聚乳酸市場 - 2018-2028F 全球產業規模、佔有率、趨勢、機會和預測,按原料、按應用、最終用途行業、等級、地區和競爭細分
市場調查報告書
商品編碼
1355185

聚乳酸市場 - 2018-2028F 全球產業規模、佔有率、趨勢、機會和預測,按原料、按應用、最終用途行業、等級、地區和競爭細分

Polylactic Acid Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028F Segmented By Raw Material, By Application, By End-Use Industry, By Grade, By Region and Competition

出版日期: | 出版商: TechSci Research | 英文 175 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2022 年全球聚乳酸市場價值為 6.9234 億美元,預計在預測期內將強勁成長,到 2028 年複合年成長率為 11.53%。聚乳酸 (PLA) 聚合物不同於常見的熱塑性聚合物。它主要由甘蔗等可再生資源組成。 PLA 是一種流行的材料,因為與其他可生物分解的聚合物相比,它相對便宜且具有各種有益的機械性能。 PLA 主要來自植物來源,包括甘蔗、木薯、玉米和馬鈴薯。農業副產品、纖維素材料和溫室氣體等替代原料也得到了探索。然而,該過程仍在開發中,預計在可預見的未來,農產品仍將是澱粉混合物和 PLA 的主要來源。 PLA 市場的成長主要是由紡織、包裝和農業等最終用途領域不斷成長的需求所推動的。此外,與傳統聚合物相比,聚乳酸的碳排放量較低,有助於滿足全球需求。此外,對軟包裝產品不斷成長的需求進一步推動了市場的成長。由於對包裝食品、零食、即食 (RTE) 食品和其他消費品的需求不斷成長,包裝行業正在經歷激增。因此,由於包裝行業的快速擴張,預計在預測期內對 PLA 的需求將會上升。

主要市場促進因素

汽車產業對聚乳酸的需求不斷成長

市場概況
預測期 2024-2028
2022 年市場規模 6.9234億美元
2028 年市場規模 128625萬美元
2023-2028 年複合年成長率 11.53%
成長最快的細分市場 包裝
最大的市場 亞太地區

聚乳酸是一種可生物分解的生物基聚合物,源自於玉米澱粉或甘蔗等可再生資源,是汽車行業傳統石油基塑膠的引人注目的替代品。 PLA 相對較低的密度使其成為輕型車輛的理想材料。隨著汽車製造商努力提高燃油效率和減少排放,在內飾板和非結構部件等部件中使用 PLA 有助於實現這些目標。 PLA 的柔韌性以及與不同著色專家的相似性使製造商能夠製造出適應性強且美觀的零件。這對於增加整體駕駛體驗的內部設計部件和非主要部件至關重要。 PLA 用於製造車門板、儀表板裝飾和中控台零件等內裝零件。這些組件受益於 PLA 的輕盈特性、可自訂的設計和永續的吸引力。

包裝產業對聚乳酸的需求不斷增加

隨著消費者需要更環保、更負責任的包裝解決方案,該產業被迫採用符合永續發展目標的材料。 PLA 源自可再生資源並具有生物分解性,已成為滿足日益成長的環保包裝需求的引人注目的選擇。隨著消費者對環境議題的認知不斷提高,購買行為明顯轉向採用環保材料包裝的產品。將 PLA 包裝融入其產品中的品牌將透過吸引有意識的消費者來獲得競爭優勢。 PLA 的可堆肥性在循環經濟模式中發揮著至關重要的作用。隨著堆肥基礎設施的改善,PLA 包裝可以被收集、加工並返回地球,從而完成永續的材料循環。從食品容器到包裝材料和薄膜,PLA 由於適合直接接觸可食用物品,因此在食品行業中越來越受歡迎。它可以保持易腐爛商品的新鮮度,同時提供傳統塑膠的更環保替代品。此外,化妝品行業的品牌正在將乳霜、乳液和洗髮精等產品轉向使用 PLA 包裝。 PLA 的美學吸引力和可自訂性與這些產品的視覺和品牌要求非常吻合。

