2023年至2028年鷹架技術市場預測
市場調查報告書
商品編碼
1410090

2023年至2028年鷹架技術市場預測

Scaffold Technology Market - Forecasts from 2023 to 2028

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 152 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

全球支架技術市場預計在預測期內複合年成長率為 13.57%。

支架技術特別應用於組織工程、再生醫學和藥物研發。在組織工程領域,支架是3D結構,為細胞發育提供機械支撐和合適的環境。它代表了組織再生和修復的潛在解決方案。這些支架由多種材料製成,模仿天然存在的細胞外基質,並為細胞附著和生長提供表面。支架技術用於藥物開發,產生分子框架,可以對其進行修改以測試各種化合物,從而加快發現新藥的過程。

支架技術市場成長促進因素

支架技術市場的主要成長動力是對生物和轉化研究中使用的 3D 細胞模型的需求不斷成長。由於藥物開發過程中的困難,支架技術市場隨著 3D 細胞培養的興起而不斷擴大。病毒學和流行病學研究、試管內模型系統的建構以及尋找有效的抗感染療法都在大量利用組織工程來推動支架技術市場的成長。

在 3D 細胞培養中擴大使用支架技術

支架常用於 3D 細胞培養。支架是多孔的,允許氧氣、營養物質和廢物的移動。因此,細胞在黏合到支架之前能夠在支架網周圍增殖和遷移。成熟細胞在相互作用的同時生長,最終轉變為與原始組織相連的結構。因此,支架在3D細胞培養中的廣泛應用預計將推動支架技術市場的成長。

鷹架技術的進步

支架的技術突破激發了再生醫學和組織工程的革命性進步。 3D 列印和生物列印的結合改變了支架的創建,可以精確控制細胞和結構的放置。這些進步是支架技術市場的關鍵成長動力。溶劑澆鑄、溶液噴射紡絲、顆粒浸出、自組裝、氣體發泡、纖維網、光刻等是鷹架技術涉及的一些製程。

擴大支架技術在癌症治療的應用

幾種 FDA 批准的生物相容性聚合物已被開發出來,用於製造各種用於治療癌症復發的3D立體支架,這一直是支架技術市場成長的主要驅動力。分析了聚合物選擇的各種品質,包括腫瘤微環境、轉移、化療和免疫療法藥物類型、高表面積、高孔隙率和可調的機械性能。此外,3D支架在癌症免疫治療中越來越受到關注,進一步加速了支架技術市場的成長。

奈米纖維支架預計將佔據主要市場佔有率

由於奈米纖維支架在組織工程和再生應用中的使用不斷增加,其用途正在擴大。例如,世界各地的科學家正在專注於使用奈米纖維支架來創建神經組織。用作細胞外基質的奈米結構是使用靜電紡絲等技術創建的。靜電紡絲具有易於使用、價格實惠和高度彈性等多種優點,可加速支架技術市場的成長。

政府不斷採取的舉措預計將提振市場

由於政府的各種舉措,支架技術市場預計將成長。例如,2023年6月,印度藥品監管總局批准了由哺乳動物器官製成的組織工程支架,這是一種D級生物醫學設備,可以快速、經濟地治療皮膚病變,且疤痕最小。這在我的家鄉是第一次允許。科學技術部 (DST) 和 Sree Chila Trinal 醫學科技研究所合作滿足建立中央藥品標準控制組織的所有法律要求。

北美支架技術市場穩定成長預測

北美支架技術市場預計將穩定成長。這是由於對幹細胞和再生醫學的研究增加、擴大這些技術應用的資金增加以及醫療保健系統的建立所推動的。研究人員還改進了 3D 微支架技術,以重新編程神經幹細胞並支持神經元之間的連接。這些網路沒有注射單一細胞,而是在小鼠中顯示出更高的大腦存活率。此外,幹細胞生物學家和生醫材料專家最近在國家醫療圖像和生物工程研究所的支持下合作進行了一項研究。

