到 2030 年快速原型市場預測 - 依類型、形狀、材料、功能、技術、最終用戶和地區進行的全球分析
市場調查報告書
商品編碼
1359041

到 2030 年快速原型市場預測 - 依類型、形狀、材料、功能、技術、最終用戶和地區進行的全球分析

Rapid Prototyping Market Forecasts to 2030 - Global Analysis By Type (Proof-of-Concept Prototype, Visual Prototype, Functional Prototype, User Experience Prototype and Other Types), Form, Material, Function, Technology, End-User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

根據Stratistics MRC預測,2023年全球快速原型市場規模將達到142.5億美元,預計2030年將達到376.9億美元,預測期內年複合成長率為14.9%。

快速原型製作採用多種技術,利用3D電腦輔助設計資料快速創建實體項目或連接的比例模型。根據使用者回饋和分析,在短時間內進行多次迭代,以建立產品模擬,以便在產品開發過程中進行測試和檢驗。儘管在快速原型製造中使用了多種製造技術,但積層製造是普及的。快速原型設計的好處包括降低整體產品開發成本以及縮短設計和開發時間。

根據國際汽車工業協會(OICA)預測,2020年全球汽車產量將比2019年下降16%。預計這將在中短期內對市場成長產生重大影響。

製造業需求增加

一種稱為快速原型製作的新製造方法可以快速建立使用 3D 電腦輔助軟體建立的電腦模型。快速原型設計的主要最終用戶包括汽車、航太和國防等製造業。快速原型技術因其優點在北美和歐洲很受歡迎。快速原型製作可以作為一種快速且經濟實惠的技術,用於製作設計概念原型、進行多次設計更改以及對設計進行物理檢驗,並且可以顯著減少產品開發所需的時間。

材料和製程高成本

快速原型設計工具需要大量的初始設定成本。快速原型製作的價格由多種因素決定,包括原型的類型、材料、最終特性以及原型設計的目的和性質。用於快速原型製作的陶瓷和智慧材料比熱塑性塑膠更昂貴。對合格勞動力和現代技術的需求增加了工作的整體成本。

擴大產品開發和客製化

快速原型製作使公司能夠快速且經濟地創建新產品和組件的工作原型。這可以實現快速測試和迭代,從而縮短產品開發週期並增加創新。快速原型製作使公司能夠在投入全面生產之前測試新的設計概念、檢驗想法並獲得相關人員的回饋。透過採用快速原型設計,公司可以創建滿足特定市場群體需求或獨特客戶偏好的客製化版本產品。這使得企業能夠提供獨特的客製化產品,提高客戶滿意度和忠誠度。

標準和品質保證

隨著快速原型製作業務的不斷發展和壯大,很難確保不同技術、材料和生產商的品質一致。缺乏標準化以及不同快速原型技術的輸出品質差異可能會影響原型的可靠性和性能。為了維持品管,公司必須仔細評估和選擇可靠的服務供應商或進行內部投資。

COVID-19 的影響:

由於供應鏈中斷、勞動力短缺和嚴格的運輸要求而導致製造活動的生產延遲,COVID-19大流行的爆發對快速原型產業產生了各種影響。由於原料短缺導致製造活動暫時推遲,快速原型行業的主要參與者在 2020-2021 會計年度經歷了銷售額下降。然而,隨著全球經濟開始好轉,主要市場參與企業正在逐漸減少研發預算,並將重點轉向下一代技術,以應對 COVID-19 的負面影響。

熱塑性塑膠領域預計將在預測期內成為最大的領域

熱塑性塑膠領域預計將出現良好的成長。這是因為熱塑性塑膠提供了各種具有不同特性的材料的預測,允許創建具有不同機械、熱和化學能力的原型。聚乳酸 (PLA)、PETG(聚對苯二甲酸乙二醇酯)、尼龍、聚碳酸酯和聚丙烯是一些用於原型製作的常見熱塑性塑膠。其他材料包括 ABS(丙烯腈-丁二烯-苯乙烯)、PLA(聚乳酸)和 PETG。與用於原型製作的其他材料(例如金屬和陶瓷)相比,熱塑性塑膠通常價格實惠。熱塑性長絲的可用性和成本使其成為快速原型設計專案的實用選擇。這些因素正在推動該部門市場的成長。

