封面
市場調查報告書
商品編碼
1370902

癌症疫苗市場 - 2018-2028 年全球產業規模、佔有率、趨勢、機會和預測,按適應症類型、疫苗類型、技術類型、地區、競爭細分

Cancer Vaccine Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented by Indication Type, By Vaccine Type, By Technology Type, By Region, Competition

出版日期: | 出版商: TechSci Research | 英文 170 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2022年全球癌症疫苗市場估值為75.5億美元,預計在預測期內將實現強勁成長,預計到2028年年複合成長率(CAGR)為8.87%,預計到2028年將達到124.6億美元。癌症疫苗是一種免疫療法,旨在激活免疫系統對癌細胞的識別和攻擊。與預防傳染病的傳統疫苗不同,癌症疫苗旨在透過利用人體自身的免疫反應來治療或預防癌症。癌症疫苗的基本概念涉及向免疫系統提供癌細胞表面存在的特定分子或抗原。這些抗原通常是癌細胞獨有的,或與正常細胞相比,它們的含量更豐富。透過將這些抗原引入免疫系統,目的是刺激免疫細胞識別和消除癌細胞,同時保留健康細胞。

主要市場促進因素

市場概況
預測期 2024-2028
2022 年市場規模 75.5億美元
2028 年市場規模 124.6億美元
2023-2028 年年複合成長率 8.87%
成長最快的細分市場 子宮頸癌
最大的市場 北美洲

對免疫檢查點抑制劑的需求不斷成長

免疫檢查點抑制劑是一類癌症免疫治療藥物,改變了各種癌症類型的治療模式。這些藥物透過針對免疫細胞和癌細胞上的特定分子來發揮作用,以增強免疫系統檢測和攻擊癌細胞的能力。免疫檢查點抑制劑的發現和進步標誌著腫瘤學的實質進展。免疫檢查點是在免疫細胞和癌細胞表面發現的調節免疫反應的分子。它們在防止過度免疫活動和維持自我耐受性以防止自體免疫反應方面發揮著至關重要的作用。癌細胞可以利用這些免疫檢查點來逃避免疫檢測。透過與免疫檢查點分子相互作用,癌細胞基本上可以使免疫反應失活,否則免疫反應會針對並消除它們。免疫檢查點抑制劑旨在阻礙免疫檢查點分子與其相應受體之間的相互作用。這「釋放」了免疫系統,使其能夠對癌細胞發動更強力和更有效的攻擊。免疫檢查點抑制劑在治療多種癌症方面取得了顯著的成功,如黑色素瘤、肺癌、腎臟癌和膀胱癌。一些先前對常規治療無反應的患者使用檢查點抑制劑取得了持久的反應。雖然這些抑制劑非常有效,但由於免疫活性增強,它們也可能誘發免疫相關的不良事件。這些事件可能涉及皮膚、肺、腸道和內分泌腺等器官的發炎。確定哪些患者會對免疫檢查點抑制劑產生反應仍然是一項挑戰。腫瘤細胞上的 PD-L1 表達等生物標記可以提供一些指導,但研究仍在尋找更準確的反應預測因子。免疫檢查點抑制劑經常與其他癌症療法結合使用,例如化療、放療、標靶治療和其他免疫療法。這種組合旨在透過解決癌症生長和免疫抑制的各個方面來提高治療效果。這一趨勢將加速全球癌症疫苗市場的需求。

對預防疫苗的需求不斷增加

癌症預防疫苗是一種旨在透過針對可能導致這些癌症發生的病毒或其他因素來預防特定癌症的免疫接種。這些疫苗的作用是刺激免疫系統識別與癌症形成相關的特定感染因子或抗原並對其做出反應。例如,人類乳突病毒 (HPV) 疫苗針對的是與癌症發展密切相關的某些病毒株,包括子宮頸癌、肛門癌、口腔癌和生殖器癌。在接觸 HPV 之前接種 HPV 疫苗可以大大降低 HPV 相關癌症的風險。慢性B型肝炎病毒(HBV)感染是肝癌的重要危險因子。乙型肝炎疫苗有助於預防B型肝炎病毒感染,進而減少因慢性感染而罹患肝癌的機會。正在進行的研究旨在開發預防其他類型癌症的疫苗。例如,正在探索針對 Epstein-Barr 病毒 (EBV) 的疫苗作為特定淋巴瘤和與 EBV 相關的其他癌症的潛在預防措施。這一趨勢將加快全球癌症疫苗市場的需求。

