2028 年市場規模 1033億美元
2023-2028 年年複合成長率 11.38%
成長最快的細分市場 內部影像
最大的市場 北美洲

在醫學科學突飛猛進的時代,尋求侵入性較小、對病人更友善的醫療保健程序從未如此重要。全球生物光子市場處於這種範式轉變的最前沿,利用對非侵入性技術不斷成長的需求。非侵入性手術無需手術切口,減少患者的疼痛和不適。這在診斷影像中尤其重要,因為傳統方法通常需要侵入性探查手術。非侵入性技術通常會縮短恢復期,使患者能夠更快地恢復日常生活。這不僅提高了病患滿意度,也減輕了醫療資源的負擔。透過避免手術切口以及傷口相關感染和併發症的可能性,非侵入性技術為患者和醫療保健提供者提供了更安全的選擇。不涉及外科手術的手術幾乎不會留下疤痕,有助於改善美觀和患者信心。 OCT 是一種非侵入性成像技術,利用光波捕捉生物組織的高解析度影像。它無需侵入性手術即可提供眼睛、血管和皮膚的詳細圖像,徹底改變了眼科、心臟病學和皮膚科。生物光子學促進了基於雷射的成像技術的發展,該技術可以以令人難以置信的精度檢查組織和細胞。這些技術,例如多光子顯微鏡和共焦雷射掃描顯微鏡,有助於非侵入性診斷和研究。生物光子學為光動力療法鋪平了道路,這是一種針對癌症和其他醫療狀況的非侵入性治療選擇。 PDT 涉及活化光敏藥物來靶向並破壞異常細胞,同時保護健康組織。生物光子學使得微創外科手術成為可能,利用雷射以更小的切口進行手術。這種方法減少了患者的創傷,降低了併發症的風險,並加快了復原時間。

成像技術的進步

在不斷發展的醫療保健和生命科學領域,影像技術已成為創新的重要催化劑。在這個領域中,生物光子學將生物學原理與光子學結合,成為進步的燈塔。全球生物光子市場蓬勃發展的關鍵驅動力是成像技術的不斷進步。高解析度成像技術的發展使研究人員能夠以前所未有的細節可視化細胞和亞細胞結構。這對於理解疾病機制和開發精確的治療方法有深遠的影響。現代成像技術超越了靜態圖片。它們可以捕捉生物體內的動態過程,從而深入了解生物系統如何即時運作。這對於研究血流、神經活動和細胞遷移等過程至關重要。多重成像的進步使得單一樣品中的多個生物標記或分子能夠同時可視化。這可以對複雜的生物系統和疾病進行全面評估。非侵入性影像技術的發展減少了對侵入性手術的需求,並提高了病患的舒適度和安全性。非侵入性方法在診斷和監測疾病方面特別有價值。即時成像技術,例如活細胞顯微鏡,改變了我們研究動態生物過程的能力。研究人員現在可以觀察發生的細胞事件,為癌症和神經退化性疾病等疾病提供有價值的見解。 OCT 是一種非侵入性影像技術,在眼科和心臟病學領域取得了顯著成長。它可以對組織層和血管進行高解析度成像,有助於疾病的早期檢測和管理。這種先進的成像技術能夠在細胞層面上實現深層組織的可視化。它在神經科學、癌症研究和再生醫學領域都有應用,促進了突破性的發現。生物光子學擴展了螢光成像的能力,允許追蹤細胞內的特定分子。這對於研究細胞過程和開發標靶療法非常有價值。基於雷射的生物光子學為微創外科手術鋪平了道路。這些技術使用雷射精確瞄準和治療組織,減少了傳統開放性手術的需要。