電子產業對聚乳酸的需求不斷成長

聚乳酸 (PLA) 是一種可生物分解的生物基聚合物,已成為此動態領域的關鍵參與者。 PLA 在電子產業中的日益普及不僅重塑了該產業,而且成為全球 PLA 市場的強大推動力。 PLA 的主要屬性之一是其輕量性,使其成為電子商務的最佳決策。重量的減輕不僅增加了設備的緊湊性和舒適度,而且還有助於減少運輸排放。此外,PLA 的強度和機械性能正在解決,以製造能夠承受電子產品日常使用的痛苦的零件。 PLA 的多功能性在這一領域大放異彩,因為它可以模製成各種形式,為設備提供客製化的配合。 PLA 的熱性能使其適用於元件產生熱量的應用,例如印刷電路板 (PCB)。電子產業利用 PLA 承受更高溫度的能力,使其與 5G 網路和物聯網 (IoT) 等新興技術和趨勢相容。

技術進步的成長

技術的進步與 PLA 共混物的進步以及不同添加物質的融合相結合,以調整其性能以適應特定的應用。透過將 PLA 與不同的聚合物或添加物質(如線材、奈米顆粒或阻燃劑)混合,生產商可以製造具有各種性能的材料。這些進展將PLA的應用擴展到了電子、汽車、醫療器材等變化廣泛的領域,展現了其靈活性和適應性。 3D 列印,也稱為積層製造,徹底改變了各行業的製造流程。 PLA 的生物分解性和易於加工性使其成為 3D 列印應用的理想材料。此技術可實現複雜的客製化設計,實現快速原型設計、產品個人化並減少材料浪費。傳統的塑膠回收設施不具備處理 PLA 的能力,處理不當會阻礙其生物分解過程。技術進步正在透過開發專門的 PLA 回收和堆肥設施來應對這項挑戰。

主要市場挑戰

缺乏堆肥基礎設施

丟進傳統廢物流的 PLA 產品通常最終會進入垃圾掩埋場或焚化爐,在那裡它們的分解速度比工業堆肥設施中的分解速度慢得多。這違背了使用可生物分解材料的目的,因為預期的環境效益並沒有實現。當 PLA 產品進入回收流程時,它們可能會污染傳統的塑膠回收流程,導致回收問題並加劇塑膠污染問題。將 PLA 從傳統塑膠中分離出來具有挑戰性,而且消費者缺乏正確處置的意識,使問題變得更加嚴重。此外,由於缺乏易於使用的堆肥設施,消費者不願意選擇 PLA 產品,因為他們不確定如何負責任地處理這些產品。這限制了市場的成長潛力,並抑制了 PLA 對環境的正面影響。

生產流程複雜

PLA 的原料主要是玉米和甘蔗,與食品和能源等其他重要產業存在競爭。隨著全球人口的成長,對糧食作物和生物燃料的需求增加,可能導致資源競爭。平衡對 PLA 等生物基材料的需求與糧食安全和能源生產是一項重大挑戰,需要仔細的資源管理和永續的農業實踐。 PLA 生產需要大量資源,包括水、能源和土地。將原料轉化為乳酸並最終轉化為 PLA 的過程涉及各種能源密集步驟,例如發酵、蒸餾和聚合。 PLA 的生產涉及複雜的化學反應、反應條件的精確控制以及專用設備的使用。開發和維護這些技術需要大量的研發投資。

主要市場趨勢

生物塑膠的不斷發展

PLA 由植物原料製成,與石油基塑膠相比,由於其可生物分解性和碳足跡減少而受到廣泛關注。循環經濟的概念,即材料在閉迴路中使用、再利用和回收,與 PLA 的生物分解性無縫契合。 PLA 在受控條件下堆肥的能力支持了以豐富而不是污染的方式將材料送回環境的概念。隨著循環經濟計劃受到關注,PLA 有望在創建永續材料生態系統方面發揮關鍵作用。

細分市場洞察

最終用途行業洞察

2022年,聚乳酸市場以包裝為主,預計未來幾年將持續擴大。這可以歸因於聚乳酸 (PLA) 廣泛用於生產罐子、容器和瓶子以及新鮮食品包裝。全球消費者對永續和環保包裝的偏好迫使製造商在包裝中使用 PLA。包裝是PLA在食品包裝產業的突出應用。 PLA 基底塑膠瓶是拋棄式的、耐用的,並具有光澤和透明度等特性。此外,台灣、英國、辛巴威、紐西蘭和美國各州(包括紐約、夏威夷和加州)等國家對拋棄式塑膠的嚴格規定也顯著推動了包裝中對 PLA 的需求部門。