癌症疫苗技術的進步

癌症疫苗技術的進步極大地影響了癌症疫苗的開發、設計和功效。新抗原是由於突變而出現在癌細胞表面的獨特蛋白質,代表著一項突破。先進的基因組和計算技術能夠識別新抗原,促進這些獨特標記物的個人化癌症疫苗的設計。以 COVID-19 疫苗為代表的 mRNA 疫苗技術的發展也影響了癌症疫苗的研究。 mRNA 疫苗可以被設計為編碼特定的腫瘤抗原,使免疫系統能夠識別和靶向癌細胞。這種方法為疫苗生產提供了一個快速且適應性強的平台。可以操縱腺病毒等病毒載體攜帶編碼腫瘤抗原的遺傳物質,從而促進針對錶達該抗原的癌細胞的免疫反應。肽疫苗由與特定腫瘤抗原相對應的短氨基酸序列組成。勝肽合成和遞送技術的進步增強了這些疫苗的有效性。樹突狀細胞在啟動免疫反應中發揮關鍵作用。樹突狀細胞疫苗涉及分離患者的樹突狀細胞,給它們裝載腫瘤抗原,然後將它們重新引入患者體內。這使得免疫系統能夠瞄準癌細胞。奈米顆粒可以作為疫苗成分的遞送機制,增強穩定性、標靶性和免疫細胞攝取。奈米技術還具有增強免疫系統抗原呈現的潛力。一些癌症疫苗旨在重塑腫瘤微環境,使其更有利於有效的免疫反應。這可能需要標靶免疫抑制元件或刺激免疫細胞募集到腫瘤部位。佐劑是一種添加到疫苗中以增強免疫反應的物質,它已經發展成為更有效的配方,可以引發更強、更持久的免疫反應。這一趨勢將有助於全球癌症疫苗市場的發展。

主要市場挑戰

癌症免疫學的複雜性

癌症免疫學涉及癌細胞與免疫系統之間的複雜相互作用。為了治療目的而掌握和操縱這種相互作用提出了巨大的挑戰。癌症具有極大的異質性,這意味著它們由具有不同遺傳和抗原特徵的不同細胞群組成。確定疫苗所針對的正確抗原變得複雜,因為通用方法可能並不有效。癌細胞可以製定策略來逃避免疫檢測和攻擊。它們可以下調抗原、表達抑制分子或創建免疫抑制微環境。設計超越這些策略的疫苗是複雜的。選擇最合適的標靶抗原具有挑戰性,因為並非所有腫瘤抗原都同樣擅長誘導強大的免疫反應。免疫耐受機制旨在防止對健康細胞的攻擊。在不引發自體免疫反應的情況下克服這些機制是疫苗設計中的微妙平衡行為。確保疫苗本身俱有免疫原性並能夠刺激有效的免疫反應至關重要。有些腫瘤可能會對免疫系統產生抑製作用,因此很難激發免疫系統的反應。識別一致的生物標記來預測對癌症疫苗的良好反應仍然是一個挑戰。有反應者和無反應者可能表現出不同的免疫特徵,使可靠的反應預測因子的識別變得複雜。免疫檢查點抑制劑通常與其他癌症療法結合使用,包括化療、放療、標靶治療和其他免疫療法。這些組合旨在透過解決癌症生長和免疫抑制的各個方面來提高治療效果。這將加快全球癌症疫苗市場的需求。

確定適當的目標

癌症疫苗的功效取決於選擇正確的抗原來誘導針對腫瘤的有效免疫反應,同時最大限度地減少脫靶效應。腫瘤特異性抗原是癌細胞獨有的,正常細胞中不存在。鑑於患者和腫瘤類型之間存在很大差異,識別這些抗原可能具有挑戰性。某些腫瘤抗原在癌細胞和正常細胞之間共享,儘管水平不同。免疫系統可能不會將這些抗原視為外來抗原,導致免疫反應微弱。腫瘤表現出遺傳多樣性,導致一系列可能適合靶向的抗原。選擇在多種癌細胞中普遍存在的最合適的抗原是一個挑戰。腫瘤通常由具有不同抗原譜的不同細胞群組成。識別這些人群中普遍存在的抗原非常複雜。由於腫瘤的進化,一些腫瘤抗原可能會隨著時間的推移而發生變化,因此需要持續監測和調整疫苗標靶。選擇能夠引發針對癌細胞的強大免疫反應而不誘導針對正常組織的自身免疫反應的抗原至關重要。

