回收再利用聚合物的技術與IP(智慧財產權)分析
市場調查報告書
商品編碼
1383274

回收再利用聚合物的技術與IP(智慧財產權)分析

Technology and IP Analysis of Upcycled Polymers

出版日期: | 出版商: Frost & Sullivan | 英文 62 Pages | 商品交期: 最快1-2個工作天內

價格
簡介目錄

專注於永續性以及對高性能、環保聚合物的需求推動回收再利用技術的進步

儘管全球聚合物的使用量穩定增加,但塑膠的回收率仍低於 10%,導致約 50% 的塑膠廢棄物最終進入垃圾掩埋場。這主要是因為現有的化學和機械回收製程回收率低、消費量高,而且擴大規模通常成本高昂,阻礙了其採用。為此,塑膠回收相關人員正在開發新的回收再利用方法,以提高聚合物廢棄物的回收率,並且更加節能且更易於規模化。

本研究重點關注現有和新興的聚合物回收再利用技術以及它們如何改善循環經濟並增加塑膠的付加。該研究詳細分析了回收再利用領域的各種技術發展以及增強其商業性潛力的配合措施。

研究將回收再利用技術分為三類:「聚合物到聚合物」、「聚合物到分子」和「聚合物到材料」。這些分類是根據聚合物廢棄物回收再利用過程中產生的最終產品的性質決定的。

這項研究包括多種聚合物廢棄物,包括聚乙烯(PE)、聚丙烯(PP)、聚對苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚苯乙烯(PS)、混合聚合物廢棄物(MPW)和聚氨酯(PUR)。這些包括但不限於每種都有不同的回收再利用方法。

主要問題

  • 透過聚合物回收再利用促進循環經濟
  • 生長促進和抑制因素
  • 技術生態系統
  • IP(智慧財產權)分析
  • 相關人員活動

目錄

戰略衝動

  • 為什麼成長如此困難?
  • The Strategic Imperative 8(TM)
  • 關鍵戰略因素對聚合物回收再利用技術的影響
  • 成長機會推動Growth Pipeline Engine(TM)
  • 調查方法

成長機會分析

  • 分析範圍
  • 調查細分
  • 調查中回答的關鍵主題和問題
  • 現有回收技術的主要挑戰
  • 聚合物回收再利用回收相對於回收的優勢
  • 生長促進因子
  • 成長抑制因素

技術分析:從聚合物到聚合物

  • 將聚合物廢棄物轉化為聚合物:簡介
  • DE-PE的高可擴展性有利於工業規模的商業化
  • 與聚合物官能基相關的高複雜性限制了其採用
  • 概述:聚合物到聚合物相關人員的創新

技術分析:從聚合物到分子

  • 將聚合物廢棄物轉化為添加劑、化學品和單體:簡介
  • 利用陽光進行光誘導解聚以回收再利用聚合物廢棄物
  • 學術界研究催化解聚,這是一種有前途的回收再利用方法
  • 飼料彈性和高產量促進 HTL 生長
  • 生物解聚促進聚合物回收再利用,實現永續性和能源效率
  • 從聚合物到分子的技術發展綜述

技術分析:從聚合物到材料

  • 將聚合物廢棄物轉化為奈米材料:簡介
  • 高溫閃蒸聚合物廢棄物生產石墨烯和碳奈米管
  • 基於微波的氧化分解聚合物廢棄物回收再利用回收
  • 原料彈性增加了熱解在聚合物廢棄物回收再利用的應用
  • 透過水熱碳化回收再利用聚合物廢棄物,產率高達96%
  • 脫鹵有望成為回收再利用難以回收的熱塑性塑膠的低能耗途徑
  • 低產量限制了靜電紡絲用於聚合物廢棄物回收再利用的採用
  • 從聚合物到材料的技術發展綜述

專利分析

  • 美國在回收再利用聚合物的專利申請中佔據主導地位。
  • 禁止向發展中市場出口塑膠廢棄物促進聚合物回收再利用研究和開發

資金籌措和投資簡介

  • 由於全球經濟放緩,私人對回收再利用聚合物的投資下降
  • 創業投資專注於回收再利用聚合物的商業化
  • 著力加速私募基金商業化
  • 世界各地著名的公共資助活動

成長機會

  • 成長機會1:流程最佳化以支援混合廢棄物回收再利用
  • 成長機會2:促進酵素回收再利用的計算方法
  • 成長機會3:加速熱固性聚合物回收再利用

附錄

下一步

簡介目錄
Product Code: DAC2

Focus on Sustainability and Need for High-performance, Environment-friendly Polymers Drives Advances in Upcycling Technologies

Although use of polymers is steadily increasing globally, the rate of recycling these plastics is still less than 10%, resulting in approximately 50% of the plastic waste getting dumped in landfills. This occurs primarily because existing chemical and mechanical recycling processes have low recycling rates, high energy consumption, and are often expensive to scale, which hinders their adoption. In response, stakeholders in plastic recycling are developing new upcycling approaches that will increase the recycling rate of polymeric waste, are energy efficient, and scale easily.

