全球先進碳材料市場(2023-2033)
市場調查報告書
商品編碼
1286055

全球先進碳材料市場(2023-2033)

The Global Market for Advanced Carbon Materials 2023-2033

出版日期: | 出版商: Future Markets, Inc. | 英文 1090 Pages, 142 Figures, 153 Tables | 訂單完成後即時交付

價格

本報告針對全球各類先進碳材料(碳纖維、炭黑、石墨、生物炭、石墨烯、奈米管、奈米鑽石等)市場及關鍵技術進行了全面分析與預測。

先進碳材料具有獨特的機械、電學、生物和化學特性,可用於多種應用,包括電子、儲能、催化、過濾和感測。 該報告提供了有關先進碳材料產能、利用、生產、貿易、需求、應用、市場份額和價格的廣泛專有數據。

本報告涵蓋的先進碳材料有:

  • 碳纖維
  • 炭黑
  • 石墨
  • 石墨烯
  • 生物炭
  • 多壁奈米碳管
  • 單壁奈米碳管
  • 富勒烯
  • 奈米鑽石
  • 石墨烯量子點
  • 泡沫碳
  • 類鑽碳 (DLC) 塗層

本報告評估了多個碳材料類別的市場規模、需求趨勢、行業挑戰、競爭格局、定價趨勢、產能、主要參與者和製造技術。

報告內容如下:

  • 市場驅動因素與趨勢
  • 特性及合成方法
  • 市場細分:包括碳捕獲和利用、複合材料、電化學儲能裝置(電池和超級電容器)、感測器、熱管理、吸附、電磁屏蔽、催化劑載體、感測器等。
  • 價格與價格驅動因素
  • 先進碳材料的市場消費:依類型
  • 生產能力(營運中/計畫中):依材料分類
  • 超過1,000 家公司簡介:BC Biocarbon、Cabot Corporation、Carba、Carbitex、Dark Black Carbon、GrafTech International、Gratomic、Graphenea、Haydale Graphene Industries、Hexcel Corporation、Huntsman Corporation、Ibiden Co.、Ltd.、JEIO、LG Chem、Leading Edge Materials、Li-S Energy、Mattershift、Mitsubishi Chemical Carbon Fiber and Composites、Inc.、Mersen、LLC、NextSource Materials、Nippon Techno-Carbon Co.、Ltd.、Teijin、UMATEX、Nanocyl SA、OCSiAl、Perpetual Next、Renergi、SEC Carbon、SGL Group、Showa Denko、Syrah Resources、Versarien、Zeon Corporation 等

目錄

第一章先進碳材料市場

  • 市場概覽
  • 先進碳材料在綠色轉型中的作用

第二章碳纖維

  • 碳纖維的特性
    • 依係數劃分的類型
    • 二次加工的類型
  • 前驅材料的類型
    • PAN:聚丙烯□
  • 碳纖維增強聚合物 (CFRP)
    • 應用領域
  • 主要公司
  • 全球市場
    • 世界碳纖維需求量(依產業)(單位:MT,2016-2033)
    • 按產業劃分的全球碳纖維收入(2016-2033 年十億美元)
    • 按地區劃分的世界碳纖維需求量(單位:MT,2016-2033)
  • 市場驅動因素與趨勢
  • 市場挑戰
  • 未來趨勢
  • 生產能力
    • 年生產能力:依製造商劃分
    • 市佔率:依產能劃分
  • 公司簡介
    • 碳纖維製造商(所有 29 家公司的概況)
    • 碳纖維複合材料製造商(全部62家企業簡介)
    • 碳纖維回收商(所有 16 家公司的概況)

第 3 章炭黑

  • 市售炭黑
  • 特點
  • 製造流程
  • 世界炭黑市場
    • 依市場(單位:噸)
    • 依市場(收入基礎)
    • 依地區(單位:噸)
  • 傳統市場
  • 不斷成長的市場
  • 市場供應鏈
  • 特殊炭黑
    • 世界特種炭黑市場規模
  • 再生炭黑 (rCB)
    • 廢舊輪胎的熱分解 (ELT)
    • 不連續( "批量" )熱解
    • 半連續熱解
    • 連續熱解
    • 主要公司
    • 再生炭黑的世界市場規模
  • 定價
    • 原料
    • 市售炭黑
  • 生產能力
  • 公司簡介(共36家公司)

第 4 章石墨

  • 石墨的類型
    • 天然石墨和人工石墨
  • 天然石墨
    • 分類
    • 處理中
    • 有鱗的
    • 類地(無定形)石墨
    • 晶狀石墨
  • 人工石墨
    • 分類
    • 處理中
    • 人造石墨製造的問題
    • 各向同性石墨
    • 石墨電極
    • 擠壓石墨
    • 振動模製石墨
    • 雙模石墨
  • 新科學技術
  • 石墨材質的回收利用
  • 石墨的用途
  • 石墨價格(噸)
    • 定價(2023 年)
  • 世界市場和石墨生產
    • 全球天然石墨礦產量及儲量
    • 世界石墨產量(單位:噸,2016-2022)
    • 預計全球石墨產量(單位:噸,2023-2033 年)
    • 人造石墨供應
    • 依最終用途市場劃分的全球石墨市場需求(噸,2016-2033 年)
    • 石墨需求:依最終用途市場劃分(2022 年)
    • 石墨需求:依最終用途市場劃分(2033 年)
    • 按地區劃分的需求
    • 主要公司
    • 市場供應鏈
  • 公司簡介(共95家公司)

