穿戴式機器人外骨骼的全球市場 (各類型、各終端用戶、各用途、各地區):市場規模、佔有率、趨勢分析、機會、預測 (2018年~2028年)
市場調查報告書
商品編碼
1147326

穿戴式機器人外骨骼的全球市場 (各類型、各終端用戶、各用途、各地區):市場規模、佔有率、趨勢分析、機會、預測 (2018年~2028年)

Wearable Robotic Exoskeleton Market - Global Size, Share, Trend Analysis, Opportunity and Forecast Report, 2018-2028, Segmented By Type ; By End User ; By Application ; By Region

出版日期: | 出版商: Blueweave Consulting | 英文 240 Pages | 商品交期: 2-3個工作天內

價格
簡介目錄

世界穿戴式機器人外骨骼的市場規模,2021年達到了12億7,000萬美元,在預測期間內 (2022年~2028年) 以45.3%驚人的年複合成長率成長,預計2028年達到171億9,000萬美元。穿戴式機器人外骨骼市場,由於對有效率的復建治療的機器人、機器的高需求,預計記錄急速成長。穿戴式機器人外骨骼工具,廣泛用於恢復和增強神經肌肉功能障礙引起的自然人體運動喪失。由於外骨骼可以幫助需要任何身體部位支撐的應用,因此廣泛使用於建築、製造和物流產業以及老年人。然而,開發機器人外骨骼所涉及高資本成本導致設備更加昂貴,這可能會限制全球穿戴式機器人外骨骼市場的成長。

本報告提供全球穿戴式機器人外骨骼 (安裝式外骨骼機器人) 的市場相關分析,市場基本結構和促進、阻礙因素,市場整體及各類型、各終端用戶、各用途、各地區的趨勢預測,市場策略的傾向與案例,主要企業的簡介等相關調查。

目錄

第1章 分析的組成架構

第2章 摘要整理

第3章 全球穿戴式機器人外骨骼市場考察

  • 產業的價值鏈分析
  • DROC分析 (促進因素、阻礙因素、機會、威脅)
  • 技術進步/近幾年趨勢
  • 法規結構
  • 波特的五力分析

第4章 全球穿戴式機器人外骨骼市場:概要

  • 市場規模與其預測 (2018年~2028年)
    • 以金額為準 (單位:10億美元)
  • 市場佔有率與其預測
    • 各類型
      • 被動型
      • 電動型
    • 各終端用戶
      • 醫療
      • 產業
      • 防衛
      • 商業
    • 各用途
      • 復健
      • 輔助
      • 身體零件支援
      • 運動
    • 各地區
      • 北美
      • 歐洲
      • 亞太地區
      • 南美
      • 中東、非洲

第5章 北美的穿戴式機器人外骨骼市場

  • 市場規模與其預測 (以金額為準,2018年~2028年)
  • 市場佔有率與其預測
    • 各類型
    • 各終端用戶
    • 各用途
    • 各國
      • 美國
      • 加拿大

第6章 歐洲的穿戴式機器人外骨骼市場

  • 市場規模與其預測 (以金額為準,2018年~2028年)
  • 市場佔有率與其預測
    • 各類型
    • 各終端用戶
    • 各用途
    • 各國
      • 德國
      • 英國
      • 義大利
      • 法國
      • 西班牙
      • 荷蘭
      • 比利時
      • 波蘭
      • 奧地利
      • 克羅埃西亞
      • 北歐各國
      • 其他的歐洲各國

第7章 亞太地區的穿戴式機器人外骨骼市場

  • 市場規模與其預測 (以金額為準,2018年~2028年)
  • 市場佔有率與其預測
    • 各類型
    • 各終端用戶
    • 各用途
    • 各國
      • 中國
      • 印度
      • 日本
      • 韓國
      • 澳洲、紐西蘭
      • 馬來西亞
      • 新加坡
      • 菲律賓
      • 泰國
      • 越南
      • 其他的亞太地區各國