應用洞察

2022 年,聚乳酸市場將由薄膜和片材領域主導,預計未來幾年將繼續擴大。 PLA 薄膜可客製化以提供特定的阻隔性能,例如防潮性和透氣性,使其適合包裝易腐爛的物品。這些薄膜有助於延長產品的保存期限、減少食物浪費並增強供應鏈的整體永續性。向永續包裝材料的轉變推動了對 PLA 薄膜的需求,因為它們提供了傳統石油基塑膠的環保替代品。消費者對環境影響較小的產品的偏好推動了 PLA 薄膜在食品包裝、飲料容器和各種消費品中的採用。隨著時間的推移,玉米和甘蔗等 PLA 原料的供應鏈變得更加成熟和有效率。這有助於為 PLA 薄膜生產提供更一致且可靠的原料供應。

區域洞察

亞太地區已成為全球聚乳酸市場的領導者。這可以歸因於主要市場參與者擴大創新工作以及對該地區生物塑膠的利用擴大關注。同樣,當地政府正在為生產可生物分解的產品提供幫助,以減少對環境的擔憂,這是有望推動亞太地區國家目標業務發展的另一個因素。

主要市場參與者

  • 科比恩公司
  • 銀河SA
  • 河南金丹乳酸有限公司
  • 榮邦茲勞爾股份公司
  • 武藏野化學研究所
  • 巴斯夫公司
  • 自然工廠
  • 河南金丹乳酸科技
  • 三菱化學控股公司
  • Synbra 技術有限公司

可用的客製化:

全球聚乳酸市場報告根據給定的市場資料,技術科學研究根據公司的具體需求提供客製化服務。該報告可以使用以下自訂選項:

公司資訊

  • 其他市場參與者(最多五個)的詳細分析和概況分析。

目錄

第 1 章:產品概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 考慮學習的年份
    • 主要市場區隔

第 2 章:研究方法

  • 研究目的
  • 基線方法
  • 主要產業夥伴
  • 主要協會和二手資料來源
  • 預測方法
  • 數據三角測量與驗證
  • 假設和限制

第 3 章:執行摘要

  • 市場概況
  • 主要市場細分概述
  • 主要市場參與者概述
  • 重點地區/國家概況
  • 市場促進因素、挑戰、趨勢概述

第 4 章:客戶之聲

第 5 章:全球聚乳酸市場展望

  • 市場規模及預測
    • 按價值和數量
  • 市佔率及預測
    • 依原料分類(玉米、木薯、甘蔗、甜菜、其他)
    • 按應用(硬質熱成型件、薄膜和片材、瓶子、其他)
    • 依最終用途產業(包裝、消費品、農業、紡織、生物醫學、其他)
    • 依等級(熱成型、注塑成型、擠出成型、吹塑成型、其他)
    • 按地區
    • 按公司分類 (2022)
  • 市場地圖

第 6 章:北美聚乳酸市場展望

  • 市場規模及預測
    • 按價值和數量
  • 市佔率及預測
    • 按原料分類
    • 按應用
    • 按最終用途行業
    • 按年級
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 7 章:歐洲聚乳酸市場展望

  • 市場規模及預測
    • 按價值和數量
  • 市佔率及預測
    • 按原料分類
    • 按應用
    • 按最終用途行業
    • 按年級
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 英國
    • 義大利
    • 西班牙

第 8 章:亞太地區聚乳酸市場展望

  • 市場規模及預測
    • 按價值和數量
  • 市佔率及預測
    • 按原料分類
    • 按應用
    • 按最終用途行業
    • 按年級
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 韓國
    • 日本
    • 澳洲

第 9 章:南美洲聚乳酸市場展望

  • 市場規模及預測
    • 按價值和數量
  • 市佔率及預測
    • 按原料分類
    • 按應用
    • 按最終用途行業
    • 按年級
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第10章 :中東和非洲聚乳酸市場展望