精準醫療與個人化醫療

在醫學科學快速發展的時代,精準醫療和個人化醫療已成為診斷和治療的變革性方法。這些創新範例為全球醫療保健領域做出了重大貢獻,反過來又推動了全球生物光子市場的成長。精準醫學涉及分析患者的基因組成,以根據其遺傳和分子特徵量身定做醫療治療方案。這些資訊有助於識別與疾病相關的基因突變或生物標記。個人化醫療保健考慮患者的遺傳、環境和生活方式因素來制定個人化治療計劃。這種方法允許醫療保健提供者選擇更可能有效且副作用更少的療法。透過分析遺傳和分子資料,精準醫學可以在早期階段(通常在症狀出現之前)發現疾病。這種早期發現可以帶來更成功的治療。個人化醫療保健可以持續監測患者對治療的反應。可以即時進行調整,最佳化結果並最大限度地減少不利影響。生物光子技術有助於發現和驗證生物標記。這些生物標記對於識別疾病風險、預測治療反應和監測疾病進展至關重要。生物光子學技術,例如螢光成像和多光子顯微鏡,可以對活體有機體內的分子過程進行深入可視化。這有助於研究人員了解疾病機制並評估治療效果。生物光子學在標靶治療的發展中發揮關鍵作用。這些療法旨在精確靶向和治療異常細胞,保護健康組織並減少副作用。生物光子學提供非侵入性診斷工具,例如光學相干斷層掃描 (OCT),無需侵入性手術即可檢測早期疾病。生物光子學提供的即時成像功能可以連續監測治療反應。這使得醫療保健提供者可以根據每位患者的需求調整治療計劃。

研究與開發投資

在快速發展的醫療保健和生命科學領域,全球生物光子市場已成為創新的燈塔,為疾病的診斷、治療和理解提供了一條充滿希望​​的途徑。推動其成長的關鍵因素是對研發(R&D)的大量投資。研發投資是各產業進步的基石,醫療保健和生命科學也不例外。在生物光子學的背景下,這些投資帶來了利用光與生物組織之間相互作用的技術的突破性進步。研發工作推動創新生物光子技術的發展。這些技術對於解決從早期疾病檢測到個人化治療等複雜的醫療保健挑戰至關重要。大量的研發資金推動了先進成像技術的誕生,例如光學相干斷層掃描 (OCT)、螢光成像和多光子顯微鏡。這些技術提供生物組織的高解析度即時成像,這對於診斷和研究至關重要。研發投資對於開發標靶療法至關重要,這些療法利用生物光子技術精確靶向和治療特定細胞或組織,最大限度地減少對健康組織的附帶損害。生物標記對於早期疾病檢測和治療監測至關重要。研發投資支持新生物標記的發現和驗證,這些生物標記通常使用生物光子學方法進行檢測和分析。研發資金促成了晶片實驗室設備的創建,該設備整合了生物光子學,用於快速和攜帶式診斷應用。這些設備在照護端環境和資源有限的環境中具有巨大潛力。

主要市場挑戰

開發成本高

生物光子技術需要在研究、開發和製造方面進行大量投資。開發尖端成像系統、光譜工具和雷射技術的相關成本可能非常高。這對小公司和研究機構構成了進入壁壘,限制了市場參與者的多樣性。

監管障礙

全球生物光子市場在高度監管的環境中運作,特別是在醫療保健應用領域。獲得監管部門的批准,例如美國的 FDA 許可或歐洲的 CE 標誌,可能是一個漫長且昂貴的過程。這可能會延遲新生物光子產品和技術的市場進入。

熟練的勞動力

生物光子學需要擁有生物學和光子學專業知識的高技能勞動力。招募和留住此類人才可能具有挑戰性。此外,來自不同領域的研究人員和專業人士之間需要跨學科合作,這有時會受到溝通障礙的阻礙。

市場競爭

全球生物光子市場的競爭日益激烈,老牌企業和新進者都在爭奪市場佔有率。這種競爭會壓低價格和利潤率,使公司保持創新和獲利能力面臨挑戰。

主要市場趨勢

小型化、攜帶化

小型化是生物光子學市場的流行詞。隨著技術的進步,生物光子設備變得更加緊湊和攜帶。手持成像系統、照護端診斷工具和晶片實驗室設備正在興起。這些進步使生物光子學能夠到達偏遠和資源有限的地區,改變醫療保健的可及性。

人工智慧 (AI) 整合

人工智慧正在徹底改變生物光子學中的資料分析和解釋。機器學習演算法可以快速處理生物光子技術產生的大量資料,有助於影像分析、診斷和治療最佳化。人工智慧驅動的生物光子學有望提高醫療保健的精度和效率。

先進的光譜技術

光譜學是生物光子學的基石,新的先進技術正在不斷湧現。拉曼光譜、高光譜成像和太赫茲光譜越來越受到重視。這些技術為分子結構、生物標記和組織成分提供了寶貴的見解,從而實現更準確的疾病診斷和監測。

神經病學中的生物光子學

生物光子學正在神經科學領域取得重大進展。功能性近紅外光光譜 (fNIRS) 和多光子顯微鏡等技術正在增強我們對大腦功能的理解。它們是研究神經退化性疾病、腦損傷和精神疾病的寶貴工具。

細分市場洞察

技術洞察

在生物光子市場的技術領域,預計在預計的時間內,最大的市場佔有率將屬於內部成像,特別是內視鏡檢查。內視鏡檢查是一種用於目視檢查身體內部區域的醫療程序。此手術使用稱為內視鏡的專用儀器來檢查體內中空器官或空腔的內部。與許多其他醫學影像方法不同,內視鏡直接插入被檢查的器官。

區域洞察

目前,北美在生物光子市場佔據主導地位,預計將在未來幾年保持領先地位。尤其是美國,在生物光子產業中扮演著舉足輕重的角色。此外,奈米技術的出現極大地推動了美國生物光子學市場的發展。

2020 年 11 月,業納光與光學生物光子學集團在北美獲得了多個新的開發合約。第一份合約涉及用於機器人手術器械的先進光纖醫療設備的攝影系統的設計。第二個開發計劃涉及為一家著名的眼科護理公司的眼科手術系統設計各種子組件。對於第三個項目,業納正在與全球主要的醫學實驗室設備供應商合作,提供用於即時細胞分析的先進自動化顯微鏡。第四項努力代表了與一家專門從事即時 (POC) 血清學檢測的醫療診斷公司持久合作關係的延伸。

科技的重大進步提升了光學技術在解決醫學和生命科學相關挑戰中的作用。光學技術在各個領域都有應用,包括患者的臨床治療和分子層面的研究。美國致力於探索生物光子學和其他光學技術進步的會議數量激增。值得注意的是,光學學會組織了 OSA 生物光子學大會,會議討論了光學儀器、生命科學成像、分子探針開發等領域取得的進展。此外,美國國會已從20120財政年度預算中撥款,用於探索生物光子學在基因治療研究、免疫治療研究、阿茲海默症研究和各種其他項目中的機會。這些資金也專門用於促進美國醫療技術製造的擴張。

目錄

第 1 章:產品概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

  • 研究目的
  • 基線方法
  • 主要產業夥伴
  • 主要協會和二手資料來源
  • 預測方法
  • 數據三角測量與驗證
  • 假設和限制

第 3 章:執行摘要

  • 市場概況
  • 主要市場細分概述
  • 主要市場參與者概述
  • 重點地區/國家概況
  • 市場促進因素、挑戰、趨勢概述

第 4 章:客戶之聲

第 5 章:全球生物光子學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術(表面成像、內部成像、透視成像、顯微鏡、生物感測器、醫用雷射、光譜分子、其他)
    • 按地區
    • 按公司分類 (2022)
  • 產品市場地圖
    • 依技術
    • 按地區

第 6 章:北美生物光子學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術(表面成像、內部成像、透視成像、顯微鏡、生物感測器、醫用雷射、光譜分子、其他)
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 加拿大
    • 墨西哥

第 7 章:歐洲生物光子市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術(表面成像、內部成像、透視成像、顯微鏡、生物感測器、醫用雷射、光譜分子、其他)
    • 按國家/地區
  • 歐洲:國家分析
    • 德國
    • 英國
    • 法國
    • 義大利
    • 西班牙

第 8 章:亞太地區生物光子學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術(表面成像、內部成像、透視成像、顯微鏡、生物感測器、醫用雷射、光譜分子、其他)
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 日本
    • 印度
    • 澳洲
    • 韓國

第 9 章:南美洲生物光子學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術(表面成像、內部成像、透視成像、顯微鏡、生物感測器、醫用雷射、光譜分子、其他)
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 10 章:中東和非洲生物光子學市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依技術(表面成像、內部成像、透視成像、顯微鏡、生物感測器、醫用雷射、光譜分子、其他)
    • 按國家/地區
  • MEA:國家分析
    • 南非生物光子學
    • 沙烏地阿拉伯生物光子學
    • 阿拉伯聯合大公國生物光子學
    • 科威特生物光子學