This research focuses on existing and emerging polymer upcycling technologies and how they improve and add value to plastics' circular economy. The study includes an in-depth analysis of various technological developments in upcycling and the efforts to increase their commercial potential.

The research categorizes upcycling technologies into three distinct categories: polymers to polymers, polymers to molecules, and polymers to materials. These categories are determined by the nature of the final product generated through the process of upcycling polymeric waste.

The studies encompass a range of polymeric waste materials, including but not limited to polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), polystyrene (PS), mixed polymeric waste (MPW), and polyurethane (PUR), each of which undergoes distinct upcycling approaches.

Key Discussion Points:

Advancing the Circular Economy through Polymer Upcycling: Challenges of existing recycling technologies and benefits of polymer upcycling over recycling

Growth Drivers and Restraints: Factors driving the demand for upcycled polymers and challenges associated with their adoption

Technology Ecosystem: A look into research and development (R&D) activities of existing and emerging polymer upcycling technologies and their current technology readiness levels (TRLs)

IP Analysis: Overview of the global patent filing activities of stakeholders in upcycled polymers

Stakeholder Activities: A glance at business strategies such as mergers and acquisitions (M&A), partnerships, joint ventures, and funding various stakeholders adopt to strengthen the development of polymer upcycling technologies

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?The Strategic Imperative 8™: Factors Creating Pressure on Growth
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on Polymer Upcycling Technologies
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Research Segmentation
  • Primary Topics and Questions the Study Will Answer
  • Primary Challenges with Existing Recycling Technologies
  • The Benefits of Polymer Upcycling over Recycling
  • Growth Drivers
  • Growth Restraints

Technology Analysis: Polymers to Polymers

  • Converting Polymeric Waste to Polymers: An Introduction
  • High Scalability of DE-PE Encouraging Commercialization at Industrial Scale
  • High Complexity Associated with Polymer Functionalization Limiting its Adoption
  • Summary: Innovations from Stakeholders in Polymers to Polymers

Technology Analysis: Polymers to Molecules

  • Converting Polymeric Waste to Additives, Chemicals, and Monomers: An Introduction
  • Photo-induced Depolymerization Using Sunlight to Upcycle Polymeric Waste
  • Academia to Research Catalytic Depolymerization, a Promising Upcycling Approach
  • Greater Feed Flexibility and High Yield Promoting HTL Growth
  • Biological Depolymerization Encouraging Polymer Upcycling toward Sustainability and Energy-efficiency
  • Summary of Technology Developments for Polymers to Molecules

Technology Analysis: Polymers to Materials

  • Converting Polymeric Waste into Nanomaterials: An Introduction
  • Flashing Polymeric Waste at High Temperatures to Produce Graphene and C Nanotubes
  • Microwave-based Oxidative Degradation for Upcycling Polymeric Waste
  • Feedstock Flexibility Increasing Adoption of Pyrolysis for Upcycling Polymeric Waste
  • Hydrothermal Carbonization Upcycling Polymeric Waste with Production Yields of up to 96%
  • Dehalogenation Promising a Low-energy Pathway to Upcycle Hard-to-recycle Thermoplastics
  • Low Production Yield Limiting the Adoption of Electrospinning for Upcycling Polymeric Waste
  • Summary of Technology Developments for Polymers to Materials

Patent Analysis

  • The United States Dominating Patent Filing in Upcycled Polymers
  • Ban on Plastic Waste Exports to Developing Markets Driving R&D in Polymer Upcycling

Funding & Investment Snapshot

  • Global Economic Slowdown Leading to Decline in Private Investment for Upcycled Polymers
  • Venture Capital Investment Focusing on Upcycled Polymer Commercialization
  • Private Funding Focusing on Accelerating Commercialization
  • Notable Public Funding Activities across the Globe

Growth Opportunities

  • Growth Opportunity 1: Process Optimization to Support Mixed-waste Upcycling
  • Growth Opportunity 2: Computational Approaches to Advance Enzymatic Upcycling
  • Growth Opportunity 3: Accelerated R&D in Upcycling Thermosetting Polymers

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer