汽車傳感器芯片產業(2023)
市場調查報告書
商品編碼
1275651

汽車傳感器芯片產業(2023)

Automotive Sensor Chip Industry Report, 2023

出版日期: | 出版商: ResearchInChina | 英文 360 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

傳感器芯片行業調查:傳感器芯片在“感知權重提升”的道路上,正進入快速迭代演進的新階段。

2023上海車展上,“重感知、輕地圖”、“城市NOA”、“BEV+Transformer”等眾多主機廠和Tier 1供應商紛紛亮相,為加速佈局化地圖,消除對高精地圖的依賴,可以看到“重感知,輕地圖”的技術路線已經發生了轉變。

在“感知更多”技術路線的推動下,汽車傳感器發揮著越來越重要的作用激光雷達、4D成像雷達、8MP CMOS圖像傳感器(CIS)等新產品在汽車領域迅速湧現,帶動傳感器需求芯片。 汽車傳感器與芯片技術正進入快速迭代演進、快速降本的新階段。

雷達芯片:中國廠商大躍進,打破海外壟斷

汽車雷達芯片市場由 NXP、Infineon 和 TI 等公司主導。 在中國廠商中,加特蘭半導體是最早與20多家汽車製造商合作的廠商之一,累計出貨量超過300萬台,覆蓋70多款乘用車車型,其中三分之一為海外客戶。 .增加。

4D雷達也在快速滲透中高端車型和自動駕駛車型。 BMW、GM等整車廠和Continental、ZF等Tier 1供應商已在該領域完善佈局。 理想汽車、長安汽車、比亞迪汽車、特斯拉汽車、吉利汽車等中國品牌已指定或創建 4D 雷達應用。 搭載4D成像雷達“鳳凰”的特斯拉下一代自動駕駛平台“HW4.0”成為市場拐點。

Infineon和NXP在傳統雷達芯片領域幾乎佔據壟斷地位。 4G成像雷達作為雷達的主要發展方向,可以更好地服務於城市NOA等高級自動駕駛功能。 中國廠商也在加速佈局4D雷達芯片。

Cartera:2022年12月,我們發布了實現4D成像雷達功能,推動L3+自動駕駛發展的下一代新型雷達SoC家族“Andes”。 該系列具有以下主要特點:

  • 採用 22nm 工藝的 4T4R SoC
  • 內置多核 CPU,包括 DSP(數字信號處理器)和 RSP(雷達信號處理器)
  • RGMII/SMGII 千兆以太網
  • 支持靈活的級聯
  • 符合 ASIL-B 和 AEC-Q100 1 級要求

牧野微電子:一家專注於4D高精度成像雷達的4D雷達初創公司。 2022年12月,成功研發首款77G雷達芯片;2023年3月,通過“1S0-26262 ASL-D功能安全認證”;進行芯片採購、芯片商業化、生產和交付給Alpha客戶。

LiDAR 芯片:向 SoC 集成邁進

2022年後,激光雷達將更多地應用於汽車,中國約有16.4萬輛乘用車配備了激光雷達。 LiDAR常用於L2+++乘用車(高速公路+市區NOA功能),多為25萬元以上的高端新能源車。 預計到2026年,中國乘用車將安裝366.6萬個激光雷達。 為一輛 15 萬載客量的車輛配備 LiDAR 需要更大的成本降低,這在短期內可能難以實現。

2023年激光雷達的價格競爭將開始,出貨價格將低迷至500美元左右,但相比4D雷達的價格(200-300美元),激光雷達將基於SoC,即還是比較高。它會變得更集成,更便宜。

(1) 與收發芯片集成

要在汽車中廣泛普及激光雷達,首先需要控製成本。 由於各家廠商的激光雷達發展路線不同,因此存在成本差異。 但收發芯片是核心成本因素 與收發芯片集成是降低 LiDAR 成本的有效途徑。

  • 發射器芯片:用集成模塊代替分立模塊可以減少超過 70% 的物料清單和調試成本;
  • 接收芯片:SPAD 解決方案的小尺寸有利於與讀出電路集成,從而進一步降低成本。

激光雷達芯片是國外廠商擅長的技術,但近年來中國廠商也在致力於相關技術的研發。 發射芯片方面,中國廠商已經開始上游VCSEL芯片設計,接收芯片方面,中國初創企業正在向SPAD和SiPM芯片進軍,其中有QuantaEye和FortSense進行SPAD/SiPM的研發,我正在努力。

FortSense:2019年開始佈局SPAD激光雷達芯片研發,2021年流片,2022年9月通過汽車認證。 獲得 5 家以上 OEM LiDAR 首選供應商的認可。 2022年12月C輪融資結束,募集資金將用於激光雷達芯片的研發。

Hesai Technology:近年來,我們一直專注於激光雷達芯片的研發。 Hesai Technology於2018年開始研發LiDAR SoC,並製定了開發多代芯片型收發器(V1.0、V1.5、V2.0、V3.0等)的戰略。 其中,對於V2.0,接收端由SiPM升級為SPAD陣列,集成CMOS工藝下的探測器和電路功能模塊,對於V3.0架構,VCSEL面陣輔助芯片,有望完成開發基於 SPAD 檢測器的面陣 SoC。

Hesai遠距離半固態激光雷達AT128:採用自主研發的車用芯片。 它在一塊電路板上集成了 128 個掃描通道,用於基於芯片的固態電子掃描。

Hesai新一代全固態填隙雷達FT120:在一顆芯片上集成了由數萬個激光接收通道組成的面陣,激光的發射和接收完全在芯片內進行。 它的零件比傳統激光雷達少得多,而且比 AT 系列更具成本效益。

(2)單芯片激光雷達方案

為了降低激光雷達的成本,需要採用光子集成工藝來集成各種光電器件,正從異質材料集成向單芯片集成發展。 該工藝是將製備好的矽片切入單晶矽襯底,在單晶矽襯底上外延生長III-V族材料,具有易於封裝、可靠性高、集成度高等優點。

2023 年初,Mobileye 首次展示了其下一代 FMCW LiDAR。 準確的說,它是一顆波長為1320nm的LiDAR SoC。 基於Intel的芯片型矽光子工藝,該產品可以同時測量距離和速度。

基於芯片的矽光子FMCW固態LiDAR技術路線可能是未來LiDAR發展的首選方向,包括FMCW、固態分佈式掃描、矽光子等關鍵技術。 FMCW LiDAR作為一條新的技術路線,在技術上仍面臨諸多挑戰。除了Mobileye、Aeva、Aurora等海外廠商外,還引入了Inxuntech、LuminWave等中國廠商。

視覺傳感器芯片:企業排列8MP產品的競爭

車載攝像頭硬件包括鏡頭、CIS 和圖像信號處理器 (ISP)。 因此,進入壁壘較高的汽車CIS市場被安森美半導體、Omnivision、Sony等公司佔據。 未來,更高像素數和更高動態範圍(HDR)的產品有望得到發展,除了傳統的ISP,目前的ISP集成解決方案將ISP集成到CIS和SOC中。

CIS 朝著更高的像素數發展

隨著高級自動駕駛的實現,對車載攝像頭的圖像質量提出了更高的要求。 一般來說,攝像頭的像素數越高,圖像質量越好,汽車製造商和自動駕駛供應商獲得的有用信息也就越多。 8MP攝像頭將在車內加速 2023年初推出的小鵬P7i配備8MP攝像頭,用於智能駕駛輔助解決方案。

前視是最需要8MP高分辨率攝像頭的應用場景。 目前,主要的汽車CIS供應商已經成功部署了8MP CIS產品。

SmartSens:於 2022 年 11 月發布了 SC850AT。 這款傳感器產品支持8.3MP分辨率,採用SmartSens SmartClarity?-2創新成像技術架構和升級自研Raw域算法,有效保護圖像細節,提升整體圖像效果。 除了 Staggered HDR,SmartSens 獨有的 PixGain HDR□ 技術支持 140dB HDR 以獲得更準確的圖像信息,即使在復雜的照明條件下也能準確捕捉明暗細節以確保

此外,這款芯片的量產時間定於 2023 年第二季度。

ISP:向整合發展

有兩種類型的 ISP 解決方案:獨立的和集成的。 獨立ISP功能強大但價格昂貴,而集成ISP具有成本低、佔地面積小、功耗低等優點,但處理能力相對較弱。 近年來,除了ISP嵌入式CIS之外,各大廠商還大力佈局ISP嵌入式SOC。

ISP集成CIS:通過將ISP集成到CIS中,可以達到節省空間和降低功耗的目的。 主要是一些獨聯體領導人我們正在介紹該選項。 2023 年 1 月,Omnivision 宣布推出用於汽車 360 度環視系統 (SVS) 和後視攝像頭 (RVC) 的新型 1.3 兆像素 (MP) OX01E20 片上系統 (SoC)。 OX01E20 是一款具有 LED 閃爍抑制 (LFM) 和 140db 高動態範圍 (HDR) 功能的優質產品。 它具有 3 微米圖像傳感器、高級圖像信號處理器 (ISP)、全功能失真校正/透視校正 (DC/PC) 和屏幕顯示 (OSD)。

ISP集成SOC:將ISP從CIS中取出,直接集成到自動駕駛主控SoC中的方法,可以顯著降低傳感硬件的成本,允許去掉ISP不僅解決了高像素攝像頭帶來的嚴重散熱問題,也有助於進一步減小車載攝像頭的電路板尺寸和功耗。集成模塊。

《汽車傳感器芯片行業報告2023》亮點:

  • 汽車傳感器芯片產業概況、產業政策/標準制定、市場規模等;
  • 汽車傳感器芯片行業主要細分領域(車載攝像頭芯片、雷達芯片、激光雷達芯片等)(產品結構、技術趨勢、市場規模、市場格局等)
  • 主要汽車雷達芯片供應商(產品線佈局、主要產品性能、新品開發、產品應用等);
  • 主要車用激光雷達芯片供應商(產品線佈局、主要產品性能、新品開發、產品應用等);
  • 主要汽車視覺傳感器芯片供應商(產品陣容、主要產品性能、新產品開發、產品應用等)

本報告對汽車傳感器芯片行業進行研究和分析,提供市場規模和預測、技術趨勢、主要供應商概況等。

內容

第一章自動駕駛傳感器芯片產業概況

  • 汽車自動駕駛傳感器芯片概述
  • 行業政策和標準

第二章雷達芯片產業

  • 雷達行業概覽
  • 雷達結構
  • 雷達芯片應用趨勢
  • 4D雷達芯片應用趨勢
  • 雷達芯片市場規模及格局

第三章激光雷達芯片產業

  • LiDAR 行業概覽
  • LiDAR 產品和成本結構
  • 激光雷達芯片技術趨勢
  • 激光雷達芯片市場規模及格局

第四章視覺傳感器芯片產業

  • 汽車攝像頭行業概覽
  • 視覺芯片
  • 車載攝像頭CIS芯片
  • 車載攝像頭 ISP

第五章雷達芯片供應商

  • Infineon
  • NXP
  • STMicroelectronics
  • TI
  • ADI
  • Vayyar
  • Uhnder
  • Arbe
  • Calterah Semiconductor
  • Andar Technologies
  • SGR Semiconductors
  • Runchip
  • 其他

第六章激光雷達芯片供應商

  • LeddarTech
  • Ouster
  • Lumentum
  • Mobileye
  • Lumotive
  • LuminWave
  • visionICs
  • Xilight
  • ABAX Sensing
  • Vertilite
  • Hesai Technology
  • China Science Photon Chip
  • Fortsense
  • DAO Sensing
  • 其他

第七章視覺傳感器芯片供應商

  • ON Semiconductor
  • Samsung Electronics
  • Sony
  • NXP
  • Nextchip
  • OmniVision Technology
  • SmartSens
  • GalaxyCore
  • Metoak
  • Rockchip
  • Fullhan Microelectronics
  • 其他
簡介目錄
Product Code: ZHP129

Sensor chip industry research: driven by the "more weight on perception" route, sensor chips are entering a new stage of rapid iterative evolution.