  • 市場規模及預測
    • 按價值和數量
  • 市佔率及預測
    • 按原料分類
    • 按應用
    • 按最終用途行業
    • 按年級
    • 按國家/地區
  • MEA:國家分析
    • 南非聚乳酸
    • 沙烏地阿拉伯聚乳酸
    • 阿拉伯聯合大公國聚乳酸

第 11 章:市場動態

  • 動力
  • 挑戰

第 12 章:市場趨勢與發展

第 13 章:杵分析

第 14 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第15章:競爭格局

  • 商業概覽
  • 公司概況
  • 產品與服務
  • 財務(上市公司)
  • 最近的發展
  • SWOT分析
    • Corbion NV
    • Galactic SA
    • Henan Jindan Lactic Acid Co., Ltd.
    • Jungbunzlauer AG
    • Musashino Chemical Laboratory, Ltd.
    • BASF SE
    • NatureWorks
    • Henan Jindan Lactic Acid Technology
    • Mitsubishi Chemical Holdings Corporation
    • Synbra Technology BV

第 16 章:策略建議

簡介目錄
Product Code: 4333

The Global Polylactic Acid Market was valued at USD 692.34 million in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 11.53% through 2028. The polymer of polylactic acid (PLA) differs from the commonly available thermoplastic polymers. It is predominantly composed of renewable resources such as sugarcane. PLA is a popular material because it is relatively inexpensive and possesses various beneficial mechanical properties compared to other biodegradable polymers. PLA is primarily derived from plant-based sources, including sugarcane, cassava, corn, and potato. Alternative feedstocks such as agricultural by-products, cellulosic materials, and greenhouse gases have also been explored. However, the process is still under development, and agricultural products are expected to remain the primary source for starch blends and PLA in the foreseeable future. The growth of the PLA market is primarily driven by the increasing demand in end-use sectors such as textiles, packaging, and agriculture. Additionally, the lower carbon emissions associated with polylactic acid compared to traditional polymers contribute to global demand. Moreover, the rising demand for flexible packaging products further fuels market growth. The packaging industry is experiencing a surge due to the growing demand for packaged foods, snacks, ready-to-eat (RTE) meals, and other consumer goods. Consequently, the demand for PLA is expected to rise in the forecast period due to the rapid expansion of the packaging industry.

Key Market Drivers

Growing Demand for Polylactic Acid in the Automotive Industry

Market Overview
Forecast Period2024-2028
Market Size 2022USD 692.34 million
Market Size 2028USD 1286.25 million
CAGR 2023-202811.53%
Fastest Growing SegmentPackaging
Largest MarketAsia Pacific

Polylactic Acid, a biodegradable and bio-based polymer derived from renewable resources like corn starch or sugarcane, presents a compelling alternative to conventional petroleum-based plastics in the automotive industry. PLA's relatively low density makes it an ideal material for light-weighting vehicles. As automakers strive to improve fuel efficiency and reduce emissions, the use of PLA in components like interior panels and non-structural parts contributes to achieving these goals. PLA's pliability and similarity with different shading specialists permit makers to make adaptable and aesthetically satisfying parts. This is critical for inside plan components and non-primary parts that add to the general driving experience. PLA is used to create interior components such as door panels, dashboard trims, and center console parts. These components benefit from PLA's lightweight nature, customizable design, and sustainable appeal.

Increasing Demand for Polylactic Acid in the Packaging Industry

As consumers demand greener and more responsible packaging solutions, the industry is being compelled to embrace materials that align with sustainability goals. PLA, derived from renewable resources and offering biodegradability, has emerged as a compelling option that caters to this growing demand for eco-friendly packaging. As consumer awareness about environmental issues escalates, there's a notable shift in purchasing behavior towards products packaged in environmentally responsible materials. Brands that incorporate PLA packaging into their offerings stand to gain a competitive edge by appealing to conscious consumers. PLA's compostability plays a vital role in the circular economy model. As composting infrastructure improves, PLA packaging can be collected, processed, and returned to the earth, completing a sustainable materials cycle. From food containers to wraps and films, PLA is gaining traction in the food industry due to its suitability for direct contact with edible items. It maintains the freshness of perishable goods while offering a greener alternative to traditional plastics. Moreover, brands in the cosmetics industry are transitioning to PLA packaging for products like creams, lotions, and shampoos. PLA's aesthetic appeal and customizable nature align well with the visual and branding requirements of these products.

