封面
市場調查報告書
商品編碼
1469151

MicroRNA 市場 - 全球產業規模、佔有率、趨勢、機會和預測,按產品和服務、應用、最終用戶、地區和競爭細分,2019-2029 年

MicroRNA Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Products & Services, By Application, By End-User, Region and Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 183 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023 年全球 MicroRNA 市場價值為 15.4820 億美元,預計在預測期內將強勁成長,到 2029 年複合年成長率為 12.20%。 MicroRNA (miRNA) 是短 RNA 分子,在基因表現調控中發揮關鍵作用,影響各種生物過程。由於人們越來越認知到miRNA 在疾病診斷、預後和治療開發中的重要性,該市場經歷了顯著成長。疾病,其中miRNA 發揮重要作用。 miRNA 能夠深入了解疾病的分子機制,因此能夠整合到診斷工具和個人化醫療策略中。

定序和分子生物學技術的進步進一步推動了市場的擴張。高通量定序技術改善了 miRNA 的識別和分析,從而實現全面研究並促進更有針對性的治療介入。此外,對精準醫療的日益關注促使製藥公司和研究機構之間合作,探索基於 miRNA 的療法的治療潛力。多項臨床試驗已啟動,以評估基於 miRNA 的療法在各種疾病(包括癌症和神經系統疾病)中的安全性和有效性。這導致了充滿活力的市場格局,眾多參與者推出了創新產品和解決方案。正在進行的研究工作旨在解決這些挑戰,以充分釋放基於 miRNA 的診斷和治療的潛力。

主要市場促進因素

慢性病盛行率上升

定序和分析的技術進步

增加對製藥和生物技術領域的參與

主要市場挑戰

miRNA 生物學的複雜性

檢測方法標準化

主要市場趨勢

定序技術的進步

用於無創診斷的液體活體組織切片

細分市場洞察

產品 服務 見解

最終使用者見解

區域洞察

目錄

第 1 章:產品概述

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:全球 MicroRNA 市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 依產品服務(儀器、消耗品、服務)
    • 依應用(癌症、傳染病、免疫性疾病、心血管疾病、神經系統疾病、其他)
    • 按最終用戶(生物技術製藥公司、政府學術研究機構、其他)
    • 按地區
    • 按公司分類 (2023)
  • 市場地圖
    • 按產品 服務
    • 按申請
    • 按最終用戶
    • 按地區

第 5 章:亞太地區 MicroRNA 市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按產品 服務
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 澳洲
    • 日本
    • 韓國

第 6 章:歐洲 MicroRNA 市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按產品 服務
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 歐洲:國家分析
    • 法國
    • 德國
    • 西班牙
    • 義大利
    • 英國

第 7 章:北美 MicroRNA 市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按產品 服務
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 北美:國家分析
    • 美國
    • 墨西哥
    • 加拿大

第 8 章:南美洲 MicroRNA 市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按產品 服務
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 阿根廷
    • 哥倫比亞

第 9 章:中東和非洲 MicroRNA 市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按產品 服務
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • MEA:國家分析
    • 南非
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 埃及

第 10 章:市場動態

  • 促進要素
  • 挑戰

第 11 章:市場趨勢發展

  • 最近的發展
  • 產品發布
  • 併購

第 12 章:全球 MicroRNA 市場:SWOT 分析

第 13 章:波特的五力分析

  • 產業競爭
  • 新進入者的潛力
  • 供應商的力量
  • 客戶的力量
  • 替代產品的威脅

第14章:競爭格局

  • Merck KGaA
  • Thermo Fisher Scientific, Inc.
  • Horizon Discovery Ltd.
  • Synlogic Inc.
  • QIAGEN NV
  • GeneCopoeia, Inc.
  • