NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

全固態電池技術現狀及至2030年(2021年)市場展望

<2021> Technology Status and Market Outlook for All Solid-State Battery (~2030)

出版商 SNE Research 商品編碼 1004698
出版日期 內容資訊 英文 170 Pages
商品交期: 請詢問到貨日
價格

Notice: The original report is written in Korean. Please ask us for more information regarding delivery time.

全固態電池技術現狀及至2030年(2021年)市場展望 <2021> Technology Status and Market Outlook for All Solid-State Battery (~2030)
出版日期: 2021年05月04日內容資訊: 英文 170 Pages
簡介

雖然 LiB 穩定性和能量密度的問題已經被指出,但解決這些問題的下一代電池的開發正在逐漸擴大。其中,全固態電池在開發的穩定性和完整性方面最為引人注目。全固態電池根據電解質物質的類型分為硫化物基、氧化物基和聚合物基三種類型,每種類型都有不同的優缺點和問題。

本報告對全固態電池進行調研,概述了產品的優缺點、問題、製造工藝等,各公司的主要發展類型及各類型的市場前景,以及各類型電池的技術發展情況。全固態電池製造商. 我們提供電池程度、OEM 要求、目標量產時間、電池製造商類型/公司/應用的市場分析、專利和主要公司的現狀等信息。

目錄

第 1 章介紹

  • 電池發展史
    • 古代電池發展史
    • 錳電池(Leclanche電池)
    • 鹼性電池
    • 鉛酸電池
    • 鎳鎘電池
    • 鎳氫電池
    • 鋰二次電池(鋰離子電池)
  • 鋰二次電池的問題
    • 安全
    • 能量密度

第 2 章全固態電池

  • 全固態電池的優勢
    • 提高能量密度
    • 使新活性材料的應用成為可能
    • 低活化能
  • 全固態電池製造工藝
    • 電解質層的製造
    • 陽極-陰極複合層的製造
    • 細胞組裝
  • 固體電解質
    • 固體電解質發展史
    • 固體電解質驅動機制
    • 固體電解質的分類
  • 全固態電池對現有 SCM 的影響

第 3 章硫化物電解質

  • 硫化物電解質類型
    • Thio-LISICON 基礎
    • 雙硫化鹼
    • Algyrodite系
    • 其他:Li7P2S8I
  • 硫化物電解液的合成方法
    • 固相合成
    • 液相合成
    • 濕式化學合成
  • 核心原料的合成方法
    • 核心原材料:Li2S
    • 原料合成
    • 原材料:鋰金屬
    • 起始原料:Li2SO4
    • 起始原料:Li2CO3
    • 起始原料:LiOH
    • 起始材料:Li-R

第 4 章氧化物基電解質

  • 氧化物電解液類型
    • 鈣鈦礦基底
    • 石榴石基底
    • Nashikon基底
    • Li1 + xAlxGe2-x (PO4) 3 (LAGP)
    • 其他:Li2.9PO3.3N0.46 (LiPON)
  • 氧化物基電解質的合成方法
    • 固相合成
    • 固相合成

第 5 章聚合物電解質

  • 聚合物電解質類型
    • 基於PEO的電解質
    • 聚合物/陶瓷複合材料
  • 高分子電解質的合成方法
    • 混合方式:PEO基電解液
    • 混合方式:聚合物/陶瓷複合

第 6 章全固態電池的研發趨勢

  • 全固態電池的問題
  • 全固態電池的研發趨勢
    • 提高了鋰金屬的穩定性
    • 電極結合強度問題的改進
    • 電極板製造工藝的改進
  • 硫化物電解液研發趨勢
    • 提高固體電解質/電極界面的穩定性
    • 粒子分離問題的改進
    • 抑制虛空生成
    • 提高固體電解質的性能
  • 氧化物電解液研發趨勢
    • 改進固體電解質/電極接觸
    • 提高固體電解質的性能
  • 聚合物電解質的研發趨勢
    • 提高電解質層的獨立性
    • 抑制鋰枝晶形成

第 7 章全固態電池專利趨勢

  • 全固態電池專利概述
  • 聚合物類主要專利
  • 無機物和無機聚合物雜化物的主要專利
  • 專利:全固態電池原料
  • 專利:全固態電池的應用
  • 全固態電池材料核心專利