主要市場參與者的成長專注於產品創新

許多公司正在創建用於組織再生的新型 3D 生物列印客製化支架。例如,3D Systems與聯合治療公司於2022年6月共同開發了尖端的3D列印器官技術。此外,奈米纖維支架因其高表面積與體積比以及模仿天然細胞外基質纖維結構的能力而受到歡迎。此外,2022 年 11 月,Gelomics 和 Rousselot 宣佈建立聯合品牌合作夥伴關係,使用 Gelomics 的 LunaGel 3D 組織培養系統和 Rousselot Biomedical 的 X-Pure GelMA(甲基丙烯醯明膠)細胞外基質。

市場開拓的主要進展

2023 年 6 月,美國衛生研究院 (NIH) 向 RevBio, Inc. 授予 200 萬美元津貼,用於開發創新的牙科黏合骨支架產品。 2023年4月,Systemic Bio在美國德克薩斯州建立了一個新實驗室,用於製造水凝膠支架並進行晶載技術的研發,以改善藥物研發發現和開發。 2022年8月,Conmed宣布收購生物感應支架供應商Biorez,以擴大其用於運動醫學的軟組織癒合產品組合。

目錄

第1章簡介

  • 市場概況
  • 市場定義
  • 調查範圍
  • 市場區隔
  • 貨幣
  • 先決條件
  • 基準年和預測年時間表

第2章調查方法

  • 調查資料
  • 先決條件

第3章執行摘要

  • 研究亮點

第4章市場動態

  • 市場促進因素
  • 市場抑制因素
  • 波特五力分析
  • 產業價值鏈分析

第5章鷹架技術市場:依類型

  • 介紹
  • 水凝膠
  • 聚合物支架
  • 精細圖案表面微孔板
  • 奈米纖維支架

第6章鷹架技術市場:依疾病分類

  • 介紹
  • 整形外科、肌肉骨骼系統、脊柱
  • 癌症
  • 皮膚和體被
  • 牙科
  • 心臟病學和血管學
  • 神經病學
  • 泌尿系統
  • 消化內科、婦科
  • 其他

第7章鷹架技術市場:依應用分類

  • 介紹
  • 幹細胞治療、再生醫學、組織工程
  • 藥物研發
  • 其他

第8章鷹架技術市場:依最終用途

  • 介紹
  • 生物技術和製藥組織
  • 研究和實驗室
  • 醫院和診斷中心
  • 其他

第9章鷹架技術市場:按地區

  • 介紹
  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他
  • 歐洲
    • 英國
    • 德國
    • 法國
    • 西班牙
    • 其他
  • 中東/非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 以色列
    • 其他
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 韓國
    • 印尼
    • 泰國
    • 其他

第10章競爭環境及分析

  • 主要企業及策略分析
  • 新興企業和市場盈利
  • 合併、收購、協議和合作
  • 供應商競爭力矩陣

第11章 公司簡介

  • Thermo Fisher Scientific, Inc.
  • Merck KGaA
  • REPROCELL Inc.
  • 3D Biotek LLC
  • Becton, Dickinson, and Company
  • Medtronic
  • Matricel GmbH
  • Akron Biotech
  • Avacta Life Sciences Limited.
  • Vericel Corporation
簡介目錄
Product Code: KSI061615761

The global scaffold technology market is estimated to grow at a CAGR of 13.57% during the forecast period.

Scaffold technology is used especially in tissue engineering, regenerative medicine, and drug discovery. Scaffolds are three-dimensional constructs that give mechanical support and a favourable environment for cell development in the field of tissue engineering. They present potential solutions for tissue regeneration and repair. Made of a variety of materials, these scaffolds imitate the extracellular matrix found in nature, providing a surface on which cells may cling and multiply. Scaffold technology is used in drug development to generate molecular frameworks that may be altered to produce a variety of compounds for testing, which expedites the process of finding new drugs.

Growth drivers for the scaffold technology market

Major growth drivers for the scaffold technology market are the increased need for 3D cellular models for use in biological research and translational studies. The scaffold technology market is expanding as the 3D cell culture is rising due to difficulties in the drug development process. The study of virology and epidemiology, the creation of in vitro model systems, and the search for effective anti-infective therapies all make substantial use of tissue engineering which fuels the scaffold technology market growth.

