封面
市場調查報告書
商品編碼
1456867

SOEC電解槽市場 - 2024 年至 2029 年預測

SOEC Electrolyzer Market - Forecasts from 2024 to 2029

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 144 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

SOEC電解槽市場預計將從2022年的794.66億美元成長到2029年的33,634.18億美元,複合年成長率為59.71%。

固體氧化物燃料電池技術形成可靠的電解堆,能夠透過蒸氣電解生產氫氣,並透過蒸氣和二氧化碳共電解合成氣體(由氫氣和一氧化碳組成)。固體氧化物電解池 (SOEC) 技術也能夠同時從這些輸入源生產高純度氧氣。特別是,OxEon(該公司)已成功從模擬火星大氣中提取高純度氧氣,展示了該技術的多功能性。

SOEC 應用擴展到多種用途的氫氣生產,包括運輸、工業製程和發電。此外,SOEC在將多餘的可再生能源轉化為氫氣並促進其儲存以供後續發電方面發揮著重要作用。另一個值得注意的應用是共同生產氫氣和合成氣(氫氣和一氧化碳的組合)。

使用 SOEC 擴大氫氣生產是由多種因素推動的:對清潔氫氣的需求不斷成長、政府的支持性政策和獎勵以及提高生產過程效率和可行性的持續技術進步。這為 SOEC 技術的廣泛採用奠定了基礎,以滿足全球對永續和清潔能源解決方案日益成長的需求。

市場促進因素

  • 能源和電力產業預計在未來幾年將顯著成長。

由於有利的投資流入和加強清潔能源基礎設施的努力,能源和電力產業預計在未來幾年將呈現強勁成長。國際能源總署(IEA)資料顯示,全球清潔能源投資達1,6,170億美元,較2021年成長14.8%。此外,根據相同數據,到2023年全球投資預計將達到1.74兆美元。

此外,2022年石化燃料投資小幅成長4.7%,但隨著各國加大二氧化碳排放,石化燃料使用量將下降,石化燃料投資預計將受到抑制。

能源產業涉及石化燃料和再生能源來源的生產和供應。這些部門在促進工業成長、從而推動經濟改善方面發揮著重要作用。

例如,根據國際能源總署(IEA)的預測,到2022年,工業部門將佔全球能源使用量的37%,達166 EJ。此外,據同一消息人士透露,到2030年,工業能源生產力預計將以每年3%的速度成長,到2030年,電力預計將佔工業能源使用的30%。

此外,旨在提高能源生產(尤其是再生能源來源)的各種政府措施和投資預計將在未來幾年顯著促進能源產業的成長。例如,2023年6月,拜登政府宣布投資4,500萬美元,作為其「投資美國」計畫的一部分,以加速國內太陽能電池製造。

  • 工業活動擴張帶來的需求

工業活動的快速成長以及都市化帶來的住宅和商業設施的快速成長導致全球能源需求急劇增加,進而推高整體產能。根據IES《2022年世界能源展望》報告,2021年全球能源供應量將達到624EJ,比2020年供應量592EJ增加5.4%,比2010年產量542EJ增加15.1%。

根據國際能源總署報告,2021年歐洲能源供應量為82.3 EJ(艾焦耳),比2020年的77.9 EJ增加5.6%。同時,該地區的能源需求也大幅增加。

為了滿足這種不斷成長的需求,歐洲正在積極推廣使用太陽能和風能等可再生能源發電。該地區已啟動各種措施和投資,以加強能源供應和建立清潔能源基礎設施,推動 SOEC電解槽市場的成長。

例如,歐盟委員會2022年5月推出的REPowerEU計畫旨在加強清潔能源生產和儲存,同時實現歐洲能源供應多元化。這些舉措預計將為 SOEC電解槽市場的成長提供光明的前景。

阻礙因素

  • 製造成本高

與蒸汽甲烷改性(SMR) 等傳統氫氣生產方法相比,SOEC 系統的成本要高得多。這種高額的初始投資給未來的用戶帶來了挑戰,特別是在成本是關鍵問題的行業中。陶瓷電解質和金屬互連等特殊材料的使用顯著增加了整個系統的成本。此外,與 SMR 等成熟技術相比,市場規模相對有限,這限制了透過規模經濟節省成本的潛力。

