封面
市場調查報告書
商品編碼
1438086

到 2030 年農業高光譜影像市場預測:按產品類型、應用和地區分類的全球分析

Hyperspectral Imaging in Agriculture Market Forecasts to 2030 - Global Analysis By Product (Image Processor, Artificial Light Source, Camera & Other Products), Type (Visible Light, Mid-wavelength Infrared & Other Types), Application & By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3個工作天內

價格

據Stratistics MRC稱,2023年全球農業高光譜影像市場規模為4,150萬美元,預計2030年將達到1.152億美元,預測期內年複合成長率為15.7%。

農業中的高光譜影像是指捕捉和處理超出人類視覺範圍的寬光譜波長的先進技術。主要應用之一是作物健康監測,其中高光譜遙測感測器獲取有關植物生化成分的詳細資訊。這使得能夠及早發現營養缺乏、疾病和蟲害等壓力源,使農民能夠實施有針對性的干涉措施。

根據美國癌症協會估計,2023 年美國將有近 935,000 名新女性被診斷出罹患癌症。

精密農業的採用率不斷提高

精密農業涉及使用先進技術來最佳化農業營運,重點是資料主導的決策,以實現資源的高效利用和加強作物管理。高光譜遙測影像在這方面發揮著重要作用,它提供了作物的全面而詳細的視野。捕捉和分析寬頻譜的能力可以準確監測作物健康、早期檢測疾病和識別壓力因素。此外,隨著農民努力最大限度地提高產量,同時最大限度地減少投入,高光譜遙測影像為他們提供了以無與倫比的粒度監測田地所需的工具。

初始成本高

實施高光譜遙測影像技術需要大量的前期投資,包括購買專用感測器、影像處理設備和相關基礎設施。這些成本對於小規模或資源有限的農民來說可能會令人望而卻步,並阻止他們將這種先進技術融入他們的農業實踐中。但初始成本不僅限於購買設備,還包括培訓操作員和技術人員以熟練處理高光譜遙測資料。因此,經濟障礙挑戰了這項技術的可及性,限制了其主要在有財力的大型農場的採用。

作物病害管理的需求不斷增加

隨著全球農業面臨著威脅產量和糧食安全的各種作物病害帶來的日益嚴峻的挑戰,高光譜遙測影像作為早期、準確疾病檢測的關鍵技術脫穎而出。高光譜影像能夠捕捉詳細的頻譜訊息,使農民能夠在可見症狀出現之前識別與疾病相關的植物生理學的細微變化。此外,這種早期檢測可以及時、有針對性地採取干涉措施,例如精確散佈農藥和調整灌溉,以最大限度地減少作物損失並最佳化資源利用。

資料安全問題

高光譜遙測資料的廣泛性和敏感性,包括有關作物健康、土壤條件和農業實踐的詳細資訊,引起了對隱私和未授權存取的擔憂。由於擔心資料外洩、潛在濫用和詐欺披露專有資訊,農民和農業相關人員可能不願意採用高光譜遙測成像技術。嚴格的資料保護條例需要強而有力的安全措施並遵守隱私標準,這增加了採用高光譜遙測影像解決方案的複雜性和成本。

COVID-19 的影響:

儘管農業部門仍然至關重要,但供應鏈中斷、勞動力短缺和經濟不確定性減緩了包括高光譜遙測影像在內的先進技術的採用。疫情造成的經濟挑戰導致一些農民將必要的投資置於創新解決方案之上。但從正面的一面來看,這場危機凸顯了科技在確保糧食安全和最佳化農業實踐的重要性。隨著該行業逐漸復甦,人們可能會更加關注彈性、技術主導的農業。

影像處理器領域預計將成為預測期內最大的領域

由於資料分析的效率和有效性,影像處理器領域在預測期內佔據市場最大佔有率。隨著高光譜影像產生大量複雜的頻譜資料,先進的影像處理器正在幫助快速且準確地提取有價值的資訊。這些處理器採用先進的演算法來解釋頻譜特徵、識別作物健康指標並檢測疾病和營養缺乏等異常情況。影像處理技術的不斷進步擴大支持即時分析,使農民能夠就作物管理做出快速、明智的決策。

長波紅外線領域預計在預測期內年複合成長率最高

長波長紅外線領域預計將在整個預測期內呈現盈利成長。長波紅外線高光譜影像能夠檢測農業景觀中微妙的溫度變化,為植物健康和壓力水平提供有價值的見解。此片段特別有利於識別水分脅迫、疾病症狀和其他在可見光或近紅外線頻譜中可能不明顯的生理異常。長波紅外線感測器捕獲的熱資訊有助於及早發現問題,使農民能夠及時採取干涉措施。