第 5 章生物炭

  • 什麼是生物炭?
  • 碳封存
  • 生物炭的特性
  • 市場與應用
  • 生物炭生產
  • 原料
  • 生產流程
    • 永續生產
    • 熱解
    • 氣化
    • 加熱蒸氣碳化 (HTC)
    • 烤的
    • 設備製造商
  • 定價
  • 碳信用額
  • 生物炭市場
    • 農業/畜牧業
    • 建築材料
    • 廢水處理
    • 過濾
    • 碳回收
    • 化妝品
    • 紡織品
    • 積層製造
    • 墨水
    • 聚合物
    • 包裝
    • 鋼/金屬
    • 能源
  • 世界市場需求
  • 公司簡介(共114家公司)

第 6 章石墨烯

  • 石墨烯的類型
  • 特點
  • 石墨烯市場挑戰
  • 石墨烯製造商
    • 生產能力
  • 價格與價格驅動因素
    • 原始石墨烯片價格/CVD石墨烯
    • 少層石墨烯價格
    • 石墨烯奈米片的定價
    • 氧化石墨烯 (GO) 和還原氧化石墨烯 (rGO) 的折扣價格
    • 多層石墨烯(MLG)價格
    • 石墨烯墨水
  • 世界需求(單位:噸,2018-2033)
    • 世界需求:石墨烯材料(噸)
    • 世界需求:依最終用戶市場劃分
    • 石墨烯市場:依地區
    • 全球石墨烯收入:按市場劃分(2018-2034 年)
  • 公司簡介(所有 360 家公司)

第 7 章碳奈米管

  • 特點
    • 碳奈米管性能比較
  • 多壁碳奈米管 (MWCNT)
    • 使用面積和TRL
    • 製造商
    • 價格與價格驅動因素
    • 世界市場需求
  • 公司簡介(共138家公司)
  • 單壁奈米碳管 (SWCNT)
    • 特點
    • 應用領域
    • 價格
    • 生產能力
    • 世界市場需求
  • 公司簡介(共16家公司)
  • 其他類型
    • 雙壁奈米碳管 (DWNT)
    • 垂直陣列 CNT (VACNT)
    • 少壁碳奈米管 (FWNT)
    • 碳奈米角 (CNH)
    • 碳洋蔥
    • 氮化硼奈米管 (BNNT)
    • 公司(全部 6 家公司簡介)

第8章碳奈米纖維

  • 特點
  • 合成
    • 化學氣相沉積
    • 靜電紡絲
    • 基於模板
    • 源自生物質
  • 市場
    • 電池
    • 超級電容器
    • 燃料電池
    • 二氧化碳回收
  • 公司(全部 10 家公司簡介)

第 9 章富勒烯

  • 特點
  • 產品
  • 市場及應用領域
  • 技術成熟度等級 (TRL)
  • 世界市場需求
  • 價格
  • 製造商(所有 20 家公司的資料)

第 10 章奈米鑽石

    • 螢光奈米鑽石 (FND)
  • 應用領域
  • 價格與價格驅動因素
  • 世界需求(單位:噸,2018-2033)
  • 公司簡介(共30家公司)

第十一章石墨烯量子點

  • 與量子點的比較
  • 特點
  • 合成
    • 自上而下的方法
    • 由下而上的方法
  • 應用領域
  • 石墨烯量子點定價
  • 石墨烯量子點廠商(共9家)

第十二章碳泡棉

    • 碳氣凝膠
  • 特點
  • 應用領域
  • 公司簡介(共9家公司)

第 13 章類鑽石碳 (DLC) 塗層

  • 特點
  • 應用領域及市場
  • 全球市場規模
  • 公司簡介(共9家公司)

第14章碳材料及其碳回收

  • 從源頭回收二氧化碳
    • 交通
    • 世界各地源頭的二氧化碳捕集能力
    • 按來源地
    • 按端點
  • 主要二氧化碳捕集工藝
    • 材料
    • 燃燒後
    • 氧氣燃燒
    • 液態或超臨界二氧化碳:Allam-Fetvedt 循環
    • 燃燒前
  • 碳分離技術
    • 吸收和恢復
    • 吸附回收
    • 液體/超臨界二氧化碳(低溫)回收
    • 化學環鹼回收
    • Calix 的先進窯爐
    • 其他技術
    • 主要分離技術比較
    • CO2 的電化學轉化
  • DAC(直接空氣回收)
    • 摘要
  • 公司(全部 4 家公司簡介)

第十五章研究方法

第16章參考資料

“The Global Market for Advanced Carbon Materials 2023-2033” is an essential resource for anyone involved in the materials industry. This in-depth 1,000+ page market research report provides a comprehensive analysis of the advanced carbon materials market and leading technologies including carbon fibers, carbon black, graphite, biochar, graphene, nanotubes, nanodiamonds and more.

Advanced Carbon Materials possess unique mechanical, electrical, biological and chemical properties that have led to a variety of applications in electronics, energy storage, catalysis, filtration and sensing. The report provides extensive proprietary data on advanced carbon materials capacity, capacity utilization, production, trade, demand, applications, market share, and pricing.

Advanced Carbon Materials covered in this report include:

  • Carbon fibers
  • Carbon black
  • Graphite
  • Graphene
  • Biochar
  • Multi-walled Carbon Nanotubes
  • Single-walled Carbon Nanotubes
  • Fullerenes
  • Nanodiamonds
  • Graphene quantum dots
  • Carbon Foam
  • Diamond-like carbon (DLC) coatings

“The Global Market for Advanced Carbon Materials 2023-2033” evaluates market size, demand forecasts, industry challenges, competitive landscape, pricing trends, production capacities, key players and manufacturing techniques across multiple carbon material categories.