SOEC電解槽市場根據組件分為工廠平衡 (BOP) 和堆疊。

根據組件,SOEC電解槽市場分為 BOP(設備平衡)和煙囪。工廠平衡 (BOP) 包括電堆周圍的所有組件,對於電堆的正常運作以及無縫整合到更廣泛的氫氣生產系統中至關重要。另一方面,電堆是 SOEC電解槽的核心組件,在水分解過程本身中起著至關重要的作用。

美洲預計將佔據 SOEC電解槽市場的主要佔有率。

由於工業生產力提高和人口成長,美國、加拿大、墨西哥和巴西等美洲主要經濟體的能源需求大幅增加。此外,積極促進可再生能源生產以及擴大石油和天然氣探勘活動也是進一步的推動因素。根據國際能源總署(IEA)《2022年世界能源展望》,美洲能源供應量為139.9 EJ,比2020年的133.5 EJ增加4.8%。

此外,同一份文件顯示,2021年美國將佔美洲能源總產量的62%,而巴西等其他經濟體將佔9.5%。

公司產品

  • 提供製氫的高效能固體氧化物電解技術。該公司的固體氧化物電解槽電池 (SOEC) 旨在以 90% 的電效率實現氫氣生產,並且可以透過利用多餘的熱量來實現 100% 的效率。
  • Bloom Energy - Bloom Energy 已開始使用安裝在加州山景城 NASA 艾姆斯研究中心的世界上最大的固體氧化物電解槽來生產氫氣。與質子電解質膜 (PEM) 和鹼性電解質膜等經過商業性驗證的低溫電解槽相比,這種高溫、高效能裝置每兆瓦 (MW) 的氫氣產量提高了 20-25%。 4MW Bloom Electrolyzer(TM) 每天能夠生產超過 2.4 噸氫氣,在兩個月內建成、安裝並運作,展示了其快速部署能力。
  • 托普索 - 我們的 SOEC 技術經過精心設計,可與下游工藝無縫整合,將綠氫轉化為用於化學應用和能源儲存的綠色氨,用於化學和運輸燃料生產的甲醇,以及其他綠色產品,可轉化為多種產品,包括化學品和燃料。 TOPSOE(TM) 是少數能夠提供加速下一代燃料和化學品生產和普及所需的見解和技術的公司之一。

目錄

第1章簡介

  • 市場概況
  • 市場定義
  • 調查範圍
  • 市場區隔
  • 貨幣
  • 先決條件
  • 基準年和預測年時間表
  • 相關人員的主要利益

第2章調查方法

  • 研究設計
  • 調查過程

第3章執行摘要

  • 主要發現
  • 分析師觀點

第4章市場動態

  • 市場促進因素
  • 市場限制因素
  • 波特五力分析
  • 產業價值鏈分析
  • 分析師觀點

第5章 SOEC電解槽市場:依組成部分

  • 介紹
  • 波普
    • 市場機會趨勢
    • 成長前景
  • 堆疊
    • 市場機會和趨勢
    • 成長前景

第6章 SOEC電解槽市場:依應用分類

  • 介紹
  • 氫氣生產
    • 市場機會趨勢
    • 成長前景
  • 工業製程
    • 市場機會和趨勢
    • 成長前景
  • 其他
    • 市場機會和趨勢
    • 成長前景

第 7 章 SOEC電解槽市場:依最終用戶分類

  • 介紹
  • 發電
    • 市場機會和趨勢
    • 成長前景
  • 運輸
    • 市場機會和趨勢
    • 成長前景
  • 煉油廠
    • 市場機會和趨勢
    • 成長前景
  • 其他
    • 市場機會和趨勢
    • 成長前景

第8章 SOEC電解槽市場:按地區

  • 介紹
  • 美洲
    • 按成分
    • 按用途
    • 按最終用戶
    • 按國家/地區
  • 歐洲、中東/非洲
    • 按成分
    • 按用途
    • 按最終用戶
    • 按國家/地區
  • 亞太地區
    • 按成分
    • 按用途
    • 按最終用戶
    • 按國家/地區

第9章競爭環境及分析

  • 主要企業及策略分析
  • 市場佔有率分析
  • 合併、收購、協議和合作
  • 有競爭力的儀表板

第10章 公司簡介

  • Altana AG Mitsubishi Power
  • Toshiba Corporation
  • FuelCell Energy Inc.
  • Bloom Energy Corporation
  • Haldor Topsoe
  • Sunfire
  • Kyocera Corporation
  • OxEon Energy
  • Nexceris
  • Redox Power System
簡介目錄
Product Code: KSI061615906

SOEC Electrolyzer Market market is expected to grow at a CAGR of 59.71% from US$79.466 billion in 2022 to US$3,363.418 billion in 2029.

It has solid oxide fuel cell technology to create a dependable electrolysis stack, enabling the production of hydrogen through steam electrolysis or the synthesis of gas (comprising hydrogen and carbon monoxide) through water vapor and carbon dioxide co-electrolysis. The solid oxide electrolysis cell (SOEC) technology also exhibits the capability to concurrently generate high-purity oxygen from these input sources. Notably, OxEon (the company) has achieved success in extracting high-purity oxygen from a simulated Martian atmosphere, showcasing the versatility of the technology.

The applications of SOECs extend to producing hydrogen for diverse purposes, including transportation, industrial processes, and power generation. Furthermore, SOECs play a crucial role in converting surplus renewable energy into hydrogen, facilitating its storage for subsequent use in power generation. Another noteworthy application involves the co-production of hydrogen and syngas, a combination of hydrogen and carbon monoxide, which finds utility in various processes such as the production of synthetic fuels.

The expansion in hydrogen production using SOECs is propelled by a confluence of factors: the rising demand for clean hydrogen, supportive government policies and incentives, and continuous technological advancements that enhance the efficiency and viability of the production processes. This creates a conducive environment for the widespread adoption of SOEC technology in meeting the growing global demand for sustainable and clean energy solutions.

Market Drivers

  • The energy and power industry is expected to show significant growth in the coming years-

The energy and power industry is expected to show significant growth in the coming years owing to favorable investment inflows, and initiatives to enhance clean energy infrastructure. According to the data provided by the International Energy Agency, the global investment in clean energy reached US$1,617 billion which signified an increase of 14.8% over 2021's investments. Also, as per the same source, global investments are expected to reach US$1,740 billion in 2023.

Moreover, investments in fossil fuels witnessed a slight growth of 4.7% in 2022, however, the growing nations' efforts to reduce their carbon footprint are expected to halt the usage of fossil fuels thereby restraining investments in such sources.

The energy industry relates to producing and supplying energy produced via fossil fuels and renewable sources. Such a sector plays a vital role in promoting industrial growth thereby providing fuel for the upliftment of an economy.

Rapid industrialization coupled with favourable investments in the same has increased the energy consumption scale, for instance, according to the International Energy Agency, in 2022, industrial sectors accounted for 37% of the global energy usage reaching 166EJ. Furthermore, as per the same source, industrial energy productivity is expected to show a 3% increase per year till 2030, and electricity will account for up to 30% of industrial energy usage by 2030.

Moreover, various government initiatives and investments to bolster energy production, especially in renewable sources are anticipated to provide a major boost to the energy industry growth in the coming years. For instance, the Biden administration in June 2023 announced investments of US$45 million as a part of its "Investing in America" to accelerate domestic solar manufacturing in the country.

  • Demand due to growing industrial activities-

The burgeoning industrial activities and the rapid growth of residential and commercial establishments, driven by urbanization, have led to a surge in global energy demand, consequently boosting overall production capacity. According to the "World Energy Outlook 2022" report by IES, the global energy supply in 2021 reached 624 EJ, marking a 5.4% increase from the 2020 supply volume of 592 EJ and a significant 15.1% increase from the 2010 production of 542 EJ.

The International Energy Agency reports that Europe's energy supply in 2021 amounted to 82.3 EJ (Exajoules), reflecting a 5.6% increase compared to the 2020 volume of 77.9 EJ. Concurrently, there has been a notable rise in energy demand in the region.

Europe is actively promoting the use of renewable energy sources such as solar and wind for electricity generation to address this growing demand. Various initiatives and investments have been launched across the region to enhance energy supply and establish clean energy infrastructure, thereby fostering growth in the SOEC electrolyzer market.

For instance, the "REPowerEU Plan," introduced by the European Commission in May 2022, aims to bolster the production and storage of clean energy while diversifying energy supplies in Europe. These efforts are anticipated to offer a positive outlook for the growth of the SOEC electrolyzer market.