主要市場趨勢

合作與夥伴關係

癌症研究、疫苗開發和臨床試驗的複雜性經常需要多個利益相關者之間的合作,以加快進展、交流專業知識和匯集資源。設計有效的癌症疫苗需要跨越不同領域的專業知識,包括免疫學、腫瘤學、病毒學、遺傳學等。合作促進了來自不同學科的專家的匯聚,以應對複雜的挑戰。合作允許資源共享,包括研究設施、實驗室、設備和試劑。這可以削減成本並加速研發工作。合作夥伴關係提供了個體實體可能缺乏的尖端技術和平台的機會。這可以簡化疫苗開發並增強研究能力。對癌症生物學和免疫學的深刻理解需要獲得大量資料。合作可以實現資料共享、分析和整合,從而促進對疫苗目標和機制的更深入了解。進行癌症疫苗的臨床試驗通常需要多個機構和醫院之間的合作。合作夥伴關係可以簡化患者招募、試驗後勤和資料收集。合作可以吸引來自不同來源的資金,包括政府機構、私人投資者、慈善實體和創投公司。這種財政支持可以推動研究和發展計劃。與製藥公司的合作可以利用現有的分銷網路、銷售團隊和行銷資源,加速將癌症疫苗推向市場。

細分市場洞察

疫苗類型見解

2022年,預防性疫苗領域在癌症疫苗市場佔據主導地位,佔整體收入佔有率的53.88%。預計這一趨勢在未來幾年將繼續擴大。預防性疫苗對於降低病毒感染引起的惡性腫瘤風險至關重要。例如,針對人類乳突病毒 (HPV) 和乙型肝炎病毒的疫苗與病毒相關癌症(如子宮頸癌和肝癌)的減少有關。這種影響的一個例子是 1 月報告的 20 至 24 歲女性子宮頸癌病例下降了 65%。

指示類型見解

2022年,子宮頸癌疫苗在癌症疫苗市場中佔約29.79%的重要佔有率。預計這種主導地位將在未來幾年持續存在。該細分市場的成長歸因於子宮頸癌發生率的不斷上升。根據世界衛生組織 (WHO) 的數據,子宮頸癌是女性第四大常見癌症,2020 年診斷出約 604,907 例。此外,人們對預防和根除子宮頸癌的認知不斷提高,進一步有助於市場擴張。

技術類型見解

2022年,重組疫苗在癌症疫苗市場中佔約56.48%的佔有率。該細分市場預計將繼續其成長軌跡。主要產業參與者已經利用重組技術開發了疫苗。此外,病毒載體和 DNA 癌症疫苗領域預計在預測期內年複合成長率最快。這種成長可歸因於病毒載體在疫苗開發中的廣泛採用。

區域洞察

北美地區在全球癌症疫苗市場中確立了領先地位,2022年約佔35.29%的佔有率。這一市場主導地位歸因於該地區癌症負擔的增加、醫療基礎設施的擴大以及研發活動的蓬勃發展。根據美國疾病管制與預防中心 (CDC) 的數據,2020 年美國新增癌症病例 1,603,844 例,導致約 602,347 例癌症相關死亡。

目錄

第 1 章:產品概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

  • 研究目的
  • 基線方法
  • 主要產業夥伴
  • 主要協會和二手資料來源
  • 預測方法
  • 數據三角測量與驗證
  • 假設和限制

第 3 章:執行摘要

  • 市場概況
  • 主要市場細分概述
  • 主要市場參與者概述
  • 重點地區/國家概況
  • 市場促進因素、挑戰、趨勢概述

第 4 章:客戶之聲

第 5 章:臨床試驗分析

  • 正在進行的臨床試驗
  • 已完成的臨床試驗
  • 終止的臨床試驗
  • 按開發階段分類的管道細目
  • 管道細分(按狀態)
  • 按研究類型分類的管道細目
  • 按地區分類的管道明細
  • 臨床試驗熱圖

第 6 章:全球癌症疫苗市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 依適應症類型(前列腺癌、黑色素瘤、膀胱癌、子宮頸癌)
    • 依疫苗類型(預防性癌症疫苗、治療性癌症疫苗)
    • 依技術類型(重組癌症疫苗、全細胞癌症疫苗、病毒載體和 DNA 癌症疫苗)
    • 按公司分類 (2022)
    • 按地區
  • 市場地圖