At the Auto Shanghai 2023, "more weight on perception, less weight on maps", "urban NOA", and "BEV+Transformer" abounded of OEMs and Tier 1 suppliers. It can be seen that major manufacturers have turned to the technology route of "more weight on perception, less weight maps", to speed up their layout of urban NOA and break their dependence on HD maps.

Driven by the "more weight on perception" technology route, automotive sensors play a more important role. New products like LiDAR, 4D imaging radar, and 8MP CMOS image sensor (CIS) are quickly applied in vehicles, pushing up the demand for sensor chips. Automotive sensor and chip technologies are entering a new stage of rapid iterative evolution and fast cost reduction.

Radar chip: Chinese vendors have made breakthroughs and broken overseas monopoly.

The automotive radar chip market is dominated by such companies as NXP, Infineon, and TI; among Chinese vendors, Calterah Semiconductor as an early starter has forged partnerships with more than 20 automotive OEMs, on designated projects for over 70 passenger car models, and has shipped a total of over 3 million pieces, one third of which were to overseas customers.

4D radars rapidly penetrate into mid- and high-end models and autonomous models. OEMs such as BMW and GM, and Tier 1 suppliers like Continental and ZF have completed the layout in this field. Quite a few Chinese brands including Li Auto, Changan, BYD, Tesla and Geely have designated or spawned and applied 4D radars. HW4.0, Tesla's next-generation autonomous driving platform equipped with a "Phoenix" 4D imaging radar, has become a tipping point in market.

In the field of conventional radar chips, Infineon and NXP are almost in a monopoly position. As the main development direction of radars, 4G imaging radars can better serve advanced autonomous driving functions such as urban NOA. Chinese manufacturers are also expediting layout of 4D radar chips.

Calterah: in December 2022, announced Andes, its next-generation new radar SoC family that enables 4D imaging radar functions and promotes the development of L3+ autonomous driving, with the following key features:

  • 4T4R SoC using 22nm process
  • Multi-core CPU, including DSP (digital signal processor) and RSP (radar signal processor)
  • Gigabit Ethernet with RGMII/SGMII
  • Support for flexible cascading
  • Subject to ASIL-B & AEC-Q100 Grade 1 requirements

Muye Microelectronics: a 4D radar start-up specializes in 4D high-precision imaging radars. In December 2022, it successfully developed the first 77G radar chip; in March 2023, passed the "1S0-26262 ASL-D functional safety certification"; in April 2023, closed the Pre-A funding round and raised RMB100 million, which is spent for chip productization, and production and delivery to Alpha customers.

LiDAR chip: develop towards SoC integration.

Since 2022, much more LiDARs have been used in vehicles, and about 164,000 passenger cars have been installed with LiDARs in China. LiDARs are often used in L2+++ passenger cars (with the highway + urban NOA function), most of which are high-end new energy vehicles valued at over RMB250,000. It is estimated that in 2026, 3.666 million LiDARs will be installed in passenger cars in China. If LiDARs are mounted on RMB150,000 passenger cars, a bigger cost reduction will be required. This may be hard to achieve in the short run.

In 2023, the LiDAR price war has begun, and the shipping price has slumped to around USD500, but still relatively high compared to the price (USD200-300) of 4D radars. Based on SoCs, LiDARs will be further integrated and become cheaper.

(1) Integration with transceiver chips

The wide adoption of LiDARs in vehicles first needs cost control. Different LiDAR routes of manufacturers lead to differential costs. Yet transceiver chips are the main cost component. The integration with transceiver chips is an effective way to cut down the cost of LiDARs.

  • Transmitter chip: replacing discrete modules with integrated modules can slash the cost of materials and debugging by more than 70%;
  • Receiver chip: the small size of the SPAD solution favors the integration with the readout circuit, which can further reduce the cost.

LiDAR chip technique is mastered by foreign manufacturers, but Chinese vendors have also worked to develop related technologies in recent years. In the case of transmitter chips, Chinese manufacturers have begun to step into upstream VCSEL chip design; as concerns receiver chips, Chinese start-ups march into SPAD and SiPM chips, among which QuantaEye and FortSense concentrate their efforts on SPAD/SiPM R&D.

FortSense: it has started deploying SPAD LiDAR chip R&D from 2019. It taped out in 2021, and passed automotive certification in September 2022. It has been favored by designated LiDAR suppliers of over 5 automakers. In December 2022, it closed the C funding round, with the raised funds to be used to develop LiDAR chips.

Hesai Technology: in recent years, it has been committed to developing LiDAR chips. Hesai Technology has started developing LiDAR SoCs since 2018, and has made the strategy for developing multiple generations of chip-based transceivers (V1.0, V1.5, V2.0, V3.0, etc.). Wherein, for V2.0, the receiving end is upgraded from SiPM to SPAD array for integration of detectors and circuit function modules under the CMOS technology; as for the V3.0 architecture, it is expected to complete the development of the VCSEL area array driver chip and the area array SoC based on SPAD detector.

Hesai's long-range semi-solid-state LiDAR AT128: it is equipped with a self-developed automotive chip. A single circuit board integrates 128 scanning channels for chip-based solid-state electronic scanning.

Hesai's new-generation all-solid-state gap filler radar FT120: a single chip integrates an area array composed of tens of thousands of laser receiving channels for laser emission and reception completely through the chip. With much fewer components than conventional LiDARs, it is more cost-effective than the AT family.

(2) Single-chip LiDAR solution

LiDAR cost reduction needs to use the photonic integration process to integrate various optoelectronic devices, which is evolving from heterogeneous materials integration to single-chip integration, a process to slot the prepared silicon wafer to the monocrystalline silicon substrate, and then grow the group III-V materials on the monocrystalline silicon substrate in an epitaxial way. Despite high difficulty, the process offers benefits of low loss, easy to package, high reliability, and high integration.