第 11 章:市場動態

  • 促進要素
  • 挑戰

第 12 章:市場趨勢與發展

  • 近期發展
  • 併購
  • 產品發布

第 13 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第14章:競爭格局

  • 商業概覽
  • 產品供應
  • 最近的發展
  • 財務(據報導)
  • 主要人員
  • SWOT分析
    • Thermo Fisher Scientific Inc
    • Nu Skin Enterprises Inc
    • Becton Dickinson & Co
    • Glenbrook Technologies Inc
    • HAMAMATSU PHOTONICS KK
    • Olympus Corp
    • Carl Zeiss AG
    • Oxford Instruments PLC
    • ZENALUX BIOMEDICAL, INC.
    • PerkinElmer Health Sciences Inc

第 15 章:策略建議

第 16 章:關於我們與免責聲明

簡介目錄
Product Code: 16105

In 2022, the Global Biophotonics Market reached a valuation of USD 54.18 billion, and it is expected to exhibit remarkable growth in the forecasted period, with an anticipated Compound Annual Growth Rate (CAGR) of 11.38% through 2028. Biophotonics represents an interdisciplinary domain that amalgamates biology and photonics, which is the study of light, to foster pioneering technologies catering to biological and medical applications. These technologies harness the interplay between light and biological tissues to facilitate a wide spectrum of imaging, sensing, and diagnostic solutions.

Key Market Drivers

Rising Demand for Non-Invasive Techniques

Market Overview
Forecast Period2024-2028
Market Size 2022USD 54.18 Billion
Market Size 2028USD 103.30 Billion
CAGR 2023-202811.38%
Fastest Growing SegmentInside Imaging
Largest MarketNorth America

In an era where medical science is making leaps and bounds, the quest for less invasive, more patient-friendly healthcare procedures has never been more critical. The global biophotonics market is at the forefront of this paradigm shift, capitalizing on the increasing demand for non-invasive techniques. Non-invasive procedures eliminate the need for surgical incisions, reducing pain and discomfort for patients. This is especially crucial in diagnostic imaging, where traditional methods often require invasive exploratory surgeries. Non-invasive techniques typically result in shorter recovery periods, allowing patients to return to their daily lives more swiftly. This not only enhances patient satisfaction but also reduces the burden on healthcare resources. By avoiding surgical incisions and the potential for wound-related infections and complications, non-invasive techniques offer a safer alternative for both patients and healthcare providers. Procedures that do not involve surgical cuts leave little to no scarring, contributing to improved aesthetics and patient confidence. OCT is a non-invasive imaging technique that utilizes light waves to capture high-resolution images of biological tissues. It has revolutionized ophthalmology, cardiology, and dermatology by providing detailed images of the eye, blood vessels, and skin without the need for invasive procedures. Biophotonics has led to the development of laser-based imaging techniques that can examine tissues and cells with incredible precision. These technologies, such as multiphoton microscopy and confocal laser scanning microscopy, are instrumental in non-invasive diagnostics and research. Biophotonics has paved the way for photodynamic therapy, a non-invasive treatment option for cancer and other medical conditions. PDT involves the activation of light-sensitive drugs to target and destroy abnormal cells while sparing healthy tissue. Biophotonics has enabled minimally invasive surgical procedures that utilize lasers to perform surgeries with smaller incisions. This approach reduces the trauma to patients, lowers the risk of complications, and accelerates recovery times.