佔比最大的地區:

由於技術創新、精密農業的廣泛採用以及對永續農業方法的濃厚興趣,北美地區預計將在預測期內佔據最大佔有率。該地區的農業部門正在採用高光譜影像,它具有無與倫比的能力,可以提供有關作物健康、疾病檢測和資源最佳化的詳細見解。在大規模商業農業普及的美國和加拿大,對先進技術提高生產力和減少環境影響的需求正在刺激高光譜影像的採用。

年複合成長率最高的地區:

在預測期內,北美地區市場出現顯著成長。美國和加拿大的政府機構正在積極支持旨在實現農業部門現代化、改善作物監測和確保環境永續性的舉措。監管機構提供激勵措施、獎勵津貼,鼓勵農民投資先進技術,例如用於精準作物管理的高光譜影像。此外,越來越重視遵守環境法規和減少農業對生態的影響,促使農業相關人員開發創新解決方案,以提高效率,同時最大限度地減少資源使用。我們鼓勵採用創新解決方案。

免費客製化服務:

訂閱此報告的客戶可以存取以下免費自訂選項之一:

  • 公司簡介
    • 其他市場參與者的綜合分析(最多 3 家公司)
    • 主要企業SWOT分析(最多3家企業)
  • 區域分割
    • 根據客戶興趣對主要國家的市場估計、預測和年複合成長率(註:基於可行性檢查)
  • 競爭基準化分析
    • 根據產品系列、地理分佈和策略聯盟對主要企業基準化分析

目錄

第1章執行摘要

第2章 前言

  • 概述
  • 相關利益者
  • 調查範圍
  • 調查方法
    • 資料探勘
    • 資料分析
    • 資料檢驗
    • 研究途徑
  • 調查來源
    • 主要調查來源
    • 二次調查來源
    • 先決條件

第3章市場趨勢分析

  • 促進因素
  • 抑制因素
  • 機會
  • 威脅
  • 產品分析
  • 應用分析
  • 新興市場
  • COVID-19 的影響

第4章波特五力分析

  • 供應商的議價能力
  • 買方議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭對手之間存在敵對關係

第5章全球農業高光譜影像市場:依產品

  • 影像處理處理器
    • 頻譜分析和視覺化軟體
    • 資料採集軟體
    • 其他影像處理器
  • 人造光源
    • 閃光燈
    • LED照明系統
    • 其他人造光源
  • 相機
    • 無人機/無人機安裝的攝影機
    • 頻譜相機
    • 頻譜感測器
    • 其他相機
  • 其他產品

第6章全球農業高光譜影像市場:按類型

  • 可見光
  • 中波紅外線
  • 短波紅外線
  • 長波紅外線
  • 推掃式高光譜影像
  • 簡介高光譜影像
  • UV(紫外線)高光譜影像
  • 其他類型

第7章農業高光譜影像的全球市場:依應用分類

  • 植被測繪
  • 壓力檢測
  • 雜質檢測
  • 作物病害監測
  • 產量估算
  • 其他用途

第8章全球農業高光譜影像市場:按地區

  • 北美洲
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 義大利
    • 法國
    • 西班牙
    • 其他歐洲國家
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳洲
    • 紐西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地區
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 卡達
    • 南非
    • 其他中東和非洲

第9章 主要進展

  • 合約、夥伴關係、協作和合資企業
  • 收購和合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第10章 公司簡介

  • BaySpec Inc
  • Galileo Group Inc
  • Headwall Photonics Inc.
  • Norsk Elektro Optikk
  • Shenzhen Wayho Technology
  • Specim Spectral Imaging Ltd.
  • Surface Optics Corporation
  • Teledyne Technologies Incorporated
  • MicaSense, Inc
  • Tetracam Inc
  • ZEISS Group
Product Code: SMRC25074

According to Stratistics MRC, the Global Hyperspectral Imaging in Agriculture Market is accounted for $41.5 million in 2023 and is expected to reach $115.2 million by 2030 growing at a CAGR of 15.7% during the forecast period. Hyperspectral imaging in the agriculture market refers to the advanced technology that captures and processes a broad spectrum of wavelengths beyond the human visual range. One primary use is crop health monitoring, where hyperspectral sensors capture detailed information about the biochemical composition of plants. This allows for early detection of stressors like nutrient deficiencies, diseases, or pest infestations, enabling farmers to implement targeted interventions.