第8章 南美的穿戴式機器人外骨骼市場

  • 市場規模與其預測 (以金額為準,2018年~2028年)
  • 市場佔有率與其預測
    • 各類型
    • 各終端用戶
    • 各用途
    • 各國
      • 巴西
      • 墨西哥
      • 阿根廷
      • 秘魯
      • 哥倫比亞
      • 其他的南美各國

第9章 中東、非洲的穿戴式機器人外骨骼市場

  • 市場規模與其預測 (以金額為準,2018年~2028年)
  • 市場佔有率與其預測
    • 各類型
    • 各終端用戶
    • 各用途
    • 各國
      • 沙烏地阿拉伯
      • 阿拉伯聯合大公國
      • 卡達
      • 科威特
      • 南非
      • 奈及利亞
      • 埃及
      • 摩洛哥
      • 肯亞
      • 阿爾及利亞
      • 土耳其
      • 其他的中東、非洲各國

第10章 競爭情形

  • 主要企業與其產品一覽
  • 全球穿戴式機器人外骨骼企業:市場佔有率分析 (2021年)
  • 競爭基準:各參數
  • 主要策略的發展情形 (企業合併、收購 (M&A),事業聯盟)

第11章 COVID-19對全球穿戴式機器人外骨骼市場的影響

第12章 企業簡介(企業概要,財務矩陣,競爭情形,企業負責人,主要的競爭企業,聯絡處資訊,策略性展望)

  • Cyberdyne Inc.
  • ReWalk Robotics
  • Ekso Bionics
  • Sarcos Technology and Robotics Corporation
  • Honda Motor Co., Ltd.
  • Hocoma
  • Lockheed Martin Corporation
  • Technaid
  • Skelex
  • ATOUN Inc.
  • Other Prominent Players

第13章 主要策略建議

第14章 分析方法

簡介目錄
Product Code: BWC22476

Global Wearable Robotic Exoskeleton Market Size Expanding More Than 13X to Reach USD 17.2 Billion by 2028

Global wearable robotic exoskeleton market is flourishing due to increased sales of assistance robots for older and disabled communities, growing focus on developing robotic rehabilitation at a low cost, and increasing investments in R&D to develop robotic rehabilitation primarily to assist elderly in living independently and supporting their caregivers.

BlueWeave Consulting, a leading strategic consulting and market research firm, in its recent study, estimated the size of global wearable robotic exoskeleton market at USD 1.27 billion in 2021. During the forecast period between 2022 and 2028, BlueWeave expects the size of global wearable robotic exoskeleton market size to grow at an impressive CAGR of 45.3% to reach a value of USD 17.19 billion by 2028. The global market for wearable robotic exoskeletons is projected to record rapid growth due to the high demand for robots and machines for efficient rehabilitation therapy. Wearable robotic exoskeleton tools are widely used to restore and enhance lost natural human motions brought on by neuromuscular dysfunctions. As exosuits can help with applications that require the support of any body part, they are widely used by the construction, manufacturing, and logistics industries as well as by elderly people. The ongoing advancements and improvements in the wearable robotics industry indicate a shift, with exoskeletons emerging as the next massive thing for assistive and rehabilitation treatments. However, high capital costs involved in developing robotic exoskeletons, resulting in more expensive equipment, could limit the growth of global wearable robotic exoskeleton market.

Global Wearable Robotic Exoskeleton Market - Overview

Exoskeletons made of wearable robotics are increasingly being used in the healthcare industry. They can support the user's weight and help with limb movement, which can increase endurance and strength and enable users to hold positions for much longer periods. As the number of people with movement disabilities rises, these exoskeletons can help them move more freely, improve the rehabilitation process, and contribute to the rapid expansion of global wearable robotic exoskeleton market. Wearable robotic exoskeletons give people with limb disabilities a new lease on life and enable them to be independent. Spinal cord injuries are one of the leading causes of movement disabilities worldwide. According to the WHO, approximately 250,000 to 500,000 people suffer spinal cord injuries each year because of preventable causes such as car accidents, falls, and violence. Strokes, after spinal cord injuries, are one of the leading causes of physical disability in people, with survivors frequently reporting limb paralysis. Exoskeletons can be used to rehabilitate patients, as they recover from their injuries during the recovery stages. Wearable robotic exoskeletons are also used to help geriatric patients who are losing muscle strength and control over their limbs move.

The International Federation of Robotics projects that during the forecast period, sales of assistance robots for communities of the elderly and disabled will significantly rise. Major participants of the market, such as Toyota, have been investing in research and development activities to create robotic rehabilitation, primarily to help elderly by enabling them to live independently and supporting their caregivers. The cost-effective development of robotic rehabilitation is expected to contribute to the growth in demand. These factors include the increased costs associated with long-term rehabilitation processes, the implications of providing appropriate duration, and the intensity of rehabilitation services primarily required to manage disability. Several countries are prospering due to their growth strategies that support automation. For instance, startups in India for smart exoskeletons are focusing more on wearable technology that improves mobility. GenElek Technologies, an India-based supplier of externally based robotic support systems, is rising to prominence with its devices that aid rehabilitation for limb weakness brought on by spinal cord injury (SCI), traumatic brain injury (TBI), and other injuries. Such advancements could catalyze the growth of global wearable robotic exoskeleton market during the period in analysis.

Global Wearable Robotic Exoskeleton Market - Technology Advancements

Although wearable robotic technology is still in its infancy, it is predicted to be widely adopted by a variety of end-user industries worldwide. The global wearable robotic exoskeleton market has witnessed many product launches and R&D activities over the last three years. The market for wearable robotics is transforming, as evidenced by ongoing advancements and improvements. Global wearable robotic exoskeleton market has segments, such as Passive and Powered based on the type; Rehabilitation, Assistive, Body Parts Support, and Sports based on the application; and Healthcare, Industrial, Defense, and Commercial as end-user segments. The healthcare end-user segment is projected to dominate global wearable robotic exoskeleton market, accounting for most of the market share.

Global wearable robotic exoskeleton market has also been witnessing product and technology innovations. For example, Hilti released its first exoskeleton, the EXO-O1, in August 2020, to reduce strain on construction workers. This new wearable, developed in collaboration with biometric company Ottobock, was designed to relieve 47% of the stress caused by users lifting their arms above their heads.

Impact of COVID-19 on Global Wearable Robotic Exoskeleton Market

COVID-19 pandemic benefited global wearable robotic exoskeleton market due to the growing demand for exoskeletons in the healthcare industry. Despite the increase in COVID-19 infections, there was still a high demand for healthcare products. Lockdowns following a relaxation allowed businesses to resume production and meet customer demand. The use of production equipment assisted several manufacturers in preventing the spread of viruses and compensating for losses.

Competitive Landscape

Prominent players in global wearable robotic exoskeleton market include Cyberdyne Inc., ReWalk Robotics, Ekso Bionics, Sarcos Technology and Robotics Corporation, Honda Motor Co., Ltd., Hocoma, Lockheed Martin Corporation, Technaid, Skelex, and ATOUN Inc. These companies use various strategies, including increasing investments in their R&D activities, mergers and acquisitions, joint ventures, collaborations, licensing agreements, and new product and service releases to further strengthen their position in global wearable robotic exoskeleton market.

The in-depth analysis of the report provides information about growth potential, upcoming trends, and statistics of Global Wearable Robotic Exoskeleton Market. It also highlights the factors driving forecasts of total market size. The report promises to provide recent technology trends in Global Wearable Robotic Exoskeleton Market and industry insights to help decision-makers make sound strategic decisions. Furthermore, the report also analyzes the growth drivers, challenges, and competitive dynamics of the market.