Advancements in Imaging Technologies

In the ever-evolving landscape of healthcare and life sciences, imaging technologies have emerged as a vital catalyst for innovation. Within this realm, biophotonics, which combines the principles of biology with photonics, stands out as a beacon of progress. A key driving force behind the surging global biophotonics market is the continuous advancement of imaging technologies. The development of high-resolution imaging techniques has allowed researchers to visualize cellular and subcellular structures with unprecedented detail. This has profound implications for understanding disease mechanisms and developing precise treatments. Modern imaging technologies go beyond static pictures. They can capture dynamic processes within living organisms, providing insights into how biological systems function in real time. This is crucial for studying processes like blood flow, neural activity, and cell migration. Advances in multiplex imaging enable the simultaneous visualization of multiple biomarkers or molecules within a single sample. This allows for comprehensive assessments of complex biological systems and diseases. The development of non-invasive imaging techniques has reduced the need for invasive procedures, improving patient comfort and safety. Non-invasive methods are particularly valuable in diagnosing and monitoring diseases. Real-time imaging technologies, such as live-cell microscopy, have transformed our ability to study dynamic biological processes. Researchers can now observe cellular events as they happen, providing valuable insights into diseases like cancer and neurodegenerative disorders. OCT, a non-invasive imaging technique, has seen significant growth in ophthalmology and cardiology. It allows for high-resolution imaging of tissue layers and blood vessels, aiding in the early detection and management of diseases. This advanced imaging technique enables the visualization of deep tissues at the cellular level. It has applications in neuroscience, cancer research, and regenerative medicine, facilitating groundbreaking discoveries. Biophotonics has expanded the capabilities of fluorescence imaging, allowing for the tracking of specific molecules within cells. This is invaluable for studying cellular processes and developing targeted therapies. Laser-based biophotonics has paved the way for minimally invasive surgical procedures. These techniques use lasers to precisely target and treat tissues, reducing the need for traditional open surgeries.

Precision Medicine and Personalized Healthcare

In the age of rapidly advancing medical science, precision medicine and personalized healthcare have emerged as transformative approaches to diagnosis and treatment. These innovative paradigms are making significant contributions to the global healthcare landscape and, in turn, propelling the growth of the global biophotonics market. Precision medicine involves analyzing a patient's genetic makeup to tailor medical treatments specifically to their genetic and molecular characteristics. This information helps identify genetic mutations or biomarkers associated with diseases. Personalized healthcare considers a patient's genetic, environmental, and lifestyle factors to create a personalized treatment plan. This approach allows healthcare providers to choose therapies that are more likely to be effective and have fewer side effects. By analyzing genetic and molecular data, precision medicine can detect diseases at an earlier stage, often before symptoms manifest. This early detection can lead to more successful treatments. Personalized healthcare allows for continuous monitoring of a patient's response to treatment. Adjustments can be made in real time, optimizing outcomes and minimizing adverse effects. Biophotonics technologies are instrumental in discovering and validating biomarkers. These biomarkers are crucial for identifying disease risk, predicting treatment responses, and monitoring disease progression. Biophotonics techniques, such as fluorescence imaging and multiphoton microscopy, allow for in-depth visualization of molecular processes within living organisms. This helps researchers understand disease mechanisms and evaluate treatment efficacy. Biophotonics plays a pivotal role in the development of targeted therapies. These therapies are designed to precisely target and treat abnormal cells, sparing healthy tissue and reducing side effects. Biophotonics offers non-invasive diagnostic tools, such as optical coherence tomography (OCT), which can detect early-stage diseases without invasive procedures. Real-time imaging capabilities provided by biophotonics enable continuous monitoring of treatment responses. This allows healthcare providers to adjust treatment plans as needed for each patient.

Research and Development Investments

In the rapidly evolving landscape of healthcare and life sciences, the global biophotonics market has emerged as a beacon of innovation, offering a promising pathway for the diagnosis, treatment, and understanding of diseases. A pivotal factor fueling its growth is substantial investments in research and development (R&D). R&D investments are a cornerstone of progress in various industries, and healthcare and life sciences are no exception. In the context of biophotonics, these investments have led to groundbreaking advancements in technologies that leverage the interaction between light and biological tissues. R&D efforts drive the development of innovative biophotonics technologies. These technologies are critical for addressing complex healthcare challenges, from early disease detection to personalized treatment. Substantial R&D funding has enabled the creation of advanced imaging technologies, such as optical coherence tomography (OCT), fluorescence imaging, and multiphoton microscopy. These techniques provide high-resolution, real-time imaging of biological tissues, essential for diagnosis and research. R&D investments are crucial for the development of targeted therapies that utilize biophotonics techniques to precisely target and treat specific cells or tissues, minimizing collateral damage to healthy tissue. Biomarkers are vital for early disease detection and treatment monitoring. R&D investments support the discovery and validation of new biomarkers, which are often detected and analyzed using biophotonics methods. R&D funding has led to the creation of lab-on-a-chip devices that integrate biophotonics for rapid and portable diagnostic applications. These devices have significant potential in point-of-care settings and resource-constrained environments.