According to the American Cancer Society, in 2023, it was estimated that there would be nearly 935 thousand new cancer cases among women in the United States.

Market Dynamics:

Driver:

Increasing adoption of precision agriculture

Precision agriculture involves the utilization of advanced technologies to optimize farming practices, emphasizing data-driven decision-making for efficient resource utilization and enhanced crop management. Hyperspectral imaging plays a crucial role in this landscape by offering a comprehensive and detailed view of crops. Its ability to capture and analyze a broad spectrum of wavelengths enables precise monitoring of crop health, early detection of diseases, and identification of stress factors. Moreover, as farmers strive to maximize yields while minimizing inputs, hyperspectral imaging provides them with the necessary tools to monitor fields with unparalleled granularity.

Restraint:

High initial costs

The deployment of hyperspectral imaging technology necessitates substantial upfront investments, encompassing the purchase of specialized sensors, imaging equipment, and associated infrastructure. These costs can be prohibitive for smaller or resource-constrained agricultural enterprises, hindering their ability to integrate this advanced technology into their farming practices. However, the initial expenses extend beyond equipment acquisition to include training programs for operators and technicians proficient in handling hyperspectral data. As a result, the economic barrier poses a challenge to the technology's accessibility, limiting its adoption primarily to larger farms with greater financial capacity.

Opportunity:

Rising need for crop disease management

As global agriculture faces escalating challenges from diverse crop diseases that threaten yield and food security, hyperspectral imaging stands out as a crucial technology for early and accurate disease detection. With its ability to capture detailed spectral information, hyperspectral imaging enables farmers to identify subtle changes in plant physiology associated with diseases before visible symptoms manifest. Additionally, this early detection empowers timely and targeted interventions, such as precise application of pesticides or adjustments in irrigation, minimizing crop losses and optimizing resource utilization.

Threat:

Data security concerns

The extensive and sensitive nature of hyperspectral data, encompassing details about crop health, soil conditions, and farming practices, raises apprehensions regarding privacy and unauthorized access. Farmers and agricultural stakeholders may be reluctant to embrace hyperspectral imaging technology due to fears of data breaches, potential misuse, or unauthorized disclosure of proprietary information. As data protection regulations become more stringent, the need for robust security measures and compliance with privacy standards adds complexity and cost to the adoption of hyperspectral imaging solutions.

Covid-19 Impact:

While the agriculture sector continued to be essential, disruptions in supply chains, labor shortages, and economic uncertainties slowed down the adoption of advanced technologies, including hyperspectral imaging. The pandemic-induced economic challenges led some farmers to prioritize essential investments over innovative solutions. However, on the positive side, the crisis underscored the importance of technology in ensuring food security and optimizing agricultural practices. As the industry gradually recovers, there is potential for an increased focus on resilient and technology-driven agriculture.

The image processor segment is expected to be the largest during the forecast period

Image Processor segment commanded the largest share of the market over the extrapolated period, due to the efficiency and effectiveness of data analysis. As hyperspectral imaging generates vast amounts of complex spectral data, advanced image processors are instrumental in rapidly and accurately extracting valuable information. These processors employ sophisticated algorithms to interpret spectral signatures, identify crop health indicators, and detect anomalies such as diseases or nutrient deficiencies. The continuous advancements in image processing technology further enable real-time analysis, allowing farmers to make prompt and informed decisions regarding crop management.

The long wavelength infrared segment is expected to have the highest CAGR during the forecast period

Long Wavelength Infrared segment is poised to witness profitable growth throughout the projection period. LWIR hyperspectral imaging enables the detection of subtle temperature variations across the agricultural landscape, providing valuable insights into plant health and stress levels. This segment proves particularly advantageous for identifying water stress, disease manifestations, and other physiological anomalies that may not be apparent in visible or near-infrared spectra. The thermal information captured by LWIR sensors aids in early detection of issues, allowing farmers to implement timely interventions.

Region with largest share:

Owing to a combination of technological innovation, widespread adoption of precision agriculture, and a robust focus on sustainable farming practices, North America region is expected to dominate the largest share over the forecast period. The region's agriculture sector has embraced hyperspectral imaging for its unparalleled capability to provide detailed insights into crop health, disease detection, and resource optimization. In the United States and Canada, where large-scale commercial farming is prevalent, the need for advanced technologies to enhance productivity and mitigate environmental impact has fueled the adoption of hyperspectral imaging.