Table of Contents

1. Research Framework

  • 1.1. Research Objective
  • 1.2. Type Overview
  • 1.3. Market Segmentation

2. Executive Summary

3. Global Wearable Robotic Exoskeleton Market Insights

  • 3.1. Industry Value Chain Analysis
  • 3.2. DROC Analysis
    • 3.2.1. Growth Drivers
    • 3.2.2. Restraints
    • 3.2.3. Opportunity
    • 3.2.4. Challenges
  • 3.3. Technological Advancement/Recent Development
  • 3.4. Regulatory Framework
  • 3.5. Porter's Five Forces Analysis
    • 3.5.1. Bargaining Power of Suppliers
    • 3.5.2. Bargaining Power of Buyers
    • 3.5.3. Threat of New Entrants
    • 3.5.4. Threat of Substitutes
    • 3.5.5. Intensity of Rivalry

4. Global Wearable Robotic Exoskeleton Market Overview

  • 4.1. Market Size & Forecast by Value, 2018-2028
    • 4.1.1. By Value (USD Billion)
  • 4.2. Market Share & Forecast
    • 4.2.1. By Type
      • 4.2.1.1. Passive
      • 4.2.1.2. Powered
    • 4.2.2. By End-User
      • 4.2.2.1. Healthcare
      • 4.2.2.2. Industrial
      • 4.2.2.3. Defense
      • 4.2.2.4. Commercial
    • 4.2.3. By Application
      • 4.2.3.1. Rehabilitation
      • 4.2.3.2. Assistive
      • 4.2.3.3. Body Parts Support
      • 4.2.3.4. Sports
    • 4.2.4. By Region
      • 4.2.4.1. North America
      • 4.2.4.2. Europe
      • 4.2.4.3. Asia Pacific
      • 4.2.4.4. Latin America
      • 4.2.4.5. Middle East and Africa

5. North America Wearable Robotic Exoskeleton Market

  • 5.1. Market Size & Forecast by Value, 2018-2028
    • 5.1.1. By Value (USD Billion)
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type
    • 5.2.2. By End-User
    • 5.2.3. By Application
    • 5.2.4. By Country
      • 5.2.4.1. US
      • 5.2.4.1.1. By Type
      • 5.2.4.1.2. By End-User
      • 5.2.4.1.3. By Application
      • 5.2.4.2. Canada
      • 5.2.4.2.1. By Type
      • 5.2.4.2.2. By End-User
      • 5.2.4.2.3. By Application

6. Europe Wearable Robotic Exoskeleton Market

  • 6.1. Market Size & Forecast by Value, 2018-2028
    • 6.1.1. By Value (USD Billion)
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By End-User
    • 6.2.3. By Application
    • 6.2.4. By Country
      • 6.2.4.1. Germany
      • 6.2.4.1.1. By Type
      • 6.2.4.1.2. By End-User
      • 6.2.4.1.3. By Application
      • 6.2.4.2. UK
      • 6.2.4.2.1. By Type
      • 6.2.4.2.2. By End-User
      • 6.2.4.2.3. By Application
      • 6.2.4.3. Italy
      • 6.2.4.3.1. By Type
      • 6.2.4.3.2. By End-User
      • 6.2.4.3.3. By Application
      • 6.2.4.4. France
      • 6.2.4.4.1. By Type
      • 6.2.4.4.2. By End-User
      • 6.2.4.4.3. By Application
      • 6.2.4.5. Spain
      • 6.2.4.5.1. By Type
      • 6.2.4.5.2. By End-User
      • 6.2.4.5.3. By Application
      • 6.2.4.6. Netherlands
      • 6.2.4.6.1. By Type
      • 6.2.4.6.2. By End-User
      • 6.2.4.6.3. By Application
      • 6.2.4.7. Belgium
      • 6.2.4.7.1. By Type
      • 6.2.4.7.2. By End-User
      • 6.2.4.7.3. By Application
      • 6.2.4.8. Poland
      • 6.2.4.8.1. By Type
      • 6.2.4.8.2. By End-User
      • 6.2.4.8.3. By Application
      • 6.2.4.9. Austria
      • 6.2.4.9.1. By Type
      • 6.2.4.9.2. By End-User
      • 6.2.4.9.3. By Application
      • 6.2.4.10. Croatia
      • 6.2.4.10.1. By Type
      • 6.2.4.10.2. By End-User
      • 6.2.4.10.3. By Application
      • 6.2.4.11. NORDIC Countries
      • 6.2.4.11.1. By Type
      • 6.2.4.11.2. By End-User
      • 6.2.4.11.3. By Application
      • 6.2.4.12. Rest of Europe
      • 6.2.4.12.1. By Type
      • 6.2.4.12.2. By End-User
      • 6.2.4.12.3. By Application