預計航太和國防領域在預測期內年複合成長率最高

航太和國防領域預計將在預測期內實現最快的年複合成長率,因為快速原型製作使航太和國防公司能夠快速將數位設計和 CAD 模型轉換為實體原型以檢驗概念。這使得工程師和設計師能夠在開始大規模生產之前評估新飛機和防禦系統想法的可行性和功能。這些要素正在推動該部門市場的成長。

比最大的地區

由於全球最大的航太市場是美國,預計北美在預測期內將佔據最大的市場佔有率。加拿大的航太產業正處於一個轉捩點,預計未來 20年度將在全球範圍內實現顯著成長。預計這將對航太業中使用的市場研究的消耗產生重大影響。加拿大在民用飛行模擬方面處於世界領先地位,民用引擎產量排名第三,民用飛機產量排名第四。此外,快速原型技術最大的最終用戶之一是醫療產業,該技術用於製造各種產品,包括手術器械、植入物、組織工程支架、支架和植入物。無可否認,美國醫療保健產業是世界上最發達的產業之一。北美是每個領域類別中唯一進入前五名的國家。

複合年複合成長率最高的地區:

由於快速原型技術、材料和工藝的顯著進步,預計亞太地區在預測期內將出現最高的年複合成長率。由於其精度、速度和成本效益的提高,快速原型技術現在正在更多領域得到應用。目前,快速原型設計已應用於亞太地區汽車、汽車、航太、醫療保健、消費品和消費品等多種產業的產品開發流程。亞太地區強大的製造基礎和不斷成長的技術力促進了快速原型技術的採用。

免費客製化服務:

訂閱此報告的客戶可以存取以下免費自訂選項之一:

  • 公司簡介
    • 其他市場參與者的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計、預測和年複合成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章 執行摘要

第2章 前言

  • 概述
  • 利害關係人
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 調查來源
    • 主要調查來源
    • 二次調查來源
    • 先決條件

第3章 市場趨勢分析

  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 技術分析
  • 最終用戶分析
  • 新興市場
  • 新型冠狀病毒感染疾病(COVID-19)的影響

第4章 波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第5章 全球快速原型市場:依類型

  • 概念驗證(PoC) 原型
  • 視覺原型
  • 功能原型
  • 使用者體驗原型
  • 其他類型

第6章 全球快速原型市場:依形狀分類

  • 燈絲
  • 粉末
  • 墨水

第7章 全球快速原型市場:依材料分類

  • 金屬和合金
  • 陶瓷製品
  • 石膏
  • 液體矽橡膠(LSR)
  • 澱粉
  • 聚合物
  • 熱塑性塑膠
  • 其他材料

第8章 全球快速原型市場:依功能

  • 功能原型
  • 概念模型

第9章 全球快速原型市場:依技術分類

  • 科技
  • 立體光固成型(SLA)
  • 熔融沉積建模(FDM)
  • 數位光處理 [DLP]
  • 選擇性雷射燒結(SLS)
  • 電子束熔煉 [EBM]
  • 多射流融合 (MJF)