Report contents include:

  • Market drivers and trends
  • Properties and synthesis methods
  • Market segment analysis. Markets covered include carbon capture & utilization, composites, electrochemical energy storage devices (batteries and supercapacitors), sensors, thermal management, adsorption, electromagnetic shielding, catalyst support, sensors and more.
  • Price and price drivers
  • Market consumption of advanced carbon materials, by type.
  • Production capacities, current and planned by material.
  • >1,000 company profiles. Companies profiled include BC Biocarbon, Cabot Corporation, Carba, Carbitex, Dark Black Carbon, GrafTech International, Gratomic, Graphenea, Haydale Graphene Industries, Hexcel Corporation, Huntsman Corporation, Ibiden Co., Ltd., JEIO, LG Chem, Leading Edge Materials, , Li-S Energy, Mattershift, Mitsubishi Chemical Carbon Fiber and Composites, Inc., Mersen, LLC, NextSource Materials, Nippon Techno-Carbon Co., Ltd., Teijin, UMATEX, Nanocyl SA, OCSiAl, Perpetual Next, Renergi, SEC Carbon, SGL Group, Showa Denko, Syrah Resources, Versarien and Zeon Corporation.

TABLE OF CONTENTS

1. THE ADVANCED CARBON MATERIALS MARKET

  • 1.1. Market overview
  • 1.2. Role of advanced carbon materials in the green transition

2. CARBON FIBERS

  • 2.1. Properties of carbon fibers
    • 2.1.1. Types by modulus
    • 2.1.2. Types by the secondary processing
  • 2.2. Precursor material types
    • 2.2.1. PAN: Polyacrylonitrile
      • 2.2.1.1. Spinning
      • 2.2.1.2. Stabilizing
      • 2.2.1.3. Carbonizing
      • 2.2.1.4. Surface treatment
      • 2.2.1.5. Sizing
      • 2.2.1.6. Pitch-based carbon fibers
      • 2.2.1.7. Isotropic pitch
      • 2.2.1.8. Mesophase pitch
      • 2.2.1.9. Viscose (Rayon)-based carbon fibers
  • 2.3. Carbon fiber reinforced polymer (CFRP)
    • 2.3.1. Applications
  • 2.4. Key players
  • 2.5. Global markets
    • 2.5.1. Global carbon fiber demand 2016-2033, by industry (MT)
    • 2.5.2. Global carbon fiber revenues 2016-2033, by industry (billions USD)
    • 2.5.3. Global carbon fiber demand 2016-2033, by region (MT)
  • 2.6. Market drivers and trends
  • 2.7. Market challenges
  • 2.8. Future trends
  • 2.9. Production capacities
    • 2.9.1. Annual capacity, by producer
    • 2.9.2. Market share, by capacity
  • 2.10 company profiles
    • 2.10.1. Carbon fiber producers (29 company profiles)
    • 2.10.2. Carbon Fiber composite producers(62 company profiles)
    • 2.10.3. Carbon fiber recyclers (16 company profiles)

3. CARBON BLACK

  • 3.1. Commercially available carbon black
  • 3.2. Properties
    • 3.2.1. Particle size distribution
    • 3.2.2. Structure-Aggregate size
    • 3.2.3. Surface chemistry
    • 3.2.4. Agglomerates
    • 3.2.5. Colour properties
    • 3.2.6. Porosity
    • 3.2.7. Physical form
  • 3.3. Manufacturing processes
  • 3.4. Global market for carbon black
    • 3.4.1. By market (tons)
    • 3.4.2. By market (revenues)
    • 3.4.3. By region (Tons)
  • 3.5. Traditional markets
    • 3.5.1.1. Tires and automotive
    • 3.5.1.2. Non-Tire Rubber (Industrial rubber)
  • 3.6. Growth markets
  • 3.7. Market supply chain
  • 3.8. Specialty carbon black
    • 3.8.1. Global market size for specialty CB
  • 3.9. Recovered carbon black (rCB)
    • 3.9.1. Pyrolysis of End-of-Life Tires (ELT)
    • 3.9.2. Discontinuous ("batch") pyrolysis
    • 3.9.3. Semi-continuous pyrolysis
    • 3.9.4. Continuous pyrolysis
    • 3.9.5. Key players
    • 3.9.6. Global market size for Recovered Carbon Black
  • 3.10. Pricing
    • 3.10.1. Feedstock
    • 3.10.2. Commercial carbon black
  • 3.11. Production capacities
  • 3.12 company profiles (36 company profiles)