第 7 章:北美癌症疫苗市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按指示類型
    • 按疫苗類型
    • 依技術類型
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 8 章:歐洲癌症疫苗市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按指示類型
    • 按疫苗類型
    • 依技術類型
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 英國
    • 義大利
    • 西班牙

第 9 章:亞太地區癌症疫苗市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按指示類型
    • 按疫苗類型
    • 依技術類型
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 韓國
    • 日本
    • 澳洲

第 10 章:南美洲癌症疫苗市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按指示類型
    • 按疫苗類型
    • 依技術類型
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 11 章:中東和非洲癌症疫苗市場展望

  • 市場規模及預測
    • 按價值
  • 市佔率及預測
    • 按指示類型
    • 按疫苗類型
    • 依技術類型
    • 按國家/地區
  • MEA:國家分析
    • 南非癌症疫苗
    • 沙烏地阿拉伯癌症疫苗
    • 阿拉伯聯合大公國癌症疫苗

第 12 章:市場動態

  • 促進要素
  • 挑戰

第 13 章:市場趨勢與發展

  • 最近的發展
  • 產品發布
  • 併購

第 14 章:大環境分析

第 15 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第16章:競爭格局

  • 商業概覽
  • 公司概況
  • 產品與服務
  • 財務(上市公司)
  • 最近的發展
  • SWOT分析
    • Merck & Co., Inc.
    • GSK plc
    • Dendreon Pharmaceuticals LLC.
    • Dynavax Technologies.
    • Ferring BV
    • Amgen, Inc.
    • Moderna, Inc.
    • Sanofi SA
    • AstraZeneca Pharmaceuticals LP
    • Bristol-Myers Squibb Company

第 17 章:策略建議

簡介目錄
Product Code: 15887

The Global Cancer Vaccines Market was valued at USD 7.55 Billion in 2022 and is expected to experience robust growth during the forecast period, projecting a Compound Annual Growth Rate (CAGR) of 8.87% through 2028 and expected to reach USD 12.46 Billion in 2028. A cancer vaccine is a form of immunotherapy designed to activate the immune system's recognition and attack against cancer cells. Unlike conventional vaccines that prevent infectious diseases, cancer vaccines are aimed at treating or preventing cancer by leveraging the body's own immune response. The underlying concept of cancer vaccines involves presenting the immune system with specific molecules or antigens present on the surface of cancer cells. These antigens are often unique to cancer cells or are more abundant on them compared to normal cells. By introducing these antigens to the immune system, the objective is to stimulate immune cells to identify and eliminate cancer cells while preserving healthy cells.

The success of immunotherapies, including immune checkpoint inhibitors and CAR-T cell therapies, has generated interest and confidence in the potential of cancer vaccines. These breakthroughs have emphasized the immune system's role in targeting cancer cells, driving increased research and investment in cancer vaccine development. Progress in genomics, proteomics, and bioinformatics has provided a deeper understanding of tumor biology and facilitated the identification of potential vaccine targets. These technological advances have expedited the discovery and creation of cancer vaccines. The notion of combining different treatment modalities, such as vaccines with immune checkpoint inhibitors or chemotherapy, is gaining traction. Combining therapies has the potential to enhance treatment effectiveness and overcome resistance mechanisms. Various global health organizations and initiatives have underscored the significance of cancer prevention and treatment. These initiatives contribute to heightened awareness and funding for cancer vaccine research and development.

Key Market Drivers

Market Overview
Forecast Period2024-2028
Market Size 2022USD 7.55 Billion
Market Size 2028USD 12.46 Billion
CAGR 2023-20288.87%
Fastest Growing SegmentCervical Cancer
Largest MarketNorth America