Region with highest CAGR:

North America region is witnessing the substantial growth in the market during the estimation period. Government agencies in the United States and Canada are actively supporting initiatives aimed at modernizing the agriculture sector, improving crop monitoring, and ensuring environmental sustainability. Regulatory bodies are providing incentives, subsidies, and grants to encourage farmers to invest in advanced technologies like hyperspectral imaging for precise crop management. Furthermore, compliance with environmental regulations and the growing emphasis on reducing the ecological impact of farming have prompted agricultural stakeholders to adopt innovative solutions that can enhance efficiency while minimizing resource use.

Key players in the market

Some of the key players in Hyperspectral Imaging in Agriculture market include BaySpec Inc, Galileo Group Inc, Headwall Photonics Inc., Norsk Elektro Optikk, Shenzhen Wayho Technology, Specim Spectral Imaging Ltd., Surface Optics Corporation, Teledyne Technologies Incorporated, MicaSense, Inc, Tetracam Inc and ZEISS Group.

Key Developments:

In September 2023, Galileo Releases the First LLM Evaluation, Experimentation and Observability Platform for Building Trustworthy Production-Ready LLM Applications.

In November 2022, Pixxel was scheduling the launch of its third hyperspectral satellite, Anand, from the Sriharikota spaceport using ISRO's Polar Satellite Launch Vehicle (PSLV). The satellite's imagery can detect pest infestation, map forest fires, and identify soil stress and hydrocarbon spills.

In July 2022, Pixxel, an emerging pioneer in cutting-edge earth-imaging technology, partnered with Australian cloud-based agritech firm DataFarming. Using Pixxel's hyperspectral dataset, DataFarming will be able to monitor crop health for tens of thousands of producers at new speeds and higher resolutions compared to multispectral imaging.

Products Covered:

  • Image Processor
  • Artificial Light Source
  • Camera
  • Other Products

Types Covered:

  • Visible Light
  • Mid-wavelength Infrared
  • Shortwave Infrared
  • Long Wavelength Infrared
  • Pushbroom Hyperspectral Imaging
  • Snapshot Hyperspectral Imaging
  • UV (Ultraviolet) Hyperspectral Imaging
  • Other Types

Applications Covered:

  • Vegetation Mapping
  • Stress Detection
  • Impurity Detection
  • Crop Disease Monitoring
  • Yield Estimation
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Hyperspectral Imaging in Agriculture Market, By Product

  • 5.1 Introduction
  • 5.2 Image Processor
    • 5.2.1 Spectral Analysis and Visualization Software
    • 5.2.2 Software for Data Acquisition
    • 5.2.3 Other Image Processors
  • 5.3 Artificial Light Source
    • 5.3.1 Flash Lamps
    • 5.3.2 LED Lighting Systems
    • 5.3.3 Other Artificial Light Sources
  • 5.4 Camera
    • 5.4.1 UAV/drone-mounted cameras
    • 5.4.2 Multispectral Cameras
    • 5.4.3 Spectral Sensors
    • 5.4.4 Other Cameras
  • 5.5 Other Products

6 Global Hyperspectral Imaging in Agriculture Market, By Type

  • 6.1 Introduction
  • 6.2 Visible Light
  • 6.3 Mid-wavelength Infrared
  • 6.4 Shortwave Infrared
  • 6.5 Long Wavelength Infrared
  • 6.6 Pushbroom Hyperspectral Imaging
  • 6.7 Snapshot Hyperspectral Imaging
  • 6.8 UV (Ultraviolet) Hyperspectral Imaging
  • 6.9 Other Types

7 Global Hyperspectral Imaging in Agriculture Market, By Application

  • 7.1 Introduction
  • 7.2 Vegetation Mapping
  • 7.3 Stress Detection
  • 7.4 Impurity Detection
  • 7.5 Crop Disease Monitoring
  • 7.6 Yield Estimation
  • 7.7 Other Applications

8 Global Hyperspectral Imaging in Agriculture Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 BaySpec Inc
  • 10.2 Galileo Group Inc
  • 10.3 Headwall Photonics Inc.
  • 10.4 Norsk Elektro Optikk
  • 10.5 Shenzhen Wayho Technology
  • 10.6 Specim Spectral Imaging Ltd.
  • 10.7 Surface Optics Corporation
  • 10.8 Teledyne Technologies Incorporated
  • 10.9 MicaSense, Inc
  • 10.10 Tetracam Inc
  • 10.11 ZEISS Group