In early 2023, Mobileye demonstrated its next-generation FMCW LiDAR for the first time. To be precise, it is a LiDAR SoC with a wavelength of 1320nm. Based on Intel's chip-level silicon photonics process, this product can measure distance and speed at the same time.

The chip-based silicon photonics FMCW solid-state LiDAR technology route may become a preferred direction in future LiDAR development, involving such key technologies as FMCW, solid-state dispersion scanning and silicon photonics. As a new technology route, FMCW LiDAR still poses a lot of technical challenges. In addition to foreign manufacturers like Mobileye, Aeva and Aurora, Chinese vendors such as Inxuntech and LuminWave have also made deployments.

Vision sensor chips: giants race to lay out 8MP products.

Automotive camera hardware includes lens, CIS and image signal processor (ISP). Thereof, automotive CIS with a high entry threshold is an oligopolistic market in which dominant competitors include ON Semiconductor, OmniVision and Sony. In the future the products will tend to have high pixel and high dynamic range (HDR). As well as conventional ISPs, the current ISP integrated solutions also integrate ISP into CIS or SOC.

CIS develops towards high pixel.

The development of high-level autonomous driving requires increasingly high imaging quality of automotive cameras. Generally speaking, the higher the pixel of cameras, the better the imaging quality and the more useful information automakers/autonomous driving providers can get. The pace of using 8MP cameras in vehicles quickens. Xpeng P7i launched in early 2023 packs an 8MP camera for intelligent driving assistance solutions.

Front view is the application scenario with the most urgent need for 8MP high-resolution cameras. Currently, mainstream automotive CIS suppliers have successfully deployed 8MP CIS products.

SmartSens: it announced SC850AT in November 2022. This sensor product supports 8.3MP resolution, and adopts SmartSens SmartClarity®-2 innovative imaging technology architecture and the upgraded self-developed Raw domain algorithms that can effectively protect image details and improve overall image effects. In addition to Staggered HDR, it also supports SmartSens' unique PixGain HDR® technology to achieve 140dB HDR, and can capture more accurate image information, ensuring its ability to accurately capture details in brightness and darkness in complex lighting conditions.

The volume production of the chip is scheduled in the second quarter of 2023.

ISP: evolve towards integration.

There are two types of ISP solutions: independent and integrated. Wherein, independent ISPs are powerful but with high cost, while integrated ISPs have the benefits of low cost, small area and low power consumption but with relatively weak processing capabilities. In recent years major vendors have vigorously deployed ISP-integrated SOC in addition to ISP-integrated CIS.

ISP-integrated CIS: the integration of ISP into CIS can achieve the aim of saving space and reducing power consumption. It is mainly some CIS leaders that introduce relevant solutions. In January 2023, OmniVision announced its new 1.3-megapixel (MP) OX01E20 system-on-chip (SoC) for automotive 360-degree surround view systems (SVS) and rear-view cameras (RVC). The OX01E20 brings top-of-the-line LED flicker mitigation (LFM) and 140db high dynamic range (HDR) capabilities. It features a 3-micron image sensor, an advanced image signal processor (ISP), and full-featured distortion correction/perspective correction (DC/PC) and on-screen display (OSD).

ISP-integrated SOC: the way of removing the ISP from the CIS and directly integrating it into the main control SoC for autonomous driving enable a big reduction in the cost of perception hardware, and the removal of the ISP from the camera can not only solve the serious problem of heat dissipation caused by high-pixel cameras, but also help to further reduce circuit board size and power consumption for automotive cameras. Almost all autonomous driving domain control SoCs integrate the ISP module.

“ Automotive Sensor Chip Industry Report, 2023” highlights the following:

  • Automotive sensor chip industry (overview, formulation of industrial policies and standards, market size, etc.);
  • Main automotive sensor chip industry segments (automotive camera chip, radar chip, LiDAR chip, etc.) (product structure, technology trends, market size, market pattern, etc.)
  • Main automotive radar chip suppliers (product line layout, performance of main products, development of new products, product application, etc.);
  • Main automotive LiDAR chip suppliers (product line layout, performance of main products, development of new products, product application, etc.);
  • Main automotive vision sensor chip suppliers (product line layout, performance of main products, development of new products, product application, etc.).

Table of Contents

1 Overview of Autonomous Driving Sensor Chip Industry

  • 1.1 Overview of Automotive Autonomous Driving Sensor Chips
    • 1.1.1 Types of Autonomous Driving Sensor Chips
    • 1.1.2 Process of Applying Autonomous Driving Sensor Chips in Vehicles
    • 1.1.3 Installation Scale of Autonomous Driving Sensor Chips in Vehicles
  • 1.2 Industrial Policies and Standards
    • 1.2.1 The Latest Standard Dynamics during 2022-2023: "Guidelines for the Construction of the National Automotive Chip Standard System (2023)" (1)
    • 1.2.2 The Latest Standard Dynamics during 2022-2023: "Guidelines for the Construction of the National Automotive Chip Standard System (2023)" (2)
    • 1.2.3 Certification Thresholds for Automotive Chips