Growing Demand for Immune Checkpoint Inhibitors

Immune checkpoint inhibitors, a category of cancer immunotherapy drugs, have transformed the treatment landscape for various cancer types. These drugs work by targeting specific molecules on immune and cancer cells to enhance the immune system's ability to detect and attack cancer cells. The discovery and advancement of immune checkpoint inhibitors mark a substantial progress in oncology. Immune checkpoints are molecules found on the surface of immune and cancer cells that regulate the immune response. They play a crucial role in preventing excessive immune activity and maintaining self-tolerance to prevent autoimmune reactions. Cancer cells can exploit these immune checkpoints to evade immune detection. By interacting with immune checkpoint molecules, cancer cells can essentially deactivate immune responses that would otherwise target and eliminate them. Immune checkpoint inhibitors are designed to hinder interactions between immune checkpoint molecules and their corresponding receptors. This "unleashes" the immune system, enabling it to mount a more potent and effective assault against cancer cells. Immune checkpoint inhibitors have demonstrated remarkable success in treating various cancers, such as melanoma, lung cancer, kidney cancer, and bladder cancer. Some patients previously unresponsive to conventional treatments have achieved enduring responses with checkpoint inhibitors. While these inhibitors can be highly efficacious, they may also induce immune-related adverse events due to heightened immune activity. These events can involve inflammation of organs like the skin, lungs, intestines, and endocrine glands. Identifying which patients will respond to immune checkpoint inhibitors remains a challenge. Biomarkers like PD-L1 expression on tumor cells can offer some guidance, but research persists in identifying more accurate response predictors. Immune checkpoint inhibitors are frequently used in conjunction with other cancer therapies, such as chemotherapy, radiation, targeted therapies, and other immunotherapies. Such combinations aim to enhance treatment outcomes by addressing diverse aspects of cancer growth and immune suppression. This trend will accelerate the demand for the Global Cancer Vaccines Market.

Increasing Demand for Preventive Vaccines

Cancer preventive vaccines are immunizations intended to safeguard against specific cancers by targeting the viruses or other factors that can lead to the development of those cancers. These vaccines function by stimulating the immune system to identify and react to particular infectious agents or antigens linked with cancer formation. Human Papillomavirus (HPV) Vaccine, for instance, targets certain virus strains strongly associated with cancer development, including cervical, anal, oral, and genital cancers. Administering the HPV vaccine to individuals before HPV exposure substantially reduces the risk of developing HPV-related cancers. Chronic infection with the hepatitis B virus (HBV) is a significant risk factor for liver cancer. The hepatitis B vaccine helps prevent HBV infection, thereby reducing the chances of developing liver cancer due to chronic infection. Ongoing research aims to develop vaccines that prevent other types of cancers. For instance, vaccines targeting the Epstein-Barr virus (EBV) are being explored as potential preventatives for specific lymphomas and other cancers linked to EBV. This trend will expedite the demand for the Global Cancer Vaccines Market.

Advancements in Cancer Vaccine Technology

Progress in cancer vaccine technology has significantly influenced the development, design, and efficacy of cancer vaccines. Neoantigens, which are unique proteins on the surface of cancer cells due to mutations, represent a breakthrough. Advanced genomic and computational technologies enable the identification of neoantigens, facilitating the design of personalized cancer vaccines targeting these distinct markers. The development of mRNA vaccine technology, as showcased by COVID-19 vaccines, has also impacted cancer vaccine research. mRNA vaccines can be engineered to encode specific tumor antigens, empowering the immune system to recognize and target cancer cells. This approach provides a swift and adaptable platform for vaccine creation. Viral vectors like adenoviruses can be manipulated to carry genetic material coding for tumor antigens, prompting an immune response against cancer cells expressing the antigen. Peptide vaccines consist of short amino acid sequences corresponding to specific tumor antigens. Advances in peptide synthesis and delivery techniques have enhanced the effectiveness of these vaccines. Dendritic cells play a pivotal role in initiating immune responses. Dendritic cell vaccines involve isolating a patient's dendritic cells, loading them with tumor antigens, and then reintroducing them to the patient. This primes the immune system to target cancer cells. Nanoparticles can serve as delivery mechanisms for vaccine components, enhancing stability, targeting, and immune cell uptake. Nanotechnology also offers the potential to enhance antigen presentation to the immune system. Some cancer vaccines are designed to reshape the tumor microenvironment to make it more conducive to an efficient immune response. This can entail targeting immunosuppressive elements or stimulating immune cell recruitment to the tumor site. Adjuvants, substances added to vaccines to boost immune responses, have evolved to create more effective formulations that trigger stronger and longer-lasting immune reactions. This trend will contribute to the development of the Global Cancer Vaccines Market.