第10章 全球快速原型市場:依最終用戶分類

  • 航太和國防
  • 汽車
  • 電影和動畫
  • 消費品和電子設備
  • 建築學
  • 交通設施
  • 醫學
  • 其他最終用戶

第11章全球快速原型市場:依地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲

第12章進展

  • 合約、夥伴關係、協作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第13章公司簡介

  • 3D Systems Corporation
  • Stratasys, Ltd.
  • EOS GmbH Electro Optical Systems
  • Materialise NV
  • Golden Plastics
  • Arcam AB
  • LPW Technology Ltd.
  • Sandvik AB
  • Tethon 3D
  • Lithoz GmbH
  • Arkema SA
  • Royal DSM NV
  • CRP Group
  • Oxford Performance Materials
  • Renishaw PLC
  • Hoganas AB
  • GKN PLC
  • Carpenter Technology Corporation
  • 3D Ceram
  • Fathom Digital Manufacturing Corporation
Product Code: SMRC23913

According to Stratistics MRC, the Global Rapid Prototyping Market is accounted for $14.25 billion in 2023 and is expected to reach $37.69 billion by 2030 growing at a CAGR of 14.9% during the forecast period. Rapid prototyping is the employing of a variety of techniques to rapidly produce a scale model of a physical item or connection using three-dimensional computer-aided design data. It generates several iterations over a short period of time based on user feedback and analysis to build product simulations for testing and validation during the product development process. While many different manufacturing techniques are used in rapid prototyping, layered additive manufacturing is the most prevalent. The advantages of rapid prototyping include reduced overall product development costs and reduced design and development time.

According to International Organization of Motor Vehicle Manufacturers (OICA), global production of vehicles, declined by 16% in 2020 when compared to 2019. This is expected to significantly impact the market growth in the short to medium-term.

Market Dynamics:

Driver:

Increasing demand for the manufacturing sector

A new manufacturing method called rapid prototyping enables the quick creation of computer models created with 3D computer-aided software. The primary end-users of fast prototyping include manufacturing sectors like automotive, aerospace, defence, and other industries. Because of its benefits, rapid prototyping is highly sought-after in North America and Europe. It can be used as a quick and affordable technique for prototyping design concepts, several design modifications, and physical validation of designs, greatly lowering the time period required for product development.

Restraint:

High cost of materials and the processes

Rapid prototyping tools have a significant initial setup cost. The price of rapid prototyping is determined by a variety of elements, such as the type of prototype, the material, the final properties, and the purpose and nature of the prototype design. In comparison to thermoplastics, quick-prototyping ceramic materials and smart materials are more expensive. The overall cost of the operation rises due to the need for qualified labour and modern technology.

Opportunity:

Product development and increased customization

Rapid prototyping enables businesses to quickly and affordably create working prototypes of new products or components. Because of the quicker testing and iterations made possible by this, product development cycles are shortened, and innovation is raised. Before spending money on full-scale production, businesses can use rapid prototyping to test new design concepts, validate ideas, and get feedback from stakeholders. Companies can employ rapid prototyping to make customised versions of their products to meet the needs of particular market groups or unique client preferences. This gives businesses the chance to provide distinctive and customised products, increasing client pleasure and loyalty.

Threat:

Standards and quality assurance

It can be difficult to ensure uniform quality across various technologies, materials, and producers as the rapid prototyping business continues to develop and grow. The dependability and performance of prototypes can be impacted by a lack of standardisation and variations in the output quality of various rapid prototyping technologies. To maintain quality control, businesses must carefully assess and choose dependable service suppliers or make internal investments.

COVID-19 Impact:

The outbreak of the COVID-19 pandemic had a mixed impact on the rapid prototyping industry, due to production delays in manufacturing activities caused by supply chain interruptions, a labour shortage, and stringent transportation requirements. Major participants in the fast prototyping industry experienced a reduction in sales for the fiscal years 2020 to 2021 as a result of a temporary delay in manufacturing activities caused by a lack of raw materials. The leading market participants, however, have moderately reduced their R&D budgets and redirected their focus to next-generation technologies in reaction to COVID-19's negative consequences when the world economy started to improve.

The thermoplastics segment is expected to be the largest during the forecast period

The thermoplastics segment is estimated to have a lucrative growth, because thermoplastics provide a broad range of material prospects with a variety of properties, enabling the creation of prototypes with different mechanical, thermal, and chemical capabilities. Polylactic acid (PLA), PETG (polyethylene terephthalate glycol), nylon, polycarbonate, and polypropylene are a few examples of common thermoplastics used in prototyping. Other materials include ABS (acrylonitrile butadiene styrene), PLA (polylactic acid), and PETG. In comparison to other materials used for prototyping, such as metals or ceramics, thermoplastics are typically more affordable. Thermoplastic filaments are a practical option for quick prototyping projects due to their accessibility and cost. These elements are propelling the segment growth.

The Aerospace & Defence segment is expected to have the highest CAGR during the forecast period

The Aerospace & Defence segment is anticipated to witness the fastest CAGR growth during the forecast period, because the rapid prototyping allows aerospace and defence companies to quickly transform digital designs and CAD models into physical prototypes to validate concepts. By doing this, engineers and designers can assess the viability and functionality of new aircraft or defence system ideas before committing to large-scale production. These factors are accelerating the segment growth.

Region with largest share:

North America is projected to hold the largest market share during the forecast period owing to the world's largest aerospace market is in the United States. The aerospace industry in Canada is at a turning point, and over the next 20 years, exponential growth is envisaged for the industry globally. This is anticipated to have a substantial impact on the consumption of market research for use in the aerospace industry. Canada is the world leader in civil flight simulation, third in the production of civil engines, and fourth in the production of civil aircraft. Additionally, one of the largest end users of rapid prototyping technology is the medical industry, which uses it to create a variety of products, including surgical instruments, implants, scaffolds for tissue engineering, stents, and implants. The American healthcare industry is unquestionably one of the most developed in the world. North America is the only country to place in the top five in each important sector category.

Region with highest CAGR:

Asia-Pacific region is projected to have the highest CAGR over the forecast period, owing to its rapid prototyping technologies, materials, and processes have made significant advancements. A wider number of sectors may now use rapid prototyping because of improvements in accuracy, speed, and cost-effectiveness. Rapid prototyping is now being used for product development processes in a variety of industries, including electronics, automotive, aerospace, healthcare, consumer products, and consumer packaged goods in Asia pacific region. Rapid prototyping technology adoption has been made easier by the region's robust manufacturing base and expanding technological capabilities.

Key players in the market:

Some of the key players profiled in the Rapid Prototyping Market include: 3D Systems Corporation, Stratasys, Ltd., EOS GmbH Electro Optical Systems, Materialise NV, Golden Plastics, Arcam AB, LPW Technology Ltd., Sandvik AB, Tethon 3D, Lithoz GmbH, Arkema S.A., Royal DSM N.V., CRP Group, Oxford Performance Materials, Renishaw PLC, Hoganas AB, GKN PLC, Carpenter Technology Corporation, 3D Ceram and Fathom Digital Manufacturing Corporation

Key Developments:

In September 2021, 3D System Corporation expended its material portfolio with the launch of Certified Scalmalloy (A) and Certified M789 (A). This material will be used to develop high strength part for energy, mold making, automotive, electronics, aerospace and defense application. Also, the consumer can use direct metal printing platform to develop part with the help of Scalmalloy (A) and M789 (A).

In November 2021, Desktop Metal, Inc. completed its acquisition of the ExOne Company. This acquisition reinforces Desktop Metal's leadership in additive manufacturing (AM) for mass production. ExOne extends Desktop Metal's product platforms with complementary solutions to create an unparalleled AM portfolio that offers industry-leading throughput, flexibility, and materials breadth, providing customers with a variety of options to address their specific application.