4. GRAPHITE

  • 4.1. Types of graphite
    • 4.1.1. Natural vs synthetic graphite
  • 4.2. Natural graphite
    • 4.2.1. Classification
    • 4.2.2. Processing
    • 4.2.3. Flake
      • 4.2.3.1. Grades
      • 4.2.3.2. Applications
      • 4.2.3.3. Spherical graphite
      • 4.2.3.4. Expandable graphite
    • 4.2.4. Amorphous graphite
      • 4.2.4.1. Applications
    • 4.2.5. Crystalline vein graphite
      • 4.2.5.1. Applications
  • 4.3. Synthetic graphite
    • 4.3.1. Classification
      • 4.3.1.1. Primary synthetic graphite
      • 4.3.1.2. Secondary synthetic graphite
    • 4.3.2. Processing
      • 4.3.2.1. Processing for battery anodes
    • 4.3.3. Issues with synthetic graphite production
    • 4.3.4. Isostatic Graphite
      • 4.3.4.1. Description
      • 4.3.4.2. Markets
      • 4.3.4.3. Producers and production capacities
    • 4.3.5. Graphite electrodes
    • 4.3.6. Extruded Graphite
    • 4.3.7. Vibration Molded Graphite
    • 4.3.8. Die-molded graphite
  • 4.4. New technologies
  • 4.5. Recycling of graphite materials
  • 4.6. Applications of graphite
  • 4.7. Graphite pricing (ton)
    • 4.7.1. Pricing in 2023
  • 4.8. Global market and production of graphite
    • 4.8.1. Global mine production and reserves of natural graphite
    • 4.8.2. Global graphite production in tonnes, 2016-2022
    • 4.8.3. Estimated global graphite production in tonnes, 2023-2033
    • 4.8.4. Synthetic graphite supply
    • 4.8.5. Global market demand for graphite by end use market 2016-2033, tonnes
      • 4.8.5.1. Natural graphite
      • 4.8.5.2. Synthetic graphite
    • 4.8.6. Demand for graphite by end use markets, 2022
    • 4.8.7. Demand for graphite by end use markets, 2033
    • 4.8.8. Demand by region
    • 4.8.9. Main market players
      • 4.8.9.1. Natural graphite
      • 4.8.9.2. Synthetic graphite
    • 4.8.10. Market supply chain
  • 4.9 company profiles (95 company profiles)

5. BIOCHAR

  • 5.1. What is biochar?
  • 5.2. Carbon sequestration
  • 5.3. Properties of biochar
  • 5.4. Markets and applications
  • 5.5. Biochar production
  • 5.6. Feedstocks
  • 5.7. Production processes
    • 5.7.1. Sustainable production
    • 5.7.2. Pyrolysis
      • 5.7.2.1. Slow pyrolysis
      • 5.7.2.2. Fast pyrolysis
    • 5.7.3. Gasification
    • 5.7.4. Hydrothermal carbonization (HTC)
    • 5.7.5. Torrefaction
    • 5.7.6. Equipment manufacturers
  • 5.8. Pricing
  • 5.9. Carbon credits
  • 5.10. Markets for biochar
    • 5.10.1. Agriculture & livestock farming
      • 5.10.1.1. Market drivers and trends
      • 5.10.1.2. Applications
    • 5.10.2. Construction materials
      • 5.10.2.1. Market drivers and trends
      • 5.10.2.2. Applications
    • 5.10.3. Wastewater treatment
      • 5.10.3.1. Market drivers and trends
      • 5.10.3.2. Applications
    • 5.10.4. Filtration
      • 5.10.4.1. Market drivers and trends
      • 5.10.4.2. Applications
    • 5.10.5. Carbon capture
      • 5.10.5.1. Market drivers and trends
      • 5.10.5.2. Applications
    • 5.10.6. Cosmetics
      • 5.10.6.1. Market drivers and trends
      • 5.10.6.2. Applications
    • 5.10.7. Textiles
      • 5.10.7.1. Market drivers and trends
      • 5.10.7.2. Applications
    • 5.10.8. Additive manufacturing
      • 5.10.8.1. Market drivers and trends
      • 5.10.8.2. Applications
    • 5.10.9. Ink
      • 5.10.9.1. Market drivers and trends
      • 5.10.9.2. Applications
    • 5.10.10. Polymers
      • 5.10.10.1. Market drivers and trends
      • 5.10.10.2. Applications
    • 5.10.11. Packaging
      • 5.10.11.1. Market drivers and trends
      • 5.10.11.2. Applications
    • 5.10.12. Steel and metal
      • 5.10.12.1. Market drivers and trends
      • 5.10.12.2. Applications
    • 5.10.13. Energy
      • 5.10.13.1. Market drivers and trends
      • 5.10.13.2. Applications
  • 5.11. Global market demand
  • 5.12 company profiles (114 company profiles)

6. GRAPHENE

  • 6.1. Types of graphene
  • 6.2. Properties
  • 6.3. Graphene market challenges
  • 6.4. Graphene producers
    • 6.4.1. Production capacities
  • 6.5. Price and price drivers
    • 6.5.1. Pristine graphene flakes pricing/CVD graphene
    • 6.5.2. Few-Layer graphene pricing
    • 6.5.3. Graphene nanoplatelets pricing
    • 6.5.4. Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing
    • 6.5.5. Multilayer graphene (MLG) pricing
    • 6.5.6. Graphene ink
  • 6.6. Global demand 2018-2033, tons
    • 6.6.1. Global demand by graphene material (tons)
    • 6.6.2. Global demand by end user market
    • 6.6.3. Graphene market, by region
    • 6.6.4. Global graphene revenues, by market, 2018-2034
  • 6.7 company profiles (360 company profiles)