Rising utilization of scaffold technology in 3D cell culture

For 3D cell culture, scaffolds are significantly used. Scaffolds enable the movement of oxygen, nutrients, and waste because of their porosity. Cells can therefore multiply and move around the scaffold web before adhering to it. The maturing cells interact with one another as they grow and eventually transform into structures that are connected to the tissues from which they originally came. This growing application of scaffolding in 3D cell culture is expected to fuel the scaffold technology market growth.

Advancements in scaffold technology

Technological breakthroughs in scaffolding have influenced revolutionary advances in regenerative medicine and tissue engineering. The creation of scaffolds has been transformed by the combination of 3D printing with bioprinting, which allows for exact control over the arrangement of cells and structure. These advancements are major growth drivers for the scaffold technology market. Solvent casting, solution blow spinning, particle leaching, self-assembly, gas foaming, fiber mesh, and lithography are some of the processes included in scaffold technology.

Increasing utilization of scaffold technology in the treatment of cancer

Several biocompatible polymers that have received FDA approval have been established to create a variety of 3D scaffolds to treat cancer recurrence, which is a major driver for the scaffold technology market growth. For choosing a polymer, the type of tumour microenvironment, metastasis, chemo medicines, and immunotherapeutics are analyzed for various qualities such as high surface volume, high porosity, and tuneable mechanical properties. Moreover, 3D scaffolds are of interest for cancer immunotherapy and are further upsurging the scaffold technology market growth.

Nano-fiber scaffold is predicted to hold a significant market share

The use of nano-fiber scaffolds is expanding due to their growing use in tissue engineering and regeneration applications. For instance, scientists around the globe are focusing on research related to nanofiber scaffold usage in the creation of nerve tissue. Nano-sized structures that can serve as an extracellular matrix for cellular transformation are made using techniques like electrospinning. Electrospinning provides several benefits such as simplicity of use, affordability, and high flexibility, which can accelerate the scaffold technology market growth.

Rising government initiatives are predicted to fuel the market

The scaffold technology market is anticipated to grow due to various government initiatives. For instance, in June 2023, the Indian Drugs Controller gave their permission to the first locally created tissue engineering scaffold made from mammalian organs, a Class D biomedical device that may quickly and affordably treat skin lesions with little scarring. The Department of Science and Technology (DST) and Sree Chira Triunal Institute for Medical Sciences and Technology, collaborated to meet all the legal requirements to form the Central Drugs Standard Control Organization.

North America's scaffold technology market is anticipated to grow at a steady pace

The scaffold technology market is predicted to grow at a steady pace in North America. This can be attributed to a rise in research on stem cells and regenerative medicine, increased funding for expanding the applications of these technologies, and a well-established healthcare system. Furthermore, researchers have also improved 3D micro scaffold technology, which helps reprogrammed neural stem cells and supports connections between neurons. Instead of injecting individual cells, these networks exhibited greater brain survival in mice. Additionally, stem cell biologists and biomaterial specialists collaborated in their recent work supported by the National Institute of Biomedical Imaging and Bioengineering.

Growth in major market players focuses on product innovation

For tissue regeneration, many businesses are creating novel 3D bio-printed customized scaffolds. For instance, 3D Systems and United Therapeutics Corporation collaborated to create cutting-edge 3D-printed organ technology in June 2022. Moreover, nanofiber scaffolds are gaining popularity because of their high surface area-to-volume ratio and capacity to replicate the fibrous structure of the extracellular matrix in nature. Additionally, in November 2022, Gelomics and Rousselot announced a cobranding partnership that used Gelomics' LunaGel 3D Tissue Culture System and Rousselot Biomedical's X-Pure GelMA (gelatin methacryloyl) extracellular matrix.

Market Key Developments

  • In June 2023, The National Institutes of Health (NIH) awarded RevBio, Inc. a USD 2 million grant for the creation of their innovative dental adhesive bone scaffold product.
  • In April 2023, to produce hydrogel scaffolds and conduct research and development for organ-on-a-chip technology to improve drug discovery and development, Systemic Bio constructed a new lab in Texas, the United States.
  • In August 2022, Conmed announced the acquisition of Biorez, a provider of bio-inductive scaffolds, to increase its selection of soft tissue healing products for use in sports medicine.

Segmentation:

By Type

  • Hydrogels
  • Polymeric Scaffolds
  • Micropatterned Surface Microplates
  • Nanofiber Based Scaffolds

By Disease

  • Orthopedics, Musculoskeletal, & Spine
  • Cancer
  • Skin & Integumentary
  • Dental
  • Cardiology & Vascular
  • Neurology
  • Urology
  • GI, Gynecology
  • Others

By Application

  • Stem Cell Therapy, Regenerative Medicine, & Tissue Engineering
  • Drug Discovery
  • Others

By End-User

  • Biotechnology & Pharmaceutical Organizations
  • Research Laboratories & Institutes
  • Hospitals & Diagnostic Centers
  • Others

By Geography

  • North America
  • United States
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • Japan
  • China
  • India
  • South Korea
  • Indonesia
  • Thailand
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline

2. RESEARCH METHODOLOGY

  • 2.1. Research Data
  • 2.2. Assumptions

3. EXECUTIVE SUMMARY

  • 3.1. Research Highlights

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Force Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis

5. SCAFFOLD TECHNOLOGY MARKET, BY TYPE

  • 5.1. Introduction
  • 5.2. Hydrogels
  • 5.3. Polymeric Scaffolds
  • 5.4. Micropatterned Surface Microplates
  • 5.5. Nanofiber Based Scaffolds

6. SCAFFOLD TECHNOLOGY MARKET, BY DISEASE

  • 6.1. Introduction
  • 6.2. Orthopedics, Musculoskeletal, & Spine
  • 6.3. Cancer
  • 6.4. Skin & Integumentary
  • 6.5. Dental
  • 6.6. Cardiology & Vascular
  • 6.7. Neurology
  • 6.8. Urology
  • 6.9. GI, Gynecology
  • 6.10. Others

7. SCAFFOLD TECHNOLOGY MARKET, BY APPLICATION

  • 7.1. Introduction
  • 7.2. Stem Cell Therapy, Regenerative Medicine, & Tissue Engineering
  • 7.3. Drug Discovery
  • 7.4. Others

8. SCAFFOLD TECHNOLOGY MARKET, BY END-USE

  • 8.1. Introduction
  • 8.2. Biotechnology & Pharmaceutical Organizations
  • 8.3. Research Laboratories & Institutes
  • 8.4. Hospitals & Diagnostic Centers
  • 8.5. Others

9. SCAFFOLD TECHNOLOGY MARKET, BY GEOGRAPHY

  • 9.1. Introduction
  • 9.2. North America
    • 9.2.1. United States
    • 9.2.2. Canada
    • 9.2.3. Mexico
  • 9.3. South America
    • 9.3.1. Brazil
    • 9.3.2. Argentina
    • 9.3.3. Others
  • 9.4. Europe
    • 9.4.1. United Kingdom
    • 9.4.2. Germany
    • 9.4.3. France
    • 9.4.4. Spain
    • 9.4.5. Others
  • 9.5. The Middle East and Africa
    • 9.5.1. Saudi Arabia
    • 9.5.2. UAE
    • 9.5.3. Israel
    • 9.5.4. Others
  • 9.6. Asia Pacific
    • 9.6.1. Japan
    • 9.6.2. China
    • 9.6.3. India
    • 9.6.4. South Korea
    • 9.6.5. Indonesia
    • 9.6.6. Thailand
    • 9.6.7. Others

10. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 10.1. Major Players and Strategy Analysis
  • 10.2. Emerging Players and Market Lucrativeness
  • 10.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 10.4. Vendor Competitiveness Matrix

11. COMPANY PROFILES

  • 11.1. Thermo Fisher Scientific, Inc.
  • 11.2. Merck KGaA
  • 11.3. REPROCELL Inc.
  • 11.4. 3D Biotek LLC
  • 11.5. Becton, Dickinson, and Company
  • 11.6. Medtronic
  • 11.7. Matricel GmbH
  • 11.8. Akron Biotech
  • 11.9. Avacta Life Sciences Limited.
  • 11.10. Vericel Corporation