Growing Demand for Polylactic Acid in the Electronic Industry

Polylactic Acid (PLA) is a biodegradable and bio-based polymer that has emerged as a key player in this dynamic landscape. The growing adoption of PLA in the electronic industry is not only reshaping the sector but also serving as a potent driver of the global PLA market. One of PLA's leading attributes is its lightweight nature, making it an optimal decision for the electronic business. The decreased weight not only adds to the compactness and comfort of gadgets but also assumes a part in diminishing transportation discharges. Besides, PLA's strength and mechanical properties are being tackled to make parts that can endure the afflictions of the day-to-day use of electronic gadgets. PLA's versatility shines in this domain as it can be molded into various forms, providing a custom fit for devices. PLA's thermal properties make it suitable for applications in which components generate heat, such as printed circuit boards (PCBs). The electronics industry leverages PLA's ability to withstand higher temperatures, making it compatible with emerging technologies and trends like 5G networks and the Internet of Things (IoT).

Growth in Technological Advancements

Technological progressions have worked with the advancement of PLA blends and the fuse of different added substances to tailor its properties to explicit applications. By mixing PLA with different polymers or added substances like strands, nanoparticles, or fire retardants, producers can make materials with an assorted scope of properties. These developments have extended PLA's applications to regions as changed as gadgets, auto, and clinical gadgets, exhibiting its flexibility and adaptability. 3D printing, also known as additive manufacturing, has revolutionized manufacturing processes across industries. PLA's biodegradability and ease of processing make it an ideal material for 3D printing applications. The technology allows for intricate and customized designs, enabling rapid prototyping, product personalization, and reducing material waste. Traditional plastic recycling facilities are not equipped to handle PLA, and improper disposal can hinder its biodegradation process. Technological advancements are addressing this challenge through the development of specialized PLA recycling and composting facilities.

Key Market Challenges

Lack of Composting Infrastructure

PLA products tossed into conventional waste streams often end up in landfills or incinerators, where they decompose at a much slower rate than they would in an industrial composting facility. This defeats the purpose of using a biodegradable material, as the intended environmental benefits are not realized. When PLA products enter recycling streams, they can contaminate conventional plastic recycling processes, leading to issues with recycling and exacerbating the plastic pollution problem. Sorting PLA from traditional plastics is challenging, and the lack of awareness among consumers about proper disposal worsens the problem. Moreover, the absence of easily accessible composting facilities discourages consumers from choosing PLA products, as they are uncertain about how to dispose of them responsibly. This limits the market's growth potential and inhibits the positive environmental impact that PLA can have.

Complex Production Process

PLA's feedstock, primarily corn and sugarcane, competes with other essential industries such as food and energy. As global populations rise, the demand for food crops and biofuels increases, potentially leading to competition for resources. Balancing the need for bio-based materials like PLA with food security and energy production is a significant challenge that requires careful resource management and sustainable agricultural practices. PLA production requires significant amounts of resources, including water, energy, and land. The process of converting feedstocks into lactic acid and, eventually, PLA involves various energy-intensive steps such as fermentation, distillation, and polymerization. The production of PLA involves intricate chemical reactions, precise control of reaction conditions, and the use of specialized equipment. Developing and maintaining these technologies requires a substantial investment in research and development.

Key Market Trends

Growing Evolution of Bioplastics

PLA is made from plant-based feedstocks and has garnered significant attention due to its biodegradability and reduced carbon footprint compared to petroleum-based plastics. The concept of a circular economy, where materials are used, reused, and recycled in a closed loop, aligns seamlessly with PLA's biodegradability. PLA's ability to compost under controlled conditions supports the concept of returning materials to the environment in a way that enriches rather than pollutes. As circular economy initiatives gain traction, PLA is poised to play a pivotal role in creating a sustainable materials ecosystem.

Segmental Insights

End-Use Industry Insights

In 2022, the polylactic acid market was dominated by packaging and is predicted to continue expanding over the coming years. This can be attributed to the widespread use of polylactic acid (PLA) for producing jars, containers, and bottles, as well as for fresh food packaging. The global consumer preference for sustainable and environmentally friendly packaging is compelling manufacturers to utilize PLA in packaging. Packaging is a prominent application of PLA in the food packaging industry. PLA-based plastic bottles are disposable, long-lasting, and possess characteristics such as shine and clarity. Additionally, strict regulations on single-use plastics in countries like Taiwan, the United Kingdom, Zimbabwe, New Zealand, and various states in the United States (including New York, Hawaii, and California) are significantly driving the demand for PLA in the packaging sector.