7. CARBON NANOTUBES

  • 7.1. Properties
    • 7.1.1. Comparative properties of CNTs
  • 7.2. Multi-walled carbon nanotubes (MWCNTs)
    • 7.2.1. Applications and TRL
    • 7.2.2. Producers
      • 7.2.2.1. Production capacities
    • 7.2.3. Price and price drivers
    • 7.2.4. Global market demand
  • 7.2.5 company profiles (138 company profiles)
  • 7.3. Single-walled carbon nanotubes (SWCNTs)
    • 7.3.1. Properties
    • 7.3.2. Applications
    • 7.3.3. Prices
    • 7.3.4. Production capacities
    • 7.3.5. Global market demand
  • 7.3.6 company profiles (16 company profiles)
  • 7.4. Other types
    • 7.4.1. Double-walled carbon nanotubes (DWNTs)
      • 7.4.1.1. Properties
      • 7.4.1.2. Applications
    • 7.4.2. Vertically aligned CNTs (VACNTs)
      • 7.4.2.1. Properties
      • 7.4.2.2. Applications
    • 7.4.3. Few-walled carbon nanotubes (FWNTs)
      • 7.4.3.1. Properties
      • 7.4.3.2. Applications
    • 7.4.4. Carbon Nanohorns (CNHs)
      • 7.4.4.1. Properties
      • 7.4.4.2. Applications
    • 7.4.5. Carbon Onions
      • 7.4.5.1. Properties
      • 7.4.5.2. Applications
    • 7.4.6. Boron Nitride nanotubes (BNNTs)
      • 7.4.6.1. Properties
      • 7.4.6.2. Applications
      • 7.4.6.3. Production
    • 7.4.7. Companies(6 company profiles)

8. CARBON NANOFIBERS

  • 8.1. Properties
  • 8.2. Synthesis
    • 8.2.1. Chemical vapor deposition
    • 8.2.2. Electrospinning
    • 8.2.3. Template-based
    • 8.2.4. From biomass
  • 8.3. Markets
    • 8.3.1. Batteries
    • 8.3.2. Supercapacitors
    • 8.3.3. Fuel cells
    • 8.3.4. CO2 capture
  • 8.4. Companies (10 company profiles)

9. FULLERENES

  • 9.1. Properties
  • 9.2. Products
  • 9.3. Markets and applications
  • 9.4. Technology Readiness Level (TRL)
  • 9.5. Global market demand
  • 9.6. Prices
  • 9.7. Producers (20 company profiles)

10. NANODIAMONDS

  • 10.1. Types
    • 10.1.1. Fluorescent nanodiamonds (FNDs)
  • 10.2. Applications
  • 10.3. Price and price drivers
  • 10.4. Global demand 2018-2033, tonnes
  • 10.5 company profiles (30 company profiles)

11. GRAPHENE QUANTUM DOTS

  • 11.1. Comparison to quantum dots
  • 11.2. Properties
  • 11.3. Synthesis
    • 11.3.1. Top-down method
    • 11.3.2. Bottom-up method
  • 11.4. Applications
  • 11.5. Graphene quantum dots pricing
  • 11.6. Graphene quantum dot producers (9 company profiles)

12. CARBON FOAM

  • 12.1. Types
    • 12.1.1. Carbon aerogels
      • 12.1.1.1. Carbon-based aerogel composites
  • 12.2. Properties
  • 12.3. Applications
  • 12.4 company profiles (9 company profiles)

13. DIAMOND-LIKE CARBON (DLC) COATINGS

  • 13.1. Properties
  • 13.2. Applications and markets
  • 13.3. Global market size
  • 13.4 company profiles (9 company profiles)

14. CARBON MATERIALS FROM CARBON CAPTURE AND UTILIZATION

  • 14.1. CO2 capture from point sources
    • 14.1.1. Transportation
    • 14.1.2. Global point source CO2 capture capacities
    • 14.1.3. By source
    • 14.1.4. By endpoint
  • 14.2. Main carbon capture processes
    • 14.2.1. Materials
    • 14.2.2. Post-combustion
    • 14.2.3. Oxy-fuel combustion
    • 14.2.4. Liquid or supercritical CO2: Allam-Fetvedt Cycle
    • 14.2.5. Pre-combustion
  • 14.3. Carbon separation technologies
    • 14.3.1. Absorption capture
    • 14.3.2. Adsorption capture
    • 14.3.3. Membranes
    • 14.3.4. Liquid or supercritical CO2 (Cryogenic) capture
    • 14.3.5. Chemical Looping-Based Capture
    • 14.3.6. Calix Advanced Calciner
    • 14.3.7. Other technologies
      • 14.3.7.1. Solid Oxide Fuel Cells (SOFCs)
    • 14.3.8. Comparison of key separation technologies
    • 14.3.9. Electrochemical conversion of CO2
      • 14.3.9.1. Process overview
  • 14.4. Direct air capture (DAC)
    • 14.4.1. Description
  • 14.5. Companies (4 company profiles)