Types Covered:

  • Proof-of-Concept (PoC) Prototype
  • Visual Prototype
  • Functional Prototype
  • User Experience Prototype
  • Other Types

Forms Covered:

  • Filament
  • Powder
  • Ink

Materials Covered:

  • Metals and Alloys
  • Ceramic
  • Plaster
  • Liquid Silicone Rubber (LSR)
  • Starch
  • Polymer
  • Thermoplastics
  • Other Materials

Functions Covered:

  • Functional Prototype
  • Conceptual Model

Technologies Covered:

  • Stereolithography (SLA)
  • Fused Deposition Modeling (FDM)
  • Digital Light Processing [DLP]
  • Selective Laser Sintering (SLS)
  • Electron Beam Melting [EBM]
  • Multi Jet Fusion (MJF)

End Users Covered:

  • Aerospace & Defense
  • Automotive
  • Film & Animation
  • Consumer Goods and Electronics
  • Architecture
  • Transportation
  • Medical
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Rapid Prototyping Market, By Type

  • 5.1 Introduction
  • 5.2 Proof-of-Concept (PoC) Prototype
  • 5.3 Visual Prototype
  • 5.4 Functional Prototype
  • 5.5 User Experience Prototype
  • 5.6 Other Types

6 Global Rapid Prototyping Market, By Form

  • 6.1 Introduction
  • 6.2 Filament
  • 6.3 Powder
  • 6.4 Ink

7 Global Rapid Prototyping Market, By Material

  • 7.1 Introduction
  • 7.2 Metals and Alloys
  • 7.3 Ceramic
  • 7.4 Plaster
  • 7.5 Liquid Silicone Rubber (LSR)
  • 7.6 Starch
  • 7.7 Polymer
  • 7.8 Thermoplastics
  • 7.9 Other Materials

8 Global Rapid Prototyping Market, By Function

  • 8.1 Introduction
  • 8.2 Functional Prototype
  • 8.3 Conceptual Model

9 Global Rapid Prototyping Market, By Technology

  • 9.1 Introduction
  • 9.2 Technology
  • 9.3 Introduction
  • 9.4 Stereolithography (SLA)
  • 9.5 Fused Deposition Modeling (FDM)
  • 9.6 Digital Light Processing [DLP]
  • 9.7 Selective Laser Sintering (SLS)
  • 9.8 Electron Beam Melting [EBM]
  • 9.9 Multi Jet Fusion (MJF)

10 Global Rapid Prototyping Market, By End User

  • 10.1 Introduction
  • 10.2 Aerospace & Defense
  • 10.3 Automotive
  • 10.4 Film & Animation
  • 10.5 Consumer Goods and Electronics
  • 10.6 Architecture
  • 10.7 Transportation
  • 10.8 Medical
  • 10.9 Other End Users

11 Global Rapid Prototyping Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 3D Systems Corporation
  • 13.2 Stratasys, Ltd.
  • 13.3 EOS GmbH Electro Optical Systems
  • 13.4 Materialise NV
  • 13.5 Golden Plastics
  • 13.6 Arcam AB
  • 13.7 LPW Technology Ltd.
  • 13.8 Sandvik AB
  • 13.9 Tethon 3D
  • 13.10 Lithoz GmbH
  • 13.11 Arkema S.A.
  • 13.12 Royal DSM N.V.
  • 13.13 CRP Group
  • 13.14 Oxford Performance Materials
  • 13.15 Renishaw PLC
  • 13.16 Hoganas AB
  • 13.17 GKN PLC
  • 13.18 Carpenter Technology Corporation
  • 13.19 3D Ceram
  • 13.20 Fathom Digital Manufacturing Corporation