Application Insights

In 2022, the polylactic acid market was dominated by the films & sheets segment and is predicted to continue expanding over the coming years. PLA films can be tailored to provide specific barrier properties, such as moisture resistance and gas permeability, making them suitable for packaging perishable items. These films help extend the shelf life of products, reducing food waste and enhancing the overall sustainability of the supply chain. The shift towards sustainable packaging materials has driven the demand for PLA films, as they offer an eco-friendly alternative to traditional petroleum-based plastics. Consumer preferences for products with reduced environmental impact have propelled the adoption of PLA films in food packaging, beverage containers, and various consumer goods. The supply chain for PLA feedstocks, such as corn and sugarcane, has become more established and efficient over time. This has contributed to a more consistent and reliable supply of raw materials for PLA film production.

Regional Insights

The Asia Pacific region has established itself as the leader in the Global Polylactic Acid Market. This can be attributed to expanding innovative work ventures by key market players and expanding mindfulness with respect to the utilization of bioplastics in the area. Likewise, governments in the locale are offering auxiliaries for the creation of biodegradable items to decrease natural worries, which is one more component expected to push the development of the objective business in the nations of the Asia Pacific district.

Key Market Players

  • Corbion N.V.
  • Galactic S.A.
  • Henan Jindan Lactic Acid Co., Ltd.
  • Jungbunzlauer AG
  • Musashino Chemical Laboratory, Ltd.
  • BASF SE
  • NatureWorks
  • Henan Jindan Lactic Acid Technology
  • Mitsubishi Chemical Holdings Corporation
  • Synbra Technology B.V.

Report Scope:

In this report, the Global Polylactic Acid Market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:

Polylactic Acid Market, By Raw Material:

  • Corn
  • Cassava
  • Sugarcane
  • Sugar Beet
  • Others

Polylactic Acid Market, By Application:

  • Rigid Thermoforms
  • Films & Sheets
  • Bottles
  • Others

Polylactic Acid Market, By End-Use Industry:

  • Packaging
  • Consumer Goods
  • Agriculture
  • Textile
  • Bio-Medical
  • Others

Polylactic Acid Market, By Grade:

  • Thermoforming
  • Injection Molding
  • Extrusion
  • Blow Molding
  • Others

Polylactic Acid Market, By Region:

  • Asia Pacific
  • North America
  • Europe
  • Middle East & Africa
  • South America

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Polylactic Acid Market.

Available Customizations:

Global Polylactic Acid Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Polylactic Acid Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value & Volume
  • 5.2. Market Share & Forecast
    • 5.2.1. By Raw Material (Corn, Cassava, Sugarcane, Sugar Beet, Others)
    • 5.2.2. By Application (Rigid Thermoforms, Films & Sheets, Bottles, Others)
    • 5.2.3. By End-Use Industry (Packaging, Consumer Goods, Agriculture, Textile, Bio-Medical, Others)
    • 5.2.4. By Grade (Thermoforming, Injection Molding, Extrusion, Blow Molding, Others)
    • 5.2.5. By Region
    • 5.2.6. By Company (2022)
  • 5.3. Market Map

6. North America Polylactic Acid Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value & Volume
  • 6.2. Market Share & Forecast
    • 6.2.1. By Raw Material
    • 6.2.2. By Application
    • 6.2.3. By End-Use Industry
    • 6.2.4. By Grade
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Polylactic Acid Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value & Volume
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Raw Material
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End-Use Industry
        • 6.3.1.2.4. By Grade
    • 6.3.2. Mexico Polylactic Acid Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value & Volume
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Raw Material
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End-Use Industry
        • 6.3.2.2.4. By Grade
    • 6.3.3. Canada Polylactic Acid Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value & Volume
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Raw Material
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End-Use Industry
        • 6.3.3.2.4. By Grade