Key Market Challenges

Complexity of Cancer Immunology

Cancer immunology entails the intricate interplay between cancer cells and the immune system. Grasping and manipulating this interaction for therapeutic purposes presents a substantial challenge. Cancers are profoundly heterogeneous, meaning they comprise diverse cell populations with distinct genetic and antigenic characteristics. Identifying the right antigens to target with a vaccine becomes intricate, as a universal approach may not be efficacious. Cancer cells can develop strategies to elude immune detection and attack. They can downregulate antigens, express inhibitory molecules, or create an immune-suppressing microenvironment. Designing vaccines that surmount these strategies is intricate. Selecting the most suitable antigens for targeting is challenging, as not all tumor antigens are equally adept at inducing a robust immune response. Immune tolerance mechanisms are designed to prevent attacks on healthy cells. Overcoming these mechanisms without triggering autoimmune reactions is a delicate balancing act in vaccine design. Ensuring that the vaccine itself is immunogenic and can stimulate a potent immune response is pivotal. Some tumors might exert a suppressive impact on the immune system, making it challenging to provoke a response. Identifying consistent biomarkers that predict favorable responses to a cancer vaccine remains a challenge. Responders and non-responders may exhibit distinct immune profiles, complicating the identification of reliable predictors of response. Immune checkpoint inhibitors are often combined with other cancer therapies, including chemotherapy, radiation, targeted therapies, and additional immunotherapies. These combinations aim to enhance treatment outcomes by addressing various aspects of cancer growth and immune suppression. This will expedite the demand for the Global Cancer Vaccines Market.

Identification of Appropriate Targets

The efficacy of a cancer vaccine hinges on selecting the right antigens to induce an effective immune response against the tumor while minimizing off-target effects. Tumor-specific antigens are exclusive to cancer cells and absent in normal cells. Identifying these antigens can be challenging, given the considerable variation among patients and tumor types. Certain tumor antigens are shared between cancer cells and normal cells, albeit at different levels. The immune system might not perceive these antigens as foreign, resulting in a feeble immune response. Tumors exhibit genetic diversity, leading to an array of antigens potentially eligible for targeting. Selecting the most suitable antigens prevalent across multiple cancer cells presents a challenge. Tumors often consist of diverse cell populations featuring varying antigen profiles. Identifying antigens universally present in these populations is complex. Some tumor antigens may change over time due to tumor evolution, necessitating ongoing monitoring and adjustment of vaccine targets. Selecting antigens that trigger a robust immune response against cancer cells without inducing autoimmune reactions against normal tissues is pivotal.

Key Market Trends

Collaborations and Partnerships

The intricate nature of cancer research, vaccine development, and clinical trials frequently calls for collaboration among multiple stakeholders to expedite progress, exchange expertise, and pool resources. Devising effective cancer vaccines demands expertise spanning diverse fields, including immunology, oncology, virology, genetics, and more. Collaborations facilitate the convergence of experts from various disciplines to tackle intricate challenges. Collaborations permit resource sharing, encompassing research facilities, laboratories, equipment, and reagents. This can curtail costs and accelerate research and development endeavors. Partnerships provide access to cutting-edge technologies and platforms that individual entities may lack. This can streamline vaccine development and enhance research capabilities. Profound comprehension of cancer biology and immunology requires access to substantial data. Collaborations enable data sharing, analysis, and integration, fostering deeper insights into vaccine targets and mechanisms. Executing clinical trials for cancer vaccines often necessitates cooperation among multiple institutions and hospitals. Partnerships can simplify patient recruitment, trial logistics, and data collection. Collaborations can attract funding from diverse sources, including governmental bodies, private investors, philanthropic entities, and venture capital firms. This financial support can drive research and development initiatives. Partnerships with pharmaceutical corporations can expedite the introduction of cancer vaccines to market, capitalizing on established distribution networks, sales teams, and marketing resources.

Segmental Insights

Vaccine Type Insights

In 2022, the preventive vaccine segment dominated the Cancer Vaccines market, accounting for an overall revenue share of 53.88%. This trend is anticipated to continue expanding in the upcoming years. Preventive vaccines are pivotal in reducing the risk of malignancies caused by viral infections. Vaccines targeting Human Papillomavirus (HPV) and Hepatitis B virus, for instance, have been linked to diminished instances of virus-associated cancers like cervical and liver cancer. An instance of this impact is the 65% decline in cervical cancer cases among women aged 20 to 24 reported in January.