2 Radar Chip Industry

  • 2.1 Overview of Radar Industry
    • 2.1.1 Workflow of Automotive Radar
    • 2.1.2 Implementation Mode 1 of Radars in Vehicles: OEMs That Rely on External Integration Continue Their Close Coupling Relationships with Chip Vendors
    • 2.1.3 Implementation Mode 2 of Radars in Vehicles: Mighty Automakers Directly Procure Hardware and Outsource the Assembly
    • 2.1.4 Major OEMs in Automotive Radar Industry Chain (1)
    • 2.1.5 Major OEMs in Automotive Radar Industry Chain (2)
  • 2.2 Radar Structure
    • 2.2.1 Structure Diagram of Automotive Radar
    • 2.2.2 Cost Structure of Automotive Radar
    • 2.2.3 Price of Automotive Radar Chip (MICC)
    • 2.2.4 Autonomous Driving Sensor Chip Industry Chain: Radar Chip
  • 2.3 Application Trends of Radar Chips
    • 2.3.1 Intelligent Driving Market Provides A Big Boost to the Demand for Radars and Chips
    • 2.3.2 Technical Requirements for Radar Chips: High Precision, High Power, High Sensitivity
    • 2.3.3 Development Directions of Automotive Radar Chips
    • 2.3.4 Development Direction 1 of Automotive Radar Chips: Chip Integration
    • 2.3.5 Development Direction 2 of Automotive Radar Chips: Policies Facilitate the Development of High-frequency Radar Chips
    • 2.3.6 Development Direction 3 of Automotive Radar Chips: 4D radar
    • 2.3.7 Development Direction 4 of Automotive Radar Chips: Production Process Upgrade (1)
    • 2.3.8 Development Direction 4 of Automotive Radar Chips: Production Process Upgrade (2)
  • 2.4 Application Trends of 4D Radar Chips
    • 2.4.1 Automotive 4D Radar Chip Technology Route
    • 2.4.2 Automotive 4D Radar Chip Packaging and Testing Schemes
    • 2.4.3 Technology Trends of Automotive 4D Radar Chips
    • 2.4.4 4D Radar Chip Installation Scheme 1: Cascading (1)
    • 2.4.5 4D Radar Chip Installation Scheme 1: Cascading (2)
    • 2.4.6 4D Radar Chip Installation Scheme 2: Single-chip Integration
    • 2.4.7 4D Radar Chip Installation Scheme 3: Software Algorithm Support
    • 2.4.8 Comparison between 4D Radar Chip Installation Schemes
    • 2.4.9 Mainstream Automotive 4D Radar Chip Suppliers (1)
    • 2.4.10 Mainstream Automotive 4D Radar Chip Suppliers (2)
    • 2.4.11 Mainstream Automotive 4D Radar Chip Suppliers (3)
  • 2.5 Radar Chip Market Size and Pattern
    • 2.5.1 China's Demand for Passenger Car Radars, 2021-2026E
    • 2.5.2 China's Passenger Car Radar Chip Market Size, 2021-2026E
    • 2.5.3 China's Passenger Car Radar Chip Market Size, 2021-2026E - Attached Table (1)
    • 2.5.4 China's Passenger Car Radar Chip Market Size, 2021-2026E - Attached Table (2)
    • 2.5.5 Automotive Radar Chip Market Structure
    • 2.5.6 Automotive Radar Chip Market Structure: Suppliers Accelerate the Pace of Localization
    • 2.5.7 Automotive Radar Chip Market Structure: Chinese Suppliers (1)
    • 2.5.8 Automotive Radar Chip Market Structure: Chinese Suppliers (2)

3 LiDAR Chip Industry

  • 3.1 Overview of LiDAR Industry
    • 3.1.1 Workflow of LiDAR
    • 3.1.2 LiDAR Industry Chain
    • 3.1.3 LiDAR OEM Model
    • 3.1.4 LiDAR OEM: MEMS Galvanometer OEM
    • 3.1.5 Major OEMs in LiDAR Industry Chain (1)
    • 3.1.6 Major OEMs in LiDAR Industry Chain (2)
  • 3.2 LiDAR Products and Cost Structure
    • 3.2.1 Structure Diagram of Automotive LiDAR
    • 3.2.2 Main Components of Automotive LiDAR (1)
    • 3.2.3 Main Components of Automotive LiDAR (2)
    • 3.2.4 Major Players in LiDAR Transmitter VCSEL Chip Market
    • 3.2.5 Major Players in LiDAR Receiver SPAD/SiPM Chip Market
    • 3.2.6 Cost Structure of Automotive LiDAR
    • 3.2.7 Automotive LiDAR Chip Industry Chain
  • 3.3 Technology Trends of LiDAR Chips
    • 3.3.1 LiDAR Development Technology Route
    • 3.3.2 Development Directions of LiDAR Chips
    • 3.3.3 LiDAR Transmitter Chip Technology Trend 1: Develop from EEL to VCSEL Chip
    • 3.3.4 LiDAR Transmitter Chip Technology Trend 2: 905nm Is Favored again Due to Its Cost Advantage (1)
    • 3.3.5 LiDAR Transmitter Chip Technology Trend 2: 905nm Is Favored again Due to Its Cost Advantage (2)
    • 3.3.6 LiDAR Transmitter Chip Technology Trend 3: FMCW Ranging Method Rises Rapidly (1)
    • 3.3.7 LiDAR Transmitter Chip Technology Trend 3: FMCW Ranging Method Rises Rapidly (2)
    • 3.3.8 LiDAR Receiver Chip Technology Trends: SPAD/SiPM Can Replace APD in the Future (1)
    • 3.3.9 LiDAR Receiver Chip Technology Trends: SPAD/SiPM Can Replace APD in the Future (2)
    • 3.3.10 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (1)
    • 3.3.11 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (2)
    • 3.3.12 LiDAR Development Trend 1: Integration with Transceiver Chip Favors Cost Reduction (3)
    • 3.3.13 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (1)
    • 3.3.14 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (2)
    • 3.3.15 LiDAR Development Trend 2: Single-chip Silicon Photonics Integration (3)
    • 3.3.16 Single-chip LiDAR Layout Case 1 of Suppliers: Hesai Technology
    • 3.3.17 Single-chip LiDAR Layout Case 2 of Suppliers: Ouster
  • 3.4 LiDAR Chip Market Size and Pattern
    • 3.4.1 China's Demand for Passenger Car LiDARs, 2021-2026E
    • 3.4.2 China's Passenger Car LiDAR Chip Market Size, 2021-2026E
    • 3.4.3 China's Passenger Car LiDAR Chip Market Size, 2021-2026E - Attached Table (2)
    • 3.4.4 Competitive Pattern of LiDAR Chip Market
    • 3.4.5 Mainstream Automotive LiDAR Chip Suppliers (1)
    • 3.4.6 Mainstream Automotive LiDAR Chip Suppliers (2)
    • 3.4.7 Layout of Chinese Suppliers in Laser Sensor Chips: Stepping into the Upstream End of VCSEL Chips
    • 3.4.8 Layout of Chinese Suppliers in Laser Sensor Chips: Marching into SPAD and SiPM Chips

4 Vision Sensor Chip Industry

  • 4.1 Overview of Automotive Camera Industry
    • 4.1.1 Structure of Automotive Camera
    • 4.1.2 Implementation Mode of Cameras in Vehicles
    • 4.1.3 Major OEMs in Automotive Camera Industry Chain (1)
    • 4.1.4 Major OEMs in Automotive Camera Industry Chain (2)
    • 4.1.5 Autonomous Driving Sensor Chip Industry Chain: Types of
  • Vision Chips
    • 4.1.6 Cost Structure of Automotive Camera
    • 4.1.7 China's Demand for Passenger Car Cameras, 2021-2026E
    • 4.1.8 China's Passenger Car Camera Chipset Market Size, 2021-2026E
    • 4.1.9 China's Passenger Car Camera Chipset Market Size, 2021-2026E - Attached Table (1)
    • 4.1.10 China's Passenger Car Camera Chipset Market Size, 2021-2026E - Attached Table (2)
  • 4.2 Automotive Camera CIS Chip
    • 4.2.1 Demand for Automotive Camera CIS Keeps Increasing
    • 4.2.2 Automotive CIS Shipment Structure
    • 4.2.3 Automotive CIS Market Features High Entry Threshold and Oligarchic Competition
    • 4.2.4 Automotive CIS Market Pattern (1)
    • 4.2.5 Automotive CIS Market Pattern (2)
    • 4.2.6 Automotive CIS Market Pattern (3)
    • 4.2.7 Automotive CIS Market Pattern: Chinese Manufacturers Accelerate Product Layout
    • 4.2.8 Comparison between Main Automotive CIS Products
    • 4.2.9 Development Directions of Automotive CIS Technology
    • 4.2.10 Development Direction 1 of Automotive CIS Technology: Higher Resolution (1)
    • 4.2.11 Development Direction 1 of Automotive CIS Technology: Higher Resolution (2)
    • 4.2.12 Development Direction 2 of Automotive CIS Technology: Higher Dynamic Range
  • 4.3 Automotive Camera ISP
    • 4.3.1 Automotive ISP Fusion Modes
    • 4.3.2 Competition Pattern of Automotive ISP Market
    • 4.3.3 Development Directions of Automotive ISP
    • 4.3.4 Development Direction 1 of Automotive ISP: Introduction of AI Algorithms
    • 4.3.5 Development Direction 2 of Automotive ISP: Integration of ISP into SoC
    • 4.3.6 Case 1 of Automotive ISP Integrated into Autonomous Driving SOC: TI
    • 4.3.7 Case 2 of Automotive ISP Integrated into Autonomous Driving SOC: Mobileye
    • 4.3.8 Case 3 of Automotive ISP Integrated into Autonomous Driving SOC: Black Sesame Technologies
    • 4.3.9 Case 4 of Automotive ISP Integrated into Autonomous Driving SOC: Horizon Robotics
    • 4.3.10 Case 5 of Automotive ISP Integrated into Autonomous Driving SOC: Ambarella

5 Radar Chip Suppliers

  • 5.1 Infineon
    • 5.1.1 Autonomous Driving Sensor Chip Product Line
    • 5.1.2 Radar Chips
    • 5.1.3 24GHz Radar Chips: BGT24XX Series (1)
    • 5.1.4 24GHz Radar Chips: BGT24XX Series (2)
    • 5.1.5 77GHz Radar Chips
    • 5.1.6 77GHz Radar Microcontroller
  • 5.2 NXP
    • 5.2.1 Autonomous Driving Sensor Chip Product Line
    • 5.2.2 Radar Chip Business
    • 5.2.3 4D Imaging Radar Chip: S32R45
    • 5.2.4 77GHz Radar Transceiver Chips: TEF82xx
    • 5.2.5 77GHz Radar Transceiver Chips: TEF810X
    • 5.2.6 77GHz Radar Transceiver Chips: MR3003
    • 5.2.7 Radar Solutions
    • 5.2.8 Application of Autonomous Driving Sensor Chips: Continental's 4-cascade Radar
  • 5.3 STMicroelectronics
    • 5.3.1 Autonomous Driving Sensor Chip Product Line
    • 5.3.2 24GHz Radar Chips
    • 5.3.3 77GHz Radar Chip: STRADA770M
  • 5.4 TI
    • 5.4.1 Autonomous Driving Sensor Chip Product Line (1)
    • 5.4.2 Autonomous Driving Sensor Chip Product Line (2)
    • 5.4.3 Radar Chip System
    • 5.4.4 Parameters of Radar Chips
    • 5.4.5 77GHz Radar Chips: AWR1243
    • 4.5.6 77GHz Radar Chips: AWR2243
    • 5.4.7 77GHz Radar Chips: AWR2944
    • 5.4.8 Integrated Radar Chip: AWR1843AoP
  • 5.5 ADI
    • 5.5.1 Autonomous Driving Sensor Chip Product Line
    • 5.5.2 24GHz Radar Chips
    • 5.5.3 Intelligent Transportation Solution Based on 24GHz Radar Demonstration Platform
  • 5.6 Vayyar
    • 5.6.1 Autonomous Driving Sensor Chip Product Line
    • 5.6.2 Comparison between Radar Products and Alternative Products
    • 5.6.3 Radar SOC
    • 5.6.4 4D Radars and Chips
    • 5.6.5 60GHz Radar Chips
  • 5.7 Uhnder
    • 5.7.1 Imaging Radar Chips
    • 5.7.2 Application of Radar Chips
  • 5.8 Arbe
    • 5.8.1 Imaging Radar Chipset Solutions (1)
    • 5.8.2 Imaging Radar Chipset Solutions (2)
    • 5.8.3 Imaging Radar Chipset Application 1: In-house Phoenix Perception Radar
    • 5.8.4 Imaging Radar Chipset Application 2: In-house Lynx Surround Imaging Radar
    • 5.8.5 Imaging Radar Chipset Application 3: In-house 360° Surround Radar
    • 5.8.6 Imaging Radar Chipset Application 4: Cooperation (1)
    • 5.8.7 Imaging Radar Chipset Application 4: Cooperation (2)
  • 5.9 Calterah Semiconductor
    • 5.9.1 Profile
    • 5.9.2 Platformization and Serialization of Radar Chips Have Been Realized
    • 5.9.3 Automotive Radar Chip Product Line
    • 5.9.4 Radar Chip Products: Alps-Pro Series
    • 5.9.5 Radar Chip Products: Andes Series
    • 5.9.6 Radar Chip Products: ALPS Series
    • 5.9.7 Radar Chip Products: Alps-Mini Series
    • 5.9.8 Application Scenarios of Radar Chips
  • 5.10 Andar Technologies
    • 5.10.1 Profile
    • 5.10.2 77/79GHz Radar Chips: ADT2011
    • 5.10.3 77/79GHz Radar Chips: ADT2001
    • 5.10.4 77/79GHz Radar Chips: ADT3102
    • 5.10.5 77/79GHz Radar Chips: ADT3101
  • 5.11 SGR Semiconductors
    • 5.11.1 Profile
    • 5.11.2 24GHz Automotive Radar Chip Products
    • 5.11.3 Application of Radar Chips
  • 5.12 Runchip
    • 5.12.1 77GHz Radar Chips
    • 5.12.2 Domestic Radar Chip Localization Capability
  • 5.13 Others
    • 5.13.1 76-81GHz Radar Chips of Radaric (Beijing) Technology
    • 5.13.2 77GHz Radar Chips of Citta Microelectronics