7. Asia Pacific Wearable Robotic Exoskeleton Market

  • 7.1. Market Size & Forecast by Value, 2018-2028
    • 7.1.1. By Value (USD Billion)
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By End-User
    • 7.2.3. By Application
    • 7.2.4. By Country
      • 7.2.4.1. China
      • 7.2.4.1.1. By Type
      • 7.2.4.1.2. By End-User
      • 7.2.4.1.3. By Application
      • 7.2.4.2. India
      • 7.2.4.2.1. By Type
      • 7.2.4.2.2. By End-User
      • 7.2.4.2.3. By Application
      • 7.2.4.3. Japan
      • 7.2.4.3.1. By Type
      • 7.2.4.3.2. By End-User
      • 7.2.4.3.3. By Application
      • 7.2.4.4. South Korea
      • 7.2.4.4.1. By Type
      • 7.2.4.4.2. By End-User
      • 7.2.4.4.3. By Application
      • 7.2.4.5. Australia & New Zealand
      • 7.2.4.5.1. By Type
      • 7.2.4.5.2. By End-User
      • 7.2.4.5.3. By Application
      • 7.2.4.6. Malaysia
      • 7.2.4.6.1. By Type
      • 7.2.4.6.2. By End-User
      • 7.2.4.6.3. By Application
      • 7.2.4.7. Singapore
      • 7.2.4.7.1. By Type
      • 7.2.4.7.2. By End-User
      • 7.2.4.7.3. By Application
      • 7.2.4.8. Philippines
      • 7.2.4.8.1. By Type
      • 7.2.4.8.2. By End-User
      • 7.2.4.8.3. By Application
      • 7.2.4.9. Thailand
      • 7.2.4.9.1. By Type
      • 7.2.4.9.2. By End-User
      • 7.2.4.9.3. By Application
      • 7.2.4.10. Vietnam
      • 7.2.4.10.1. By Type
      • 7.2.4.10.2. By End-User
      • 7.2.4.10.3. By Application
      • 7.2.4.11. Rest of Asia Pacific
      • 7.2.4.11.1. By Type
      • 7.2.4.11.2. By End-User
      • 7.2.4.11.3. By Application

8. Latin America Wearable Robotic Exoskeleton Market

  • 8.1. Market Size & Forecast by Value, 2018-2028
    • 8.1.1. By Value (USD Billion)
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By End-User
    • 8.2.3. By Application
    • 8.2.4. By Country
      • 8.2.4.1. Brazil
      • 8.2.4.1.1. By Type
      • 8.2.4.1.2. By End-User
      • 8.2.4.1.3. By Application
      • 8.2.4.2. Mexico
      • 8.2.4.2.1. By Type
      • 8.2.4.2.2. By End-User
      • 8.2.4.2.3. By Application
      • 8.2.4.3. Argentina
      • 8.2.4.3.1. By Type
      • 8.2.4.3.2. By End-User
      • 8.2.4.3.3. By Application
      • 8.2.4.4. Peru
      • 8.2.4.4.1. By Type
      • 8.2.4.4.2. By End-User
      • 8.2.4.4.3. By Application
      • 8.2.4.5. Colombia
      • 8.2.4.5.1. By Type
      • 8.2.4.5.2. By End-User
      • 8.2.4.5.3. By Application
      • 8.2.4.6. Rest of Latin America
      • 8.2.4.6.1. By Type
      • 8.2.4.6.2. By End-User
      • 8.2.4.6.3. By Application