Restraint-

  • High cost of production-

SOEC systems are notably pricier compared to traditional hydrogen production methods such as steam methane reforming (SMR). This elevated initial investment presents a challenge for prospective users, particularly in industries where cost is a significant concern. The utilization of specialized materials like ceramic electrolytes and metallic interconnects notably adds to the overall system expenses. Moreover, the relatively limited market size in comparison to well-established technologies like SMR restricts the potential for cost reduction through economies of scale.

The SOEC electrolyzer market is segmented based on components into Balance of Plant (BOP) and Stack.

The SOEC electrolyzer market is segmented based on components, dividing it into Balance of Plant (BOP) and Stack. The Balance of Plant (BOP) encompasses all the components surrounding the stack, crucial for its functioning and seamless integration into a broader hydrogen production system. On the other hand, the Stack serves as the central component of the SOEC electrolyzer, playing a pivotal role in the water-splitting process itself.

Americas is anticipated to hold a significant share of the SOEC Electrolyzer Market-

Energy demand in major economies of the Americas region namely the United States, Canada, Mexico, and Brazil among others is witnessing a significant surge owing to the booming industrial productivity and population growth. Moreover, favourable initiatives to propel energy production via renewable sources coupled with growing oil and natural gas exploration operations are acting as an additional driving factor. According to the International Energy Agency's "World Energy Outlook 2022," the energy supply in the Americas stood at 139.9EJ which represented an increase of 4.8% over 2020's energy supply of 133.5EJ.

Furthermore, as per the same source, the United States accounted for up to 62% of the total energy produced in the Americas for the year 2021, whereas other economies such as Brazil constituted 9.5% for the same year.

Market Developments

  • May 2023- Topsoe constructed of the world's first industrial-scale SOEC electrolyzer facility. With the completion of the new factory, Topsoe made a compelling case for SOEC technology at an industrial scale. The factory boasted an initial manufacturing capacity of 500MW. Topsoe's SOEC technology was stated to be up to 35 percent more efficient than conventional technologies, facilitating more efficient green hydrogen production to support global decarbonization targets.
  • May 2023- The world's largest solid-oxide hydrogen electrolyzer was installed at a NASA facility in California, as announced by Bloom Energy. The 4MW unit was said to be 20-25% more efficient than similarly sized alkaline or PEM machines. Bloom Energy, based in the US, stated that the installation took place and that the electrolyzer would produce 20-25% more hydrogen per megawatt compared to any commercially demonstrated alkaline or PEM equivalent.
  • April 2022- A groundbreaking milestone was reached with the World's Largest High-Temperature Electrolyzer achieving unprecedented efficiency. In a notable achievement, the electrolyzer successfully generated 200 Nm3 of green hydrogen per hour for the first time. Additionally, an electrical efficiency of 84% el, LHV has been demonstrated, marking a level of efficiency previously unparalleled in the field.

Company Products

  • FuelCell Energy Inc- FuelCell Energy Inc. offers high-efficiency solid oxide electrolysis technology for hydrogen production. Their Solid Oxide Electrolyzer Cell (SOEC) is engineered to achieve hydrogen production with 90 percent electrical efficiency, which can reach 100 percent efficiency when utilizing excess heat. The module features a compact design and operates quietly, making it suitable for placement near energy sources.
  • Bloom Energy- Bloom Energy initiated hydrogen generation using the world's largest solid oxide electrolyzer installation at NASA's Ames Research Center in Mountain View, California. This high-temperature, high-efficiency unit produces hydrogen at a rate 20-25% higher per megawatt (MW) compared to commercially demonstrated lower-temperature electrolyzers such as proton electrolyte membrane (PEM) or alkaline ones. The 4 MW Bloom Electrolyzer(TM), capable of producing over 2.4 metric tonnes of hydrogen per day, was constructed, installed, and operationalized within two months to showcase its rapid deployment capabilities.
  • Topsoe- The Company's SOEC technology is meticulously engineered to seamlessly integrate with downstream processes, enabling the conversion of green hydrogen into various products like green ammonia for chemical applications or energy storage, methanol for chemical or transportation fuel production, and other green chemicals and fuels. TOPSOE(TM) stands out as one of the few companies equipped to offer the necessary insights and technology for facilitating the production and widespread availability of next-generation fuels and chemicals.