Indication Type Insights

In 2022, the cervical cancer segment held a significant share of around 29.79% in the Cancer Vaccines market. This dominance is expected to persist over the upcoming years. The growth of this segment is attributed to the escalating incidence of cervical cancer. According to the World Health Organization (WHO), cervical cancer ranks as the 4th most common cancer among women, with approximately 604,907 cases diagnosed in 2020. Moreover, increasing awareness of cervical cancer prevention and eradication further contributes to market expansion.

Technology Type Insights

In 2022, the recombinant vaccine segment commanded a share of about 56.48% in the Cancer Vaccines market. This segment is projected to continue its growth trajectory. Major industry players have developed vaccines using recombinant technology. Additionally, the viral vector and DNA cancer vaccines segment is expected to register the fastest CAGR over the forecast period. This growth can be attributed to the widespread adoption of viral vectors in vaccine development.

Regional Insights

The North America region has established its leadership in the Global Cancer Vaccines Market, accounting for a share of approximately 35.29% in 2022. This market dominance is attributed to the increasing cancer burden, expanding healthcare infrastructure, and burgeoning research and development activities in the region. According to the Centers for Disease Control and Prevention (CDC), the United States witnessed 1,603,844 new cancer cases in 2020, resulting in around 602,347 cancer-related deaths.

Key Market Players

  • Merck & Co., Inc.
  • GSK plc
  • Dendreon Pharmaceuticals LLC.
  • Dynavax Technologies.
  • Ferring B.V.
  • Amgen, Inc.
  • Moderna, Inc.
  • Sanofi SA
  • AstraZeneca Pharmaceuticals LP
  • Bristol-Myers Squibb Company

Report Scope:

In this report, the Global Cancer Vaccine Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Cancer Vaccine Market, By Indication Type:

  • Prostate Cancer
  • Melanoma
  • Bladder Cancer
  • Cervical Cancer

Cancer Vaccine Market, By Vaccine Type:

  • Preventive Cancer Vaccines
  • Therapeutic Cancer Vaccines

Cancer Vaccine Market, By Technology Type:

  • Recombinant Cancer Vaccines
  • Whole-Cell Cancer Vaccines
  • Viral Vector and DNA Cancer Vaccines

Global Cancer Vaccine Market, By region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • China
  • India
  • South Korea
  • Australia
  • Japan
  • Europe
  • Germany
  • France
  • United Kingdom
  • Spain
  • Italy
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Cancer Vaccine Market.

Available Customizations:

  • Global Cancer Vaccine Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Clinical Trials Analysis

  • 5.1. Ongoing Clinical Trials
  • 5.2. Completed Clinical Trials
  • 5.3. Terminated Clinical Trials
  • 5.4. Breakdown of Pipeline, By Development Phase
  • 5.5. Breakdown of Pipeline, By Status
  • 5.6. Breakdown of Pipeline, By Study Type
  • 5.7. Breakdown of Pipeline, By Region
  • 5.8. Clinical Trials Heat Map

6. Global Cancer Vaccine Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Indication Type (Prostate Cancer, Melanoma, Bladder Cancer, Cervical Cancer
    • 6.2.2. By Vaccine Type (Preventive Cancer Vaccines, Therapeutic Cancer Vaccines)
    • 6.2.3. By Technology Type (Recombinant Cancer Vaccines, Whole-Cell Cancer Vaccines, Viral Vector and DNA Cancer Vaccines)
    • 6.2.4. By Company (2022)
    • 6.2.5. By Region
  • 6.3. Market Map

7. North America Cancer Vaccine Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Indication Type
    • 7.2.2. By Vaccine Type
    • 7.2.3. By Technology Type
    • 7.2.4. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Cancer Vaccine Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Indication Type
        • 7.3.1.2.2. By Vaccine Type
        • 7.3.1.2.3. By Technology Type
    • 7.3.2. Mexico Cancer Vaccine Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Indication Type
        • 7.3.2.2.2. By Vaccine Type
        • 7.3.2.2.3. By Technology Type
    • 7.3.3. Canada Cancer Vaccine Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Indication Type
        • 7.3.3.2.2. By Vaccine Type
        • 7.3.3.2.3. By Technology Type