List of Tables

  • Table 1 Global Rapid Prototyping Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Rapid Prototyping Market Outlook, By Type (2021-2030) ($MN)
  • Table 3 Global Rapid Prototyping Market Outlook, By Proof-of-Concept (PoC) Prototype (2021-2030) ($MN)
  • Table 4 Global Rapid Prototyping Market Outlook, By Visual Prototype (2021-2030) ($MN)
  • Table 5 Global Rapid Prototyping Market Outlook, By Functional Prototype (2021-2030) ($MN)
  • Table 6 Global Rapid Prototyping Market Outlook, By User Experience Prototype (2021-2030) ($MN)
  • Table 7 Global Rapid Prototyping Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 8 Global Rapid Prototyping Market Outlook, By Form (2021-2030) ($MN)
  • Table 9 Global Rapid Prototyping Market Outlook, By Filament (2021-2030) ($MN)
  • Table 10 Global Rapid Prototyping Market Outlook, By Powder (2021-2030) ($MN)
  • Table 11 Global Rapid Prototyping Market Outlook, By Ink (2021-2030) ($MN)
  • Table 12 Global Rapid Prototyping Market Outlook, By Material (2021-2030) ($MN)
  • Table 13 Global Rapid Prototyping Market Outlook, By Metals and Alloys (2021-2030) ($MN)
  • Table 14 Global Rapid Prototyping Market Outlook, By Ceramic (2021-2030) ($MN)
  • Table 15 Global Rapid Prototyping Market Outlook, By Plaster (2021-2030) ($MN)
  • Table 16 Global Rapid Prototyping Market Outlook, By Liquid Silicone Rubber (LSR) (2021-2030) ($MN)
  • Table 17 Global Rapid Prototyping Market Outlook, By Starch (2021-2030) ($MN)
  • Table 18 Global Rapid Prototyping Market Outlook, By Polymer (2021-2030) ($MN)
  • Table 19 Global Rapid Prototyping Market Outlook, By Thermoplastics (2021-2030) ($MN)
  • Table 20 Global Rapid Prototyping Market Outlook, By Other Materials (2021-2030) ($MN)
  • Table 21 Global Rapid Prototyping Market Outlook, By Function (2021-2030) ($MN)
  • Table 22 Global Rapid Prototyping Market Outlook, By Functional Prototype (2021-2030) ($MN)
  • Table 23 Global Rapid Prototyping Market Outlook, By Conceptual Model (2021-2030) ($MN)
  • Table 24 Global Rapid Prototyping Market Outlook, By Technology (2021-2030) ($MN)
  • Table 25 Global Rapid Prototyping Market Outlook, By Technology (2021-2030) ($MN)
  • Table 26 Global Rapid Prototyping Market Outlook, By Introduction (2021-2030) ($MN)
  • Table 27 Global Rapid Prototyping Market Outlook, By Stereolithography (SLA) (2021-2030) ($MN)
  • Table 28 Global Rapid Prototyping Market Outlook, By Fused Deposition Modeling (FDM) (2021-2030) ($MN)
  • Table 29 Global Rapid Prototyping Market Outlook, By Digital Light Processing [DLP] (2021-2030) ($MN)
  • Table 30 Global Rapid Prototyping Market Outlook, By Selective Laser Sintering (SLS) (2021-2030) ($MN)
  • Table 31 Global Rapid Prototyping Market Outlook, By Electron Beam Melting [EBM] (2021-2030) ($MN)
  • Table 32 Global Rapid Prototyping Market Outlook, By Multi Jet Fusion (MJF) (2021-2030) ($MN)
  • Table 33 Global Rapid Prototyping Market Outlook, By End User (2021-2030) ($MN)
  • Table 34 Global Rapid Prototyping Market Outlook, By Aerospace & Defense (2021-2030) ($MN)
  • Table 35 Global Rapid Prototyping Market Outlook, By Automotive (2021-2030) ($MN)
  • Table 36 Global Rapid Prototyping Market Outlook, By Film & Animation (2021-2030) ($MN)
  • Table 37 Global Rapid Prototyping Market Outlook, By Consumer Goods and Electronics (2021-2030) ($MN)
  • Table 38 Global Rapid Prototyping Market Outlook, By Architecture (2021-2030) ($MN)
  • Table 39 Global Rapid Prototyping Market Outlook, By Transportation (2021-2030) ($MN)
  • Table 40 Global Rapid Prototyping Market Outlook, By Medical (2021-2030) ($MN)
  • Table 41 Global Rapid Prototyping Market Outlook, By Other End Users (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