Key Market Challenges

High Development Costs

Biophotonics technologies require substantial investments in research, development, and manufacturing. The costs associated with developing cutting-edge imaging systems, spectroscopy tools, and laser technologies can be prohibitively high. This poses a barrier to entry for smaller companies and research institutions, limiting the diversity of market participants.

Regulatory Hurdles

The global biophotonics market operates in a highly regulated environment, especially in healthcare applications. Obtaining regulatory approvals, such as FDA clearance in the United States or CE marking in Europe, can be a lengthy and costly process. This can delay the market entry of new biophotonics products and technologies.

Skilled Workforce

Biophotonics requires a highly skilled workforce with expertise in both biology and photonics. Recruiting and retaining such talent can be challenging. Moreover, there is a need for interdisciplinary collaboration between researchers and professionals from different domains, which can sometimes be hindered by communication barriers.

Market Competition

The global biophotonics market is becoming increasingly competitive, with established players and new entrants vying for market share. This competition can drive down prices and profit margins, making it challenging for companies to sustain innovation and profitability.

Key Market Trends

Miniaturization and Portability

Miniaturization is a buzzword in the biophotonics market. As technology shrinks, biophotonics devices are becoming more compact and portable. Handheld imaging systems, point-of-care diagnostic tools, and lab-on-a-chip devices are on the rise. These advancements enable biophotonics to reach remote and resource-constrained areas, transforming healthcare accessibility.

Artificial Intelligence (AI) Integration

AI is revolutionizing data analysis and interpretation in biophotonics. Machine learning algorithms can rapidly process the vast amounts of data generated by biophotonics technologies, aiding in image analysis, diagnostics, and treatment optimization. AI-driven biophotonics promises to enhance precision and efficiency in healthcare.

Advanced Spectroscopy Techniques

Spectroscopy is a cornerstone of biophotonics, and new advanced techniques are emerging. Raman spectroscopy, hyperspectral imaging, and terahertz spectroscopy are gaining prominence. These techniques provide valuable insights into molecular structures, biomarkers, and tissue composition, enabling more accurate disease diagnosis and monitoring.

Biophotonics in Neurology

Biophotonics is making significant inroads into neuroscience. Technologies like functional near-infrared spectroscopy (fNIRS) and multiphoton microscopy are enhancing our understanding of brain function. They are valuable tools for studying neurodegenerative diseases, brain injuries, and psychiatric disorders.

Segmental Insights

Technology Insights

In the technology sector of the biophotonics market, it is anticipated that within the projected timeframe, the largest market share will belong to inside imaging, specifically endoscopy. Endoscopy is a medical procedure employed to visually inspect the internal regions of the body. This procedure utilizes a specialized instrument called an endoscope to examine the interior of hollow organs or cavities within the body. Unlike many other medical imaging methods, endoscopes are inserted directly into the organ being examined.

The integration of detection, characterization, diagnosis, and staging during endoscopic procedures remains an unmet medical requirement. The advent of biophotonics in the realm of endoscopy has unlocked fresh possibilities and presented significant and novel prospects for the improved identification and biochemical characterization of diseases. The most suitable and valuable approach for categorizing biophotonic endoscopic techniques is based on their capacity to furnish functional and biochemical data and enhance spatial resolution. Among the commonly utilized visualization technologies are second harmonic generation (SHG), frequency-domain angle-resolved low coherence interferometry (fa/LCI), and near-infrared (near-IR) technologies.

One of the most valuable applications of biophotonics in the field of medicine is photodynamic therapy. This therapeutic approach is employed for treating cancer, and it can also be utilized for conditions such as acne and psoriasis. Such applications of these technologies are driving the demand within the biophotonics market.

Regional Insights

Currently, North America holds a dominant position in the biophotonics market and is anticipated to maintain its leadership for several more years. The United States, in particular, plays a pivotal role in the biophotonics industry. Moreover, the emergence of nanotechnology has significantly propelled the biophotonics market within the United States.