8. Europe Cancer Vaccine Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Indication Type
    • 8.2.2. By Vaccine Type
    • 8.2.3. By Technology Type
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. France Cancer Vaccine Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Indication Type
        • 8.3.1.2.2. By Vaccine Type
        • 8.3.1.2.3. By Technology Type
    • 8.3.2. Germany Cancer Vaccine Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Indication Type
        • 8.3.2.2.2. By Vaccine Type
        • 8.3.2.2.3. By Technology Type
    • 8.3.3. United Kingdom Cancer Vaccine Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Indication Type
        • 8.3.3.2.2. By Vaccine Type
        • 8.3.3.2.3. By Technology Type
    • 8.3.4. Italy Cancer Vaccine Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Indication Type
        • 8.3.4.2.2. By Vaccine Type
        • 8.3.4.2.3. By Technology Type
    • 8.3.5. Spain Cancer Vaccine Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Indication Type
        • 8.3.5.2.2. By Vaccine Type
        • 8.3.5.2.3. By Technology Type

9. Asia-Pacific Cancer Vaccine Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Indication Type
    • 9.2.2. By Vaccine Type
    • 9.2.3. By Technology Type
    • 9.2.4. By Country
  • 9.3. Asia-Pacific: Country Analysis
    • 9.3.1. China Cancer Vaccine Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Indication Type
        • 9.3.1.2.2. By Vaccine Type
        • 9.3.1.2.3. By Technology Type
    • 9.3.2. India Cancer Vaccine Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Indication Type
        • 9.3.2.2.2. By Vaccine Type
        • 9.3.2.2.3. By Technology Type
    • 9.3.3. South Korea Cancer Vaccine Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Indication Type
        • 9.3.3.2.2. By Vaccine Type
        • 9.3.3.2.3. By Technology Type
    • 9.3.4. Japan Cancer Vaccine Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Indication Type
        • 9.3.4.2.2. By Vaccine Type
        • 9.3.4.2.3. By Technology Type
    • 9.3.5. Australia Cancer Vaccine Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Indication Type
        • 9.3.5.2.2. By Vaccine Type
        • 9.3.5.2.3. By Technology Type

10. South America Cancer Vaccine Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Indication Type
    • 10.2.2. By Vaccine Type
    • 10.2.3. By Technology Type
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Cancer Vaccine Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Indication Type
        • 10.3.1.2.2. By Vaccine Type
        • 10.3.1.2.3. By Technology Type
    • 10.3.2. Argentina Cancer Vaccine Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Indication Type
        • 10.3.2.2.2. By Vaccine Type
        • 10.3.2.2.3. By Technology Type
    • 10.3.3. Colombia Cancer Vaccine Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Indication Type
        • 10.3.3.2.2. By Vaccine Type
        • 10.3.3.2.3. By Technology Type

11. Middle East and Africa Cancer Vaccine Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Indication Type
    • 11.2.2. By Vaccine Type
    • 11.2.3. By Technology Type
    • 11.2.4. By Country
  • 11.3. MEA: Country Analysis
    • 11.3.1. South Africa Cancer Vaccine Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Indication Type
        • 11.3.1.2.2. By Vaccine Type
        • 11.3.1.2.3. By Technology Type
    • 11.3.2. Saudi Arabia Cancer Vaccine Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Indication Type
        • 11.3.2.2.2. By Vaccine Type
        • 11.3.2.2.3. By Technology Type
    • 11.3.3. UAE Cancer Vaccine Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Indication Type
        • 11.3.3.2.2. By Vaccine Type
        • 11.3.3.2.3. By Technology Type

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends & Developments

  • 13.1. Recent Developments
  • 13.2. Product Launches
  • 13.3. Mergers & Acquisitions

14. PESTLE Analysis

15. Porter's Five Forces Analysis

  • 15.1. Competition in the Industry
  • 15.2. Potential of New Entrants
  • 15.3. Power of Suppliers
  • 15.4. Power of Customers
  • 15.5. Threat of Substitute Product

16. Competitive Landscape

  • 16.1. Business Overview
  • 16.2. Company Snapshot
  • 16.3. Products & Services
  • 16.4. Financials (In case of listed companies)
  • 16.5. Recent Developments
  • 16.6. SWOT Analysis
    • 16.6.1. Merck & Co., Inc.
    • 16.6.2. GSK plc
    • 16.6.3. Dendreon Pharmaceuticals LLC.
    • 16.6.4. Dynavax Technologies.
    • 16.6.5. Ferring B.V.
    • 16.6.6. Amgen, Inc.
    • 16.6.7. Moderna, Inc.
    • 16.6.8. Sanofi SA
    • 16.6.9. AstraZeneca Pharmaceuticals LP
    • 16.6.10. Bristol-Myers Squibb Company

17. Strategic Recommendations