15. RESEARCH METHODOLOGY

16. REFERENCES

List of Tables

  • Table 1. The advanced carbon materials market
  • Table 2. Classification and types of the carbon fibers
  • Table 3. Summary of carbon fiber properties
  • Table 4. Modulus classifications of carbon fiber
  • Table 5. Comparison of main precursor fibers
  • Table 6. Summary of markets and applications for CFRPs
  • Table 7. Production capacities of carbon fiber producers, in metric tonnes, current and planned
  • Table 8. Market drivers and trends in carbon fibers
  • Table 9. Market challenges in the CF and CFRP market
  • Table 10. Production capacities of carbon fiber producers, in metric tonnes, current and planned
  • Table 11. Main Toray production sites and capacities
  • Table 12. Commercially available carbon black grades
  • Table 13. Properties of carbon black and influence on performance
  • Table 14. Carbon black compounds
  • Table 15. Carbon black manufacturing processes, advantages and disadvantages
  • Table 16. Global market for carbon black 2018-2033, by end user market (100,000 tons)
  • Table 17. Global market for carbon black 2018-2033, by end user market (billion USD)
  • Table 18. Global market for carbon black 2018-2033, by region (100,000 tons)
  • Table 19: Market drivers for carbon black in the tire industry
  • Table 20. Global market for carbon black in tires (Million metric tons), 2018 to 2033
  • Table 21. Carbon black non-tire applications
  • Table 22. Market supply chain for carbon black
  • Table 23. Specialty carbon black demand, 2018-2033 (000s Tons), by market
  • Table 24. Categories for recovered carbon black (rCB) based on key properties and intended applications
  • Table 25. rCB post-treatment technologies
  • Table 26. Recovered carbon black producers
  • Table 27. Recovered carbon black demand, 2018-2033 (000s Tons), by market
  • Table 28 Pricing of carbon black
  • Table 29: Carbon black capacities, by producer
  • Table 30. Comparison between Natural and Synthetic Graphite
  • Table 31. Classification of natural graphite with its characteristics
  • Table 32. Characteristics of synthetic graphite
  • Table 33: Main markets and applications of isostatic graphite
  • Table 34. Current or planned production capacities for isostatic graphite
  • Table 35. Main graphite electrode producers and capacities (MT/year)
  • Table 36. Markets and applications of graphite
  • Table 37. Classification, application and price of graphite as a function of size
  • Table 38. Estimated global mine Production of natural graphite 2020-2022, by country (tons)
  • Table 39. Global production of graphite 2016-2022 MT
  • Table 40. Estimated global graphite production in tonnes, 2023-2033
  • Table 41. Main natural graphite producers
  • Table 42. Main synthetic graphite producers
  • Table 43. Next Resources graphite flake products
  • Table 44. Summary of key properties of biochar
  • Table 45. Biochar physicochemical and morphological properties
  • Table 46. Markets and applications for biochar
  • Table 47. Biochar feedstocks-source, carbon content, and characteristics
  • Table 48. Biochar production technologies, description, advantages and disadvantages
  • Table 49. Comparison of slow and fast pyrolysis for biomass
  • Table 50. Comparison of thermochemical processes for biochar production
  • Table 51. Biochar production equipment manufacturers
  • Table 52. Biochar applications in agriculture and livestock farming
  • Table 53. Effect of biochar on different soil properties
  • Table 54. Fertilizer products and their associated N, P, and K content
  • Table 55. Application of biochar in construction
  • Table 56. Process and benefits of biochar as an amendment in cement
  • Table 57. Application of biochar in asphalt
  • Table 58. Biochar applications for wastewater treatment
  • Table 59. Biochar in carbon capture overview
  • Table 60. Biochar in cosmetic products
  • Table 61. Biochar in textiles
  • Table 62. Biochar in additive manufacturing
  • Table 63. Biochar in ink
  • Table 64. Biochar in packaging
  • Table 65. Companies using biochar in packaging
  • Table 66. Biochar in steel and metal
  • Table 67. Summary of applications of biochar in energy
  • Table 68. Global demand for biochar 2018-2033 (1,000 tons), by market
  • Table 69. Properties of graphene, properties of competing materials, applications thereof
  • Table 70. Graphene market challenges
  • Table 71. Main graphene producers by country, annual production capacities, types and main markets they sell into 2020
  • Table 72. Types of graphene and typical prices
  • Table 73. Pristine graphene flakes pricing by producer
  • Table 74. Few-layer graphene pricing by producer
  • Table 75. Graphene nanoplatelets pricing by producer
  • Table 76. Graphene oxide and reduced graphene oxide pricing, by producer
  • Table 77. Multi-layer graphene pricing by producer
  • Table 78. Graphene ink pricing by producer
  • Table 79. Global graphene demand by type of graphene material, 2018-2034 (tons)
  • Table 80. Global graphene demand, by region, 2018-2034 (tons)
  • Table 81. Performance criteria of energy storage devices
  • Table 82. Typical properties of SWCNT and MWCNT
  • Table 83. Properties of CNTs and comparable materials
  • Table 84. Applications of MWCNTs
  • Table 85. Annual production capacity of the key MWCNT producers in 2023 (MT)
  • Table 86. Carbon nanotubes pricing (MWCNTS, SWCNT etc.) by producer
  • Table 87. Properties of carbon nanotube paper
  • Table 88. Comparative properties of MWCNT and SWCNT
  • Table 89. Markets, benefits and applications of Single-Walled Carbon Nanotubes
  • Table 90. SWCNTs pricing
  • Table 91. Annual production capacity of SWCNT producers
  • Table 92. SWCNT market demand forecast (metric tons), 2018-2033
  • Table 93. Chasm SWCNT products
  • Table 94. Thomas Swan SWCNT production
  • Table 95. Applications of Double-walled carbon nanotubes
  • Table 96. Markets and applications for Vertically aligned CNTs (VACNTs)
  • Table 97. Markets and applications for few-walled carbon nanotubes (FWNTs)
  • Table 98. Markets and applications for carbon nanohorns
  • Table 99. Comparative properties of BNNTs and CNTs
  • Table 100. Applications of BNNTs
  • Table 101. Comparison of synthesis methods for carbon nanofibers
  • Table 102. Market overview for fullerenes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications
  • Table 103. Types of fullerenes and applications
  • Table 104. Products incorporating fullerenes
  • Table 105. Markets, benefits and applications of fullerenes
  • Table 106. Global market demand for fullerenes, 2018-2033 (tons)
  • Table 107. Example prices of fullerenes
  • Table 108. Properties of nanodiamonds
  • Table 109. Summary of types of NDS and production methods-advantages and disadvantages
  • Table 110. Markets, benefits and applications of nanodiamonds
  • Table 111. Pricing of nanodiamonds, by producer/distributor
  • Table 112. Demand for nanodiamonds (metric tonnes), 2018-2033
  • Table 113. Production methods, by main ND producers
  • Table 114. Adamas Nanotechnologies, Inc. nanodiamond product list
  • Table 115. Carbodeon Ltd. Oy nanodiamond product list
  • Table 116. Daicel nanodiamond product list
  • Table 117. FND Biotech Nanodiamond product list
  • Table 118. JSC Sinta nanodiamond product list
  • Table 119. Plasmachem product list and applications
  • Table 120. Ray-Techniques Ltd. nanodiamonds product list
  • Table 121. Comparison of ND produced by detonation and laser synthesis
  • Table 122. Comparison of graphene QDs and semiconductor QDs
  • Table 123. Advantages and disadvantages of methods for preparing GQDs
  • Table 124. Applications of graphene quantum dots
  • Table 125. Prices for graphene quantum dots
  • Table 126. Properties of carbon foam materials
  • Table 127. Applications of carbon foams
  • Table 128. Properties of Diamond-like carbon (DLC) coatings
  • Table 129. Applications and markets for Diamond-like carbon (DLC) coatings
  • Table 130. Global revenues for DLC coatings, 2018-2033 (Billion USD)
  • Table 131. Point source examples
  • Table 132. Assessment of carbon capture materials
  • Table 133. Chemical solvents used in post-combustion
  • Table 134. Commercially available physical solvents for pre-combustion carbon capture
  • Table 135. Main capture processes and their separation technologies
  • Table 136. Absorption methods for CO2 capture overview
  • Table 137. Commercially available physical solvents used in CO2 absorption
  • Table 138. Adsorption methods for CO2 capture overview
  • Table 139. Membrane-based methods for CO2 capture overview
  • Table 140. Comparison of main separation technologies
  • Table 141. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages
  • Table 142. Advantages and disadvantages of DAC