In November 2020, Jenoptik Light and Optics Biophotonics Group secured multiple new development contracts in North America. The first contract pertains to the design of a camera system for an advanced fiber-optic medical device intended for use in a robotic surgical instrument. The second development initiative involves designing various subcomponents for an ophthalmology surgery system for a prominent eye care company. For the third project, Jenoptik is collaborating with a major global provider of medical laboratory equipment to deliver an advanced automated microscope for real-time cellular analysis. The fourth endeavor represents an extension of an enduring partnership with a medical diagnostics firm that specializes in point-of-care (POC) serology tests.

The significant strides in technology have elevated the role of optical techniques in addressing medical and life science-related challenges. Optical technology finds applications in various fields, encompassing the clinical treatment of patients and investigations conducted at the molecular level. The United States has seen a surge in the number of conferences dedicated to exploring advancements in biophotonics and other optical techniques. Notably, the Optical Society organized the OSA Biophotonics Congress, where discussions revolved around progress made in areas such as optical instrumentation, life science imaging, molecular probe development, and more. Additionally, the United States Congress has allocated funds from the FY20120 budget to explore opportunities for biophotonics in gene therapy research, immunotherapy research, Alzheimer's research, and various other projects. These funds are also earmarked to promote the expansion of medical technology manufacturing within the United States.

Key Market Players

  • Thermo Fisher Scientific Inc
  • Nu Skin Enterprises Inc
  • Becton Dickinson & Co
  • Glenbrook Technologies Inc
  • HAMAMATSU PHOTONICS K.K.
  • Olympus Corp
  • Carl Zeiss AG
  • Oxford Instruments PLC
  • ZENALUX BIOMEDICAL, INC.
  • PerkinElmer Health Sciences Inc

Report Scope:

In this report, the Global Biophotonics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Biophotonics Market, By Technology:

  • Surface Imaging
  • Inside Imaging
  • See-through Imaging
  • Microscopy
  • Biosensors
  • Medical Lasers
  • Spectromolecular
  • Others

Biophotonics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • Germany
  • United Kingdom
  • France
  • Italy
  • Spain
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Biophotonics Market.

Available Customizations:

  • Global Biophotonics market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Biophotonics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 5.2.2. By Region
    • 5.2.3. By Company (2022)
  • 5.3. Product Market Map
    • 5.3.1. By Technology
    • 5.3.2. By Region

6. North America Biophotonics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 6.2.2. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Biophotonics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology
    • 6.3.2. Canada Biophotonics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology
    • 6.3.3. Mexico Biophotonics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology

7. Europe Biophotonics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 7.2.2. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Biophotonics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology
    • 7.3.2. United Kingdom Biophotonics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology
    • 7.3.3. France Biophotonics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology
    • 7.3.4. Italy Biophotonics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology
    • 7.3.5. Spain Biophotonics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology

8. Asia-Pacific Biophotonics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 8.2.2. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Biophotonics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
    • 8.3.2. Japan Biophotonics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
    • 8.3.3. India Biophotonics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
    • 8.3.4. Australia Biophotonics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Technology
    • 8.3.5. South Korea Biophotonics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Technology

9. South America Biophotonics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 9.2.2. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Biophotonics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
    • 9.3.2. Argentina Biophotonics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
    • 9.3.3. Colombia Biophotonics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology

10. Middle East and Africa Biophotonics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 10.2.2. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Biophotonics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
    • 10.3.2. Saudi Arabia Biophotonics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
    • 10.3.3. UAE Biophotonics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
    • 10.3.4. Kuwait Biophotonics Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Technology

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Development
  • 12.2. Mergers & Acquisitions
  • 12.3. Product Launches

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Business Overview
  • 14.2. Product Offerings
  • 14.3. Recent Developments
  • 14.4. Financials (As Reported)
  • 14.5. Key Personnel
  • 14.6. SWOT Analysis
    • 14.6.1. Thermo Fisher Scientific Inc
    • 14.6.2. Nu Skin Enterprises Inc
    • 14.6.3. Becton Dickinson & Co
    • 14.6.4. Glenbrook Technologies Inc
    • 14.6.5. HAMAMATSU PHOTONICS K.K.
    • 14.6.6. Olympus Corp
    • 14.6.7. Carl Zeiss AG
    • 14.6.8. Oxford Instruments PLC
    • 14.6.9. ZENALUX BIOMEDICAL, INC.
    • 14.6.10. PerkinElmer Health Sciences Inc

15. Strategic Recommendations

16. About Us & Disclaimer