9. Middle East & Africa Wearable Robotic Exoskeleton Market

  • 9.1. Market Size & Forecast by Value, 2018-2028
    • 9.1.1. By Value (USD Billion)
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By End-User
    • 9.2.3. By Application
    • 9.2.4. By Country
      • 9.2.4.1. Saudi Arabia
      • 9.2.4.1.1. By Type
      • 9.2.4.1.2. By End-User
      • 9.2.4.1.3. By Application
      • 9.2.4.2. UAE
      • 9.2.4.2.1. By Type
      • 9.2.4.2.2. By End-User
      • 9.2.4.2.3. By Application
      • 9.2.4.3. Qatar
      • 9.2.4.3.1. By Type
      • 9.2.4.3.2. By End-User
      • 9.2.4.3.3. By Application
      • 9.2.4.4. Kuwait
      • 9.2.4.4.1. By Type
      • 9.2.4.4.2. By End-User
      • 9.2.4.4.3. By Application
      • 9.2.4.5. South Africa
      • 9.2.4.5.1. By Type
      • 9.2.4.5.2. By End-User
      • 9.2.4.5.3. By Application
      • 9.2.4.6. Nigeria
      • 9.2.4.6.1. By Type
      • 9.2.4.6.2. By End-User
      • 9.2.4.6.3. By Application
      • 9.2.4.7. Egypt
      • 9.2.4.7.1. By Type
      • 9.2.4.7.2. By End-User
      • 9.2.4.7.3. By Application
      • 9.2.4.8. Morocco
      • 9.2.4.8.1. By Type
      • 9.2.4.8.2. By End-User
      • 9.2.4.8.3. By Application
      • 9.2.4.9. Kenya
      • 9.2.4.9.1. By Type
      • 9.2.4.9.2. By End-User
      • 9.2.4.9.3. By Application
      • 9.2.4.10. Algeria
      • 9.2.4.10.1. By Type
      • 9.2.4.10.2. By End-User
      • 9.2.4.10.3. By Application
      • 9.2.4.11. Turkey
      • 9.2.4.11.1. By Type
      • 9.2.4.11.2. By End-User
      • 9.2.4.11.3. By Application
      • 9.2.4.12. Rest of Middle East & Africa
      • 9.2.4.12.1. By Type
      • 9.2.4.12.2. By End-User
      • 9.2.4.12.3. By Application

10. Competitive Landscape

  • 10.1. List of Key Players and Their Offerings
  • 10.2. Global Wearable Robotic Exoskeleton Company Market Share Analysis, 2021
  • 10.3. Competitive Benchmarking, By Operating Parameters
  • 10.4. Key Strategic Development (Mergers, Acquisitions, Partnerships, etc.)

11. Impact of Covid-19 on Global Wearable Robotic Exoskeleton Market

12. Company Profile (Company Overview, Financial Matrix, Competitive Landscape, Key Personnel, Key Competitors, Contact Address, and Strategic Outlook)

  • 12.1. Cyberdyne Inc.
  • 12.2. ReWalk Robotics
  • 12.3. Ekso Bionics
  • 12.4. Sarcos Technology and Robotics Corporation
  • 12.5. Honda Motor Co., Ltd.
  • 12.6. Hocoma
  • 12.7. Lockheed Martin Corporation
  • 12.8. Technaid
  • 12.9. Skelex
  • 12.10. ATOUN Inc.
  • 12.11. Other Prominent Players

13. Key Strategic Recommendations

14. Research Methodology

  • 14.1. Qualitative Research
    • 14.1.1. Primary & Secondary Research
  • 14.2. Quantitative Research
  • 14.3. Market Breakdown & Data Triangulation
    • 14.3.1. Secondary Research
    • 14.3.2. Primary Research
  • 14.4. Breakdown of Primary Research Respondents, By Region
  • 14.5. Assumption & Limitation