List of Figures

  • Figure 1. Manufacturing process of PAN type carbon fibers
  • Figure 2. Production processes for pitch-based carbon fibers
  • Figure 3. Global carbon fiber demand 2016-2033, by industry (MT)
  • Figure 4. Global carbon fiber revenues 2016-2033, by industry (MT)
  • Figure 5. Global carbon fiber revenues 2016-2033, by region (MT)
  • Figure 6. Carbon fiber manufacturing capacity in 2022, by company (metric tonnes)
  • Figure 7. Neustark modular plant
  • Figure 8. CR-9 carbon fiber wheel
  • Figure 9. The Continuous Kinetic Mixing system
  • Figure 10. Chemical decomposition process of polyurethane foam
  • Figure 11. Electron microscope image of carbon black
  • Figure 12. Different shades of black, depending on the surface of Carbon Black
  • Figure 13. Structure- Aggregate Size/Shape Distribution
  • Figure 14. Surface Chemistry - Surface Functionality Distribution
  • Figure 15. Sequence of structure development of Carbon Black
  • Figure 16. Carbon Black pigment in Acrylonitrile butadiene styrene (ABS) polymer
  • Figure 17. Global market for carbon black 2018-2033, by end user market (100,000 tons)
  • Figure 18. Global market for carbon black 2018-2033, by end user market (millions USD)
  • Figure 19. Global market for carbon black 2018-2033, by region (100,000 tons)
  • Figure 20 Break-down of raw materials (by weight) used in a tire
  • Figure 21. Applications of specialty carbon black
  • Figure 22. Specialty carbon black market volume, 2018-2033 (000s Tons), by market
  • Figure 23. Pyrolysis process: from ELT to rCB, oil, and syngas, and applications thereof
  • Figure 24. Recovered carbon black demand, 2018-2033 (000s Tons), by market
  • Figure 25. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG)
  • Figure 26. Overview of graphite production, processing and applications
  • Figure 27. Flake graphite
  • Figure 28. Applications of flake graphite
  • Figure 29. Amorphous graphite
  • Figure 30. Vein graphite
  • Figure 31: Isostatic pressed graphite
  • Figure 32. Global market for graphite EAFs, 2018-2033 (MT)
  • Figure 33. Extruded graphite rod
  • Figure 34. Vibration Molded Graphite
  • Figure 35. Die-molded graphite products
  • Figure 36. Price of fine flake graphite 2022-2023
  • Figure 37. Price of spherical graphite, 2022-2023
  • Figure 38. Global production of graphite 2016-2022 MT
  • Figure 39. Estimated global graphite production in tonnes, 2023-2033
  • Figure 40. Global market demand for natural graphite by end use market 2016-2033, tonnes
  • Figure 41. Global market demand for synthetic graphite by end use market 2016-2033, tonnes
  • Figure 42. Consumption of graphite by end use markets, 2022
  • Figure 43. Demand for graphite by end use markets, 2033
  • Figure 44. Global consumption of graphite by type and region, 2022
  • Figure 45. Graphite market supply chain (battery market)
  • Figure 46. Biochars from different sources, and by pyrolyzation at different temperatures
  • Figure 47. Compressed biochar
  • Figure 48. Biochar production diagram
  • Figure 49. Pyrolysis process and by-products in agriculture
  • Figure 50. Perennial ryegrass plants grown in clay soil with (Right) and without (Left) biochar
  • Figure 51. Biochar bricks
  • Figure 52. Capchar prototype pyrolysis kiln
  • Figure 53. Made of Air's HexChar panels
  • Figure 54. Takavator
  • Figure 55. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene
  • Figure 56. Global graphene demand by type of graphene material, 2018-2034 (tons)
  • Figure 57. Global graphene demand by market, 2018-2034 (tons)
  • Figure 58. Global graphene demand, by region, 2018-2034 (tons)
  • Figure 59. Global graphene revenues, by market, 2018-2034 (Millions USD)
  • Figure 60. Graphene heating films
  • Figure 61. Graphene flake products
  • Figure 62. AIKA Black-T
  • Figure 63. Printed graphene biosensors
  • Figure 64. Prototype of printed memory device
  • Figure 65. Brain Scientific electrode schematic
  • Figure 66. Graphene battery schematic
  • Figure 67. Dotz Nano GQD products
  • Figure 68. Graphene-based membrane dehumidification test cell
  • Figure 69. Proprietary atmospheric CVD production
  • Figure 70. Wearable sweat sensor
  • Figure 71. InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination
  • Figure 72. BioStamp nPoint
  • Figure 73. Nanotech Energy battery
  • Figure 74. Hybrid battery powered electrical motorbike concept
  • Figure 75. NAWAStitch integrated into carbon fiber composite