List of Figures

Figure 1 Rapid Prototyping - Market Segmentation

Figure 2 Research Methodology

Figure 3 Data Mining

Figure 4 Data Analysis

Figure 5 Data Validation

Figure 6 Research Pipeline

Figure 7 Research Approach

Figure 8 Research Sources

Figure 9 Rapid Prototyping Market Scenario, Technology (2023) (% Market Share)

Figure 10 Rapid Prototyping Market Scenario, End User (2023) (% Market Share)

Figure 11 Rapid Prototyping Market Scenario, Emerging Markets (2023) (% Market Share)

Figure 12 Porter's Five Forces Analysis - Rapid Prototyping

Figure 13 Global Rapid Prototyping Market Analysis & Projection, By Type (2023 VS 2030) (US$MN)

Figure 14 Global Rapid Prototyping Market Analysis & Projection, By Proof-of-Concept (PoC) Prototype (2023 VS 2030) (US$MN)

Figure 15 Global Rapid Prototyping Market Analysis & Projection, By Visual Prototype (2023 VS 2030) (US$MN)

Figure 16 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)

Figure 17 Global Rapid Prototyping Market Analysis & Projection, By User Experience Prototype (2023 VS 2030) (US$MN)

Figure 18 Global Rapid Prototyping Market Analysis & Projection, By Other Types (2023 VS 2030) (US$MN)

Figure 19 Global Rapid Prototyping Market Analysis & Projection, By Form (2023 VS 2030) (US$MN)

Figure 20 Global Rapid Prototyping Market Analysis & Projection, By Filament (2023 VS 2030) (US$MN)

Figure 21 Global Rapid Prototyping Market Analysis & Projection, By Powder (2023 VS 2030) (US$MN)

Figure 22 Global Rapid Prototyping Market Analysis & Projection, By Ink (2023 VS 2030) (US$MN)

Figure 23 Global Rapid Prototyping Market Analysis & Projection, By Material (2023 VS 2030) (US$MN)

Figure 24 Global Rapid Prototyping Market Analysis & Projection, By Metals and Alloys (2023 VS 2030) (US$MN)

Figure 25 Global Rapid Prototyping Market Analysis & Projection, By Ceramic (2023 VS 2030) (US$MN)

Figure 26 Global Rapid Prototyping Market Analysis & Projection, By Plaster (2023 VS 2030) (US$MN)

Figure 27 Global Rapid Prototyping Market Analysis & Projection, By Liquid Silicone Rubber (LSR) (2023 VS 2030) (US$MN)

Figure 28 Global Rapid Prototyping Market Analysis & Projection, By Starch (2023 VS 2030) (US$MN)

Figure 29 Global Rapid Prototyping Market Analysis & Projection, By Polymer (2023 VS 2030) (US$MN)

Figure 30 Global Rapid Prototyping Market Analysis & Projection, By Thermoplastics (2023 VS 2030) (US$MN)

Figure 31 Global Rapid Prototyping Market Analysis & Projection, By Other Materials (2023 VS 2030) (US$MN)

Figure 32 Global Rapid Prototyping Market Analysis & Projection, By Function (2023 VS 2030) (US$MN)

Figure 33 Global Rapid Prototyping Market Analysis & Projection, By Functional Prototype (2023 VS 2030) (US$MN)

Figure 34 Global Rapid Prototyping Market Analysis & Projection, By Conceptual Model (2023 VS 2030) (US$MN)

Figure 35 Global Rapid Prototyping Market Analysis & Projection, By Technology (2023 VS 2030) (US$MN)

Figure 36 Global Rapid Prototyping Market Analysis & Projection, By Stereolithography (SLA) (2023 VS 2030) (US$MN)

Figure 37 Global Rapid Prototyping Market Analysis & Projection, By Fused Deposition Modeling (FDM) (2023 VS 2030) (US$MN)