List of Tables

  • Table 1 Global Hyperspectral Imaging in Agriculture Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Hyperspectral Imaging in Agriculture Market Outlook, By Product (2021-2030) ($MN)
  • Table 3 Global Hyperspectral Imaging in Agriculture Market Outlook, By Image Processor (2021-2030) ($MN)
  • Table 4 Global Hyperspectral Imaging in Agriculture Market Outlook, By Spectral Analysis and Visualization Software (2021-2030) ($MN)
  • Table 5 Global Hyperspectral Imaging in Agriculture Market Outlook, By Software for Data Acquisition (2021-2030) ($MN)
  • Table 6 Global Hyperspectral Imaging in Agriculture Market Outlook, By Other Image Processors (2021-2030) ($MN)
  • Table 7 Global Hyperspectral Imaging in Agriculture Market Outlook, By Artificial Light Source (2021-2030) ($MN)
  • Table 8 Global Hyperspectral Imaging in Agriculture Market Outlook, By Flash Lamps (2021-2030) ($MN)
  • Table 9 Global Hyperspectral Imaging in Agriculture Market Outlook, By LED Lighting Systems (2021-2030) ($MN)
  • Table 10 Global Hyperspectral Imaging in Agriculture Market Outlook, By Other Artificial Light Sources (2021-2030) ($MN)
  • Table 11 Global Hyperspectral Imaging in Agriculture Market Outlook, By Camera (2021-2030) ($MN)
  • Table 12 Global Hyperspectral Imaging in Agriculture Market Outlook, By UAV/drone-mounted cameras (2021-2030) ($MN)
  • Table 13 Global Hyperspectral Imaging in Agriculture Market Outlook, By Multispectral Cameras (2021-2030) ($MN)
  • Table 14 Global Hyperspectral Imaging in Agriculture Market Outlook, By Spectral Sensors (2021-2030) ($MN)
  • Table 15 Global Hyperspectral Imaging in Agriculture Market Outlook, By Other Cameras (2021-2030) ($MN)
  • Table 16 Global Hyperspectral Imaging in Agriculture Market Outlook, By Other Products (2021-2030) ($MN)
  • Table 17 Global Hyperspectral Imaging in Agriculture Market Outlook, By Type (2021-2030) ($MN)
  • Table 18 Global Hyperspectral Imaging in Agriculture Market Outlook, By Visible Light (2021-2030) ($MN)
  • Table 19 Global Hyperspectral Imaging in Agriculture Market Outlook, By Mid-wavelength Infrared (2021-2030) ($MN)
  • Table 20 Global Hyperspectral Imaging in Agriculture Market Outlook, By Shortwave Infrared (2021-2030) ($MN)
  • Table 21 Global Hyperspectral Imaging in Agriculture Market Outlook, By Long Wavelength Infrared (2021-2030) ($MN)
  • Table 22 Global Hyperspectral Imaging in Agriculture Market Outlook, By Pushbroom Hyperspectral Imaging (2021-2030) ($MN)
  • Table 23 Global Hyperspectral Imaging in Agriculture Market Outlook, By Snapshot Hyperspectral Imaging (2021-2030) ($MN)
  • Table 24 Global Hyperspectral Imaging in Agriculture Market Outlook, By UV (Ultraviolet) Hyperspectral Imaging (2021-2030) ($MN)
  • Table 25 Global Hyperspectral Imaging in Agriculture Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 26 Global Hyperspectral Imaging in Agriculture Market Outlook, By Application (2021-2030) ($MN)
  • Table 27 Global Hyperspectral Imaging in Agriculture Market Outlook, By Vegetation Mapping (2021-2030) ($MN)
  • Table 28 Global Hyperspectral Imaging in Agriculture Market Outlook, By Stress Detection (2021-2030) ($MN)
  • Table 29 Global Hyperspectral Imaging in Agriculture Market Outlook, By Impurity Detection (2021-2030) ($MN)
  • Table 30 Global Hyperspectral Imaging in Agriculture Market Outlook, By Crop Disease Monitoring (2021-2030) ($MN)
  • Table 31 Global Hyperspectral Imaging in Agriculture Market Outlook, By Yield Estimation (2021-2030) ($MN)
  • Table 32 Global Hyperspectral Imaging in Agriculture Market Outlook, By Other Applications (2021-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.