6 LiDAR Chip Suppliers

  • 6.1 LeddarTech
    • 6.1.1 Profile
    • 6.1.2 Global Network
    • 6.1.3 Automotive LiDAR Technology (1)
    • 6.1.4 Automotive LiDAR Technology (2)
    • 6.1.5 LeddarCore SoCs: LCA2 & LCA3
    • 6.1.6 Products (1): Vu8 Solid State LiDAR Module
    • 6.1.7 Products (2): M16 Solid State LiDAR Module
    • 6.1.8 Products (3): LeddarVision & LeddarSteer
    • 6.1.9 Cooperation Mode
    • 6.1.10 Partners
    • 6.1.11 Partners
  • 6.2 Ouster
    • 6.2.1 Profile
    • 6.2.2 LiDAR Chip Products (1)
    • 6.2.3 LiDAR Chip Products (2)
  • 6.3 Lumentum
    • 6.3.1 Automotive Business Layout
    • 6.3.2 LiDAR Chips
  • 6.4 Mobileye
    • 6.4.1 LiDAR Chip Layout
    • 6.4.2 Benefit from Intel's Silicon Photonics Manufacturing Technology
  • 6.5 Lumotive
    • 6.5.1 Profile
    • 6.5.2 LiDAR Chip Technology
  • 6.6 LuminWave
    • 6.6.1 LiDAR Chip Technology
    • 6.6.2 LiDAR Chip Technology Upgrade
  • 6.7 visionICs
    • 6.7.1 Profile
    • 6.7.2 Autonomous Driving Sensor Chip Product Line
    • 6.7.3 Main LiDAR Chip Products (1)
    • 6.7.4 Main LiDAR Chip Products (2)
  • 6.8 Xilight
    • 6.8.1 Profile
    • 6.8.2 Autonomous Driving Sensor Chip Product Line
    • 6.8.3 Main LiDAR Chip Products (1): Detection Chip
    • 6.8.4 Main LiDAR Chip Products (2): Signal Receiving SiPM Chip
    • 6.8.5 Main LiDAR Chip Products (3): Digital Conversion Chip - XTD50
    • 6.8.6 Product R&D Dynamics
  • 6.9 ABAX Sensing
    • 6.9.1 Profile
    • 6.9.2 LiDAR Chips
    • 6.9.3 Parameters of LiDAR Products
    • 6.9.4 Development Dynamics
  • 6.10 Vertilite
    • 6.10.1 Profile
    • 6.10.2 LiDAR Chips: CAC940K010
    • 6.10.3 LiDAR Chips: CAC940F005
  • 6.11 Hesai Technology
    • 6.11.1 Self-developed Chip Planning
    • 6.11.2 Self-developed Chip Planning: Work to Lay out Single-chip Solutions
    • 6.11.3 Scope of Self-developed Chips
    • 6.11.4 Scope of Self-developed Chips
    • 6.11.5 Application of Self-developed Chips
  • 6.12 China Science Photon Chip
    • 6.12.1 Profile
    • 6.12.2 LiDAR Chip Layout
  • 6.13 Fortsense
    • 6.13.1 Profile
    • 6.13.2 LiDAR Chip Business
  • 6.14 DAO Sensing
    • 6.14.1 LiDAR Chip Planning (1)
    • 6.14.2 LiDAR Chip Planning (1)
  • 6.15 Others
    • 6.15.1 LiDAR Chip Business of Sophoton
    • 6.15.2 LiDAR Chip Layout of Huawei
    • 6.15.3 LiDAR Chip Business of Luminar
    • 6.15.4 Automotive LiDAR Chip Business of Berxel Photonics
    • 6.15.5 LiDAR Business of Dibotics

7 Vision Sensor Chip Suppliers

  • 7.1 ON Semiconductor
    • 7.1.1 Profile
    • 7.1.2 Market & Product Layout (1)
    • 7.1.3 Market & Product Layout (2)
    • 7.1.4 Classification of Products
    • 7.1.5 Automotive CIS Products
    • 7.1.6 Automotive ISP Products
    • 7.1.7 CIS Products - Front View CIS (1)
    • 7.1.8 CIS Products - Front View CIS (2)
    • 7.1.9 CIS Products - Cockpit CIS (1)
    • 7.1.10 CIS Products - Cockpit CIS (2)
    • 7.1.11 CIS Products - Cockpit CIS (3)
    • 7.1.12 CIS Products - Cockpit CIS (4)
    • 7.1.13 CIS Products - Surround/Back View CIS
    • 7.1.14 ISP Products - ISP (1)
    • 7.1.15 ISP Products - ISP (2)
    • 7.1.16 CIS Technology
    • 7.1.17 LiDAR Chip Technology
    • 7.1.18 Market Share and Customers of ON Semiconductor's Automotive Image Sensors
    • 7.1.19 Autonomous Driving Ecosystem Partners (1)
    • 7.1.20 Autonomous Driving Ecosystem Partners (2)
  • 7.2 Samsung Electronics
    • 7.2.1 Automotive Image Sensors: ISOCELL Auto
    • 7.2.2 Automotive Image Sensors: ISOCELL Auto 4AC
    • 7.2.3 Features of Automotive Image Sensors
  • 7.3 Sony
    • 7.3.1 Profile
    • 7.3.2 CIS Market Layout
    • 7.3.3 Development History of CIS
    • 7.3.4 Classification of Semiconductor Products
    • 7.3.5 Autonomous Driving Sensor Chip Product Line
    • 7.3.6 CIS Technology
    • 7.3.7 Automotive CIS Products (1)
    • 7.3.8 Automotive CIS Products (2)
    • 7.3.9 Automotive CIS Products (3)
    • 7.3.10 Application of Autonomous Driving Sensor Chips (1)
    • 7.3.11 Application of Autonomous Driving Sensor Chips (2)
  • 7.4 NXP
    • 7.4.1 Profile
    • 7.4.2 Classification of Products
    • 7.4.3 Automotive ISP Products - ISP-integrated Vision Processing Unit (1)
    • 7.4.4 Automotive ISP Products - ISP-integrated Vision Processing Unit (2)
    • 7.4.5 Automotive ISP Products - ISP-integrated Vision Processing Unit (3)
    • 7.4.6 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (1)
    • 7.4.7 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (2)
    • 7.4.8 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (3)
    • 7.4.9 Automotive ISP Products - ISP-integrated Autonomous Driving SoC (4)
    • 7.4.10 Summary of Automotive ISP Products
    • 7.4.11 ISP Software Training Partners
  • 7.5 Nextchip
    • 7.5.1 Profile & Classification of Products
    • 7.5.2 Development History and Market Layout
    • 7.5.3 Core Technologies
    • 7.5.4 Products - ISP (1)
    • 7.5.5 Products - ISP (2)
    • 7.5.6 Products - ISP (3)
    • 7.5.7 Products - ISP (4)
    • 7.5.8 Products - ISP-integrated Autonomous Driving SoC (1)
    • 7.5.9 Products - ISP-integrated Autonomous Driving SoC (2)
    • 7.5.10 Products - ISP-integrated Autonomous Driving SoC (3)
    • 7.5.11 Summary of Products (1)
    • 7.5.12 Summary of Products (2)
    • 7.5.13 Customers and Partners
  • 7.6 OmniVision Technology
    • 7.6.1 Profile
    • 7.6.2 Market Layout (1)
    • 7.6.3 Market layout (2)
    • 7.6.4 Technologies (1)
    • 7.6.5 Technologies (2)
    • 7.6.6 Classification of Products
    • 7.6.7 Products - ISP-integrated Video Processing Unit (1)
    • 7.6.8 Products - ISP-integrated Video Processing Unit (2)
    • 7.6.9 Products - ISP-integrated Video Processing Unit (3)
    • 7.6.10 Products - ISP-integrated Video Processing Unit (4)
    • 7.6.11 Products - ISP
    • 7.6.12 Products - ISP-integrated CIS (1)
    • 7.6.13 Products - ISP-integrated CIS (2)
    • 7.6.14 Products - ISP-integrated CIS (3)
    • 7.6.15 Products - ISP-integrated CIS (4)
    • 7.6.16 Products - Non-ISP CIS
    • 7.6.17 Summary of Products (1)
    • 7.6.18 Summary of Products (2)
    • 7.6.19 Comparison of Some CIS Products between OmniVision and ON Semiconductor
  • 7.7 SmartSens
    • 7.7.1 Profile
    • 7.7.2 Classification of Products
    • 7.7.3 Automotive CIS Business
    • 7.7.4 Products - ISP-integrated CIS (1)
    • 7.7.5 Products - ISP-integrated CIS (2)
    • 7.7.6 Products - ISP-integrated CIS (3)
    • 7.7.7 Products - ISP-integrated CIS (4)
    • 7.7.8 Products - ISP-integrated CIS (5)
    • 7.7.9 Products - ISP-integrated CIS (6)
    • 7.7.10 Summary of ISP-integrated CIS Products
    • 7.7.11 Automotive CIS Product Layout (1)
    • 7.7.12 Automotive CIS Product Layout (2)
    • 7.7.13 Market Layout (1)
    • 7.7.14 Market Layout (2)
    • 7.7.15 Product R&D Layout
  • 7.8 GalaxyCore
    • 7.8.1 Profile
    • 7.8.2 CMOS Image Sensor Business
  • 7.9 Metoak
    • 7.9.1 Profile
    • 7.9.2 Product Lines
    • 7.9.3 Stereo Vision Chips
  • 7.10 Rockchip
    • 7.10.1 Panoramic View Chip - RK3588M
    • 7.10.2 Architecture of RK3588M SoC
  • 7.11 Fullhan Microelectronics
    • 7.11.1 Profile
    • 7.11.2 Classification of Products
    • 7.11.3 Products - ISP (1)
    • 7.11.4 Products - ISP (2)
    • 7.11.5 Products & Summary of Products
    • 7.11.6 ISP Tuning & Image Tuning Lab
    • 7.11.7 ISP Product Layout & Market Layout
    • 7.11.8 Customers & Partners
  • 7.12 Others
    • 7.12.1 GPU Products of ARM
    • 7.12.2 Vision Chip Products of NST Technology