  • Figure 76. Schematic illustration of three-chamber system for SWCNH production
  • Figure 77. TEM images of carbon nanobrush
  • Figure 78. Test performance after 6 weeks ACT II according to Scania STD4445
  • Figure 79. Quantag GQDs and sensor
  • Figure 80. Thermal conductive graphene film
  • Figure 81. Talcoat graphene mixed with paint
  • Figure 82. T-FORCE CARDEA ZERO
  • Figure 83. Demand for MWCNT by application in 2022
  • Figure 84. Market demand for carbon nanotubes by market, 2018-2033 (metric tons)
  • Figure 85. AWN Nanotech water harvesting prototype
  • Figure 86. Large transparent heater for LiDAR
  • Figure 87. Carbonics, Inc.'s carbon nanotube technology
  • Figure 88. Fuji carbon nanotube products
  • Figure 89. Cup Stacked Type Carbon Nano Tubes schematic
  • Figure 90. CSCNT composite dispersion
  • Figure 91. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays
  • Figure 92. Koatsu Gas Kogyo Co. Ltd CNT product
  • Figure 93. NAWACap
  • Figure 94. NAWAStitch integrated into carbon fiber composite
  • Figure 95. Schematic illustration of three-chamber system for SWCNH production
  • Figure 96. TEM images of carbon nanobrush
  • Figure 97. CNT film
  • Figure 98. Shinko Carbon Nanotube TIM product
  • Figure 99. SWCNT market demand forecast (metric tons), 2018-2033
  • Figure 100. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process
  • Figure 101. Carbon nanotube paint product
  • Figure 102. MEIJO eDIPS product
  • Figure 103. HiPCO® Reactor
  • Figure 104. Smell iX16 multi-channel gas detector chip
  • Figure 105. The Smell Inspector
  • Figure 106. Toray CNF printed RFID
  • Figure 107. Double-walled carbon nanotube bundle cross-section micrograph and model
  • Figure 108. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment
  • Figure 109. TEM image of FWNTs
  • Figure 110. Schematic representation of carbon nanohorns
  • Figure 111. TEM image of carbon onion
  • Figure 112. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red
  • Figure 113. Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and multi-walled carbon nanotubes (MWCNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWCNTs (Source: JNM)
  • Figure 114. Carbon nanotube adhesive sheet
  • Figure 115. Technology Readiness Level (TRL) for fullerenes
  • Figure 116. Global market demand for fullerenes, 2018-2033 (tons)
  • Figure 117. Detonation Nanodiamond
  • Figure 118. DND primary particles and properties
  • Figure 119. Functional groups of Nanodiamonds
  • Figure 120. Demand for nanodiamonds (metric tonnes), 2018-2033
  • Figure 121. NBD battery
  • Figure 122. Neomond dispersions
  • Figure 123. Visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points)
  • Figure 124. Green-fluorescing graphene quantum dots
  • Figure 125. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4)
  • Figure 126. Graphene quantum dots
  • Figure 127. Top-down and bottom-up methods
  • Figure 128. Dotz Nano GQD products
  • Figure 129. InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination
  • Figure 130. Quantag GQDs and sensor
  • Figure 131. Schematic of typical microstructure of carbon foam: (a) open-cell, (b) closed-cell
  • Figure 132. Classification of DLC coatings
  • Figure 133. Global revenues for DLC coatings, 2018-2033 (Billion USD)
  • Figure 134. CO2 capture and separation technology
  • Figure 135. Global capacity of point-source carbon capture and storage facilities
  • Figure 136. Global carbon capture capacity by CO2 source, 2021
  • Figure 137. Global carbon capture capacity by CO2 source, 2030
  • Figure 138. Global carbon capture capacity by CO2 endpoint, 2021 and 2030
  • Figure 139. Post-combustion carbon capture process
  • Figure 140. Postcombustion CO2 Capture in a Coal-Fired Power Plant
  • Figure 141. Oxy-combustion carbon capture process
  • Figure 142. Liquid or supercritical CO2 carbon capture process
  • Figure 143. Pre-combustion carbon capture process
  • Figure 144. Amine-based absorption technology
  • Figure 145. Pressure swing absorption technology
  • Figure 146. Membrane separation technology
  • Figure 147. Liquid or supercritical CO2 (cryogenic) distillation
  • Figure 148. Process schematic of chemical looping
  • Figure 149. Calix advanced calcination reactor
  • Figure 150. Fuel Cell CO2 Capture diagram
  • Figure 151. Electrochemical CO2 reduction products
  • Figure 152. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse
  • Figure 153. Global CO2 capture from biomass and DAC in the Net Zero Scenario