7. Europe Polylactic Acid Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value & Volume
  • 7.2. Market Share & Forecast
    • 7.2.1. By Raw Material
    • 7.2.2. By Application
    • 7.2.3. By End-Use Industry
    • 7.2.4. By Grade
    • 7.2.5. By Country
  • 7.3 Europe: Country Analysis
    • 7.3.1. France Polylactic Acid Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value & Volume
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Raw Material
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End-Use Industry
        • 7.3.1.2.4. By Grade
    • 7.3.2. Germany Polylactic Acid Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value & Volume
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Raw Material
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End-Use Industry
        • 7.3.2.2.4. By Grade
    • 7.3.3. United Kingdom Polylactic Acid Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value & Volume
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Raw Material
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End-User Industry
        • 7.3.3.2.4. By Grade
    • 7.3.4. Italy Polylactic Acid Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value & Volume
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Raw Material
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End-Use Industry
        • 7.3.4.2.4. By Grade
    • 7.3.5. Spain Polylactic Acid Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value & Volume
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Raw Material
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End-Use Industry
        • 7.3.5.2.4. By Grade

8. Asia-Pacific Polylactic Acid Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value & Volume
  • 8.2. Market Share & Forecast
    • 8.2.1. By Raw Material
    • 8.2.2. By Application
    • 8.2.3. By End-Use Industry
    • 8.2.4. By Grade
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Polylactic Acid Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value & Volume
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Raw Material
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End-Use Industry
        • 8.3.1.2.4. By Grade
    • 8.3.2. India Polylactic Acid Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value & Volume
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Raw Material
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End-Use Industry
        • 8.3.2.2.4. By Grade
    • 8.3.3. South Korea Polylactic Acid Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value & Volume
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Raw Material
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End-Use Industry
        • 8.3.3.2.4. By Grade
    • 8.3.4. Japan Polylactic Acid Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value & Volume
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Raw Material
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End-Use Industry
        • 8.3.4.2.4. By Grade
    • 8.3.5. Australia Polylactic Acid Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value & Volume
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Raw Material
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End-Use Industry
        • 8.3.5.2.4. By Grade

9. South America Polylactic Acid Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value & Volume
  • 9.2. Market Share & Forecast
    • 9.2.1. By Raw Material
    • 9.2.2. By Application
    • 9.2.3. By End-Use Industry
    • 9.2.4. By Grade
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Polylactic Acid Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value & Volume
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Raw Material
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End-Use Industry
        • 9.3.1.2.4. By Grade
    • 9.3.2. Argentina Polylactic Acid Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value & Volume
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Raw Material
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End-Use Industry
        • 9.3.2.2.4. By Grade
    • 9.3.3. Colombia Polylactic Acid Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value & Volume
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Raw Material
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End-Use Industry
        • 9.3.3.2.4. By Grade

10. Middle East and Africa Polylactic Acid Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value & Volume
  • 10.2. Market Share & Forecast
    • 10.2.1. By Raw Material
    • 10.2.2. By Application
    • 10.2.3. By End-Use Industry
    • 10.2.4. By Grade
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Polylactic Acid Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value & Volume
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Raw Material
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End-Use Industry
        • 10.3.1.2.4. By Grade
    • 10.3.2. Saudi Arabia Polylactic Acid Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value & Volume
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Raw Material
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End-Use Industry
        • 10.3.2.2.4. By Grade
    • 10.3.3. UAE Polylactic Acid Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value & Volume
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Raw Material
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End-Use Industry
        • 10.3.3.2.4. By Grade

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

13. PESTLE Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Product

15. Competitive Landscape

  • 15.1. Business Overview
  • 15.2. Company Snapshot
  • 15.3. Products & Services
  • 15.4. Financials (In case of listed companies)
  • 15.5. Recent Developments
  • 15.6. SWOT Analysis
    • 15.6.1. Corbion N.V.
    • 15.6.2. Galactic S.A.
    • 15.6.3. Henan Jindan Lactic Acid Co., Ltd.
    • 15.6.4. Jungbunzlauer AG
    • 15.6.5. Musashino Chemical Laboratory, Ltd.
    • 15.6.6. BASF SE
    • 15.6.7. NatureWorks
    • 15.6.8. Henan Jindan Lactic Acid Technology
    • 15.6.9. Mitsubishi Chemical Holdings Corporation
    • 15.6.10. Synbra Technology BV

16. Strategic Recommendations