第 8 章全固態電池開發企業現狀

  • 亞洲國家
    • Samsung Electronics
    • Korea Institute of Industrial Technology
    • LG Chem
    • SK innovation
    • Hyundai Motor
    • 7-King Energy
    • Toyota
    • Hitachi Zosen
    • TDK
    • Ohara
    • Murata
    • Idemitsu Kosan
    • APB
    • FDK
    • NGK SPARK PLUG
    • Taiyo Yuden
    • CATL
    • Prologium
    • Ganfeng Lithium
    • TDL
    • Coslight
  • 歐洲國家
    • Ilika
    • Blue Solutions
    • IMEC
  • 北美國家
    • Solid Power
    • Solid Energy Systems
    • 24M
    • Hydro Qu?bec
    • Sakti3
    • SEEO
    • Brightvolt
    • Ionic Materials
    • TeraWatt
    • QuantumScape
  • 全固態電池開發合作現狀
  • 各地區支持組織的現狀
    • 國與國之間如何通過政府資金在世界範圍內進行合作
    • 亞洲主要機構現狀
    • 歐洲主要機構現狀
    • 北美主要機構現狀
  • 社區支持計劃
    • 日本
    • 歐洲
  • 能量密度(Wh/kg & Wh/L)

第9章全固態電池市場展望

  • 全固態電池市場前景概覽
  • 全固態電池市場展望
    • 全固態電池使用率
    • 按應用對全固態電池市場的展望
    • 按電池類型劃分的市場前景
目錄

As the issues regarding the stability and energy density of LiB continue to be raised, the development of next-generation batteries to solve these problems is gradually expanding, and among them, all-solid-state batteries are receiving the most attention in terms of stability and a development completion degree.

All-solid-state batteries can be classified into 3 types of sulfide-based, oxide-based, and polymer-based, according to the kinds of electrolyte substances; each substance has different advantages/disadvantages and issues. This report described the advantages/disadvantages, issues, manufacturing processes, etc. of these substances. In addition, the major development types for each company and the market outlook for each type are projected until 2030.

This report calculates the market by integrating the degree of technology development, OEM requirements, and target mass production times of all-solid-state battery companies, and analyzed the market by type, by company, and by application, with respect to battery companies.

The above content was divided into a total of 9 chapters to describe the relevant substances; the approximate contents of each chapter are shown in the table of contents as follows.

Table of Contents

1. Introduction

  • 1.1. Battery Development History
    • 1.1.1. History of Ancient Battery Development
    • 1.1.2. Manganese Battery (Leclanch? cell)
    • 1.1.3. Alkaline Cell
    • 1.1.4. Lead-acid Battery
    • 1.1.5. Ni-Cd Battery
    • 1.1.6. Ni-MH Battery
    • 1.1.7. Lithium Secondary Battery (Lithium-ion battery)
  • 1.2. Problems of Lithium Secondary Battery
    • 1.2.1. Safety
    • 1.2.2. Energy Density

2. All-Solid-State Battery

  • 2.1. Advantages of All-Solid-State Battery
    • 2.1.1. Energy Density Improvement
    • 2.1.2. Enabled Application of New Active Materials
    • 2.1.3. Low Activation Energy
  • 2.2. Manufacturing Process of All-Solid-State Battery
    • 2.2.1. Electrolyte Layer Manufacturing
    • 2.2.2. Manufacture of Anode and Cathode Composite Layers
    • 2.2.3. Cell Assembly
  • 2.3. Solid Electrolyte
    • 2.3.1. History of Solid Electrolyte Development
    • 2.3.2. Solid Electrolyte Drive Mechanism
    • 2.3.3. Classification of Solid Electrolytes
  • 2.4. Effects of All-Solid-State Batteries on the Existing SCM

3. Sulfide-Based Electrolyte

  • 3.1. Type of Sulfide-Based Electrolyte
    • 3.1.1. Thio-LISICON-Based
    • 3.1.2. Binary Sulfide-Based
    • 3.1.3. Argyrodite-Based
    • 3.1.4. Other: Li7P2S8I
  • 3.2. Synthesis Method of Sulfide-Based Electrolyte
    • 3.2.1. Solid-Phase Synthesis
    • 3.2.2. Liquid-Phase Synthesis
    • 3.2.3. Wet-Chemical Synthesis
  • 3.3. Synthesis Method of Core Raw Materials
    • 3.3.1. Core Raw Material: Li2S
    • 3.3.2. Synthesis of Starting Materials
    • 3.3.3. Starting Material: Li metal
    • 3.3.4. Starting Material: Li2SO4
    • 3.3.5. Starting Material: Li2CO3
    • 3.3.6. Starting Material: LiOH
    • 3.3.7. Starting Material: Li-R

4. Oxide-Based Electrolyte

  • 4.1. Type of Oxide-Based Electrolyte
    • 4.1.1. Perovskite-Based
    • 4.1.2. Garnet-Based
    • 4.1.3. NASICON-Based
    • 4.1.4. Li1+xAlxGe2-x(PO4)3 (LAGP)
    • 4.1.5. Other: Li2.9PO3.3N0.46 (LiPON)
  • 4.2. Synthesis Method of Oxide-Based Electrolyte
    • 4.2.1. Solid-Phase Synthesis
    • 4.2.2. Solid-Phase Synthesis