Market Segmentation

By Component

  • BOP
  • Stack

By Application

  • Hydrogen Production
  • Industrial Process
  • Others

By End-User

  • Power
  • Transportation
  • Refineries
  • Others

By Geography

  • Americas
  • USA
  • Others
  • Europe, Middle East and Africa
  • Germany
  • United Kingdom
  • Others
  • Asia Pacific
  • China
  • Japan
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline
  • 1.8. Key benefits to the stakeholder

2. RESEARCH METHODOLOGY

  • 2.1. Research Design
  • 2.2. Research Process

3. EXECUTIVE SUMMARY

  • 3.1. Key Findings
  • 3.2. Analyst View

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Forces Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis
  • 4.5. Analyst View

5. SOEC ELECTROLYZER MARKET BY COMPONENT

  • 5.1. Introduction
  • 5.2. BOP
    • 5.2.1. Market opportunities and trends
    • 5.2.2. Growth prospects
  • 5.3. Stack
    • 5.3.1. Market opportunities and trends
    • 5.3.2. Growth prospects

6. SOEC ELECTROLYZER MARKET BY APPLICATION

  • 6.1. Introduction
  • 6.2. Hydrogen Production
    • 6.2.1. Market opportunities and trends
    • 6.2.2. Growth prospects
  • 6.3. Industrial Process
    • 6.3.1. Market opportunities and trends
    • 6.3.2. Growth prospects
  • 6.4. Others
    • 6.4.1. Market opportunities and trends
    • 6.4.2. Growth prospects

7. SOEC ELECTROLYZER MARKET BY END-USER

  • 7.1. Introduction
  • 7.2. Power
    • 7.2.1. Market opportunities and trends
    • 7.2.2. Growth prospects
  • 7.3. Transportation
    • 7.3.1. Market opportunities and trends
    • 7.3.2. Growth prospects
  • 7.4. Refineries
    • 7.4.1. Market opportunities and trends
    • 7.4.2. Growth prospects
  • 7.5. Others
    • 7.5.1. Market opportunities and trends
    • 7.5.2. Growth prospects

8. SOEC ELECTROLYZER MARKET BY GEOGRAPHY

  • 8.1. Introduction
  • 8.2. Americas
    • 8.2.1. By Component
    • 8.2.2. By Application
    • 8.2.3. By End-user
    • 8.2.4. By Country
      • 8.2.4.1. United States
        • 8.2.4.1.1. Market Trends and Opportunities
        • 8.2.4.1.2. Growth Prospects
      • 8.2.4.2. Others
        • 8.2.4.2.1. Market Trends and Opportunities
        • 8.2.4.2.2. Growth Prospects
  • 8.3. Europe, Middle-East and Africa
    • 8.3.1. By Component
    • 8.3.2. By Application
    • 8.3.3. By End-user
    • 8.3.4. By Country
      • 8.3.4.1. Germany
        • 8.3.4.1.1. Market Trends and Opportunities
        • 8.3.4.1.2. Growth Prospects
      • 8.3.4.2. United Kingdom
        • 8.3.4.2.1. Market Trends and Opportunities
        • 8.3.4.2.2. Growth Prospects
      • 8.3.4.3. Others
        • 8.3.4.3.1. Market Trends and Opportunities
        • 8.3.4.3.2. Growth Prospects
  • 8.4. Asia Pacific
    • 8.4.1. By Component
    • 8.4.2. By Application
    • 8.4.3. By End-user
    • 8.4.4. By Country
      • 8.4.4.1. China
        • 8.4.4.1.1. Market Trends and Opportunities
        • 8.4.4.1.2. Growth Prospects
      • 8.4.4.2. Japan
        • 8.4.4.2.1. Market Trends and Opportunities
        • 8.4.4.2.2. Growth Prospects
      • 8.4.4.3. Others
        • 8.4.4.3.1. Market Trends and Opportunities
        • 8.4.4.3.2. Growth Prospects

9. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 9.1. Major Players and Strategy Analysis
  • 9.2. Market Share Analysis
  • 9.3. Mergers, Acquisition, Agreements, and Collaborations
  • 9.4. Competitive Dashboard

10. COMPANY PROFILES

  • 10.1. Altana AG Mitsubishi Power
  • 10.2. Toshiba Corporation
  • 10.3. FuelCell Energy Inc.
  • 10.4. Bloom Energy Corporation
  • 10.5. Haldor Topsoe
  • 10.6. Sunfire
  • 10.7. Kyocera Corporation
  • 10.8. OxEon Energy
  • 10.9. Nexceris
  • 10.10. Redox Power System