Figure 38 Global Rapid Prototyping Market Analysis & Projection, By Digital Light Processing [DLP] (2023 VS 2030) (US$MN)

Figure 39 Global Rapid Prototyping Market Analysis & Projection, By Selective Laser Sintering (SLS) (2023 VS 2030) (US$MN)

Figure 40 Global Rapid Prototyping Market Analysis & Projection, By Electron Beam Melting [EBM] (2023 VS 2030) (US$MN)

Figure 41 Global Rapid Prototyping Market Analysis & Projection, By Multi Jet Fusion (MJF) (2023 VS 2030) (US$MN)

Figure 42 Global Rapid Prototyping Market Analysis & Projection, By End-Use Industry (2023 VS 2030) (US$MN)

Figure 43 Global Rapid Prototyping Market Analysis & Projection, By Aerospace & Defense (2023 VS 2030) (US$MN)

Figure 44 Global Rapid Prototyping Market Analysis & Projection, By Automotive (2023 VS 2030) (US$MN)

Figure 45 Global Rapid Prototyping Market Analysis & Projection, By Film & Animation (2023 VS 2030) (US$MN)

Figure 46 Global Rapid Prototyping Market Analysis & Projection, By Consumer Goods and Electronics (2023 VS 2030) (US$MN)

Figure 47 Global Rapid Prototyping Market Analysis & Projection, By Architecture (2023 VS 2030) (US$MN)

Figure 48 Global Rapid Prototyping Market Analysis & Projection, By Transportation (2023 VS 2030) (US$MN)

Figure 49 Global Rapid Prototyping Market Analysis & Projection, By Medical (2023 VS 2030) (US$MN)

Figure 50 Global Rapid Prototyping Market Analysis & Projection, By Other End User Industries (2023 VS 2030) (US$MN)

Figure 51 Global Rapid Prototyping Market Analysis & Projection, By Geography (2023 VS 2030) (US$MN)

Figure 52 Global Rapid Prototyping Market Analysis & Projection, By Country (2023 VS 2030) (US$MN)

Figure 53 Global Rapid Prototyping Market Analysis & Projection, By North America (2023 VS 2030) (US$MN)

Figure 54 Global Rapid Prototyping Market Analysis & Projection, By Europe (2023 VS 2030) (US$MN)

Figure 55 Global Rapid Prototyping Market Analysis & Projection, By Asia Pacific (2023 VS 2030) (US$MN)

Figure 56 Global Rapid Prototyping Market Analysis & Projection, By South America (2023 VS 2030) (US$MN)

Figure 57 Global Rapid Prototyping Market Analysis & Projection, By Middle East & Africa (2023 VS 2030) (US$MN)

Figure 58 3D Systems Corporation - Swot Analysis

Figure 59 Stratasys, Ltd. - Swot Analysis

Figure 60 EOS GmbH Electro Optical Systems - Swot Analysis

Figure 61 Materialise NV - Swot Analysis

Figure 62 Golden Plastics - Swot Analysis

Figure 63 Arcam AB - Swot Analysis

Figure 64 LPW Technology Ltd. - Swot Analysis

Figure 65 Sandvik AB - Swot Analysis

Figure 66 Tethon 3D - Swot Analysis

Figure 67 Lithoz GmbH - Swot Analysis

Figure 68 Arkema S.A. - Swot Analysis

Figure 69 Royal DSM N.V. - Swot Analysis

Figure 70 CRP Group - Swot Analysis

Figure 71 Oxford Performance Materials - Swot Analysis

Figure 72 Renishaw PLC - Swot Analysis

Figure 73 Hoganas AB - Swot Analysis

Figure 74 GKN PLC - Swot Analysis

Figure 75 Carpenter Technology Corporation - Swot Analysis

Figure 76 3D Ceram - Swot Analysis

Figure 77 Fathom Digital Manufacturing Corporation - Swot Analysis