5. Polymer-Based Electrolyte

  • 5.1. Type of Polymer-Based Electrolyte
    • 5.1.1. PEO-Based Electrolyte
    • 5.1.2. Polymer/Ceramic Composite
  • 5.2. Synthesis Method of Polymer-Based Electrolyte
    • 5.2.1. Blending Method ? PEO-Based Electrolyte
    • 5.2.2. Blending Method ? Polymer/Ceramic Composite

6. R&D Trend of All-Solid-State Battery

  • 6.1. Problems of All-Solid-State Battery
  • 6.2. R&D Trend of All-Solid-State Battery
    • 6.2.1. Improvement of Li Metal Stability
    • 6.2.2. Improvement of Electrode Binding Strength Problem
    • 6.2.3. Improvement of Pole-Plate Manufacturing Process
  • 6.3. R&D Trend of Sulfide-Based Electrolyte
    • 6.3.1. Improvement of Solid Electrolyte/Electrode Interface Stability
    • 6.3.2. Improvement of Particle Segregation Problem
    • 6.3.3. Suppression of Void Generation
    • 6.3.4. Improvement of Solid Electrolyte performance
  • 6.4. R&D Trend of Oxide-Based Electrolyte
    • 6.4.1. Improvement of Solid Electrolyte/Electrode Contact
    • 6.4.2. Improvement of Solid Electrolyte Performance
  • 6.5. R&D trend of Polymer-Based Electrolyte
    • 6.5.1. Improvement of Self-Standing Properties of Electrolyte layers
    • 6.5.2. Suppression of Li Dendrite Formation

7. Patent Trend of All-Solid-State Battery

  • 7.1. Overview of All-Solid-State Battery Patents
  • 7.2. Major Patent of Polymer Type
  • 7.3. Major Patent of Inorganic Matter and Inorganic-Polymer Hybrid
  • 7.4. Patent_Raw Materials of All-Solid State Battery
  • 7.5. Patent_Battery_Application of All-Solid State Battery
  • 7.6. Core Patents for Each All-Solid State Battery Material

8. Status of All-Solid-State Battery Development Companies

  • 8.1. Asian Countries
    • 8.1.1. Samsung Electronics
    • 8.1.2. Korea Institute of Industrial Technology
    • 8.1.3. LG Chem
    • 8.1.4. SK innovation
    • 8.1.5. Hyundai Motor
    • 8.1.6. 7-King Energy
    • 8.1.7. Toyota
    • 8.1.8. Hitachi Zosen
    • 8.1.9. TDK
    • 8.1.10. Ohara
    • 8.1.11. Murata
    • 8.1.12. Idemitsu Kosan
    • 8.1.13. APB
    • 8.1.14. FDK
    • 8.1.15. NGK SPARK PLUG
    • 8.1.16. Taiyo Yuden
    • 8.1.17. CATL
    • 8.1.18. Prologium
    • 8.1.19. Ganfeng Lithium
    • 8.1.20. TDL
    • 8.1.21. Coslight
  • 8.2. European Countries
    • 8.2.1. Ilika
    • 8.2.2. Blue Solutions
    • 8.2.3. IMEC
  • 8.3. North American Countries
    • 8.3.1. Solid Power
    • 8.3.2. Solid Energy Systems
    • 8.3.3. 24M
    • 8.3.4. Hydro Qu?bec
    • 8.3.5. Sakti3
    • 8.3.6. SEEO
    • 8.3.7. Brightvolt
    • 8.3.8. Ionic Materials
    • 8.3.9. TeraWatt
    • 8.3.10. QuantumScape
  • 8.4. Status of All-Solid-State Battery Development Collaboration
  • 8.5. Status of Support Institutions by Region
    • 8.5.1. Global Cooperation Method through Government Funding between Countries
    • 8.5.1. Status of Major Asian Institutions
    • 8.5.2. Status of Major European Institutions
    • 8.5.3. Status of Major North American Institutions
  • 8.6. Regional Support Programs
    • 8.6.1. Japan
    • 8.6.2. Europe
  • 8.7. Energy Density (Wh/kg & Wh/L)

9. Outlook for All-Solid-State Battery Market

  • 9.1. Overview of All-Solid-State Battery Market Outlook
  • 9.2. Outlook for All-Solid-State Battery Market
    • 9.2.1. Utilization Rate of All-Solid-State Battery
    • 9.2.2. Outlook for All-Solid-State Battery Market by Application
    • 9.2.3. Market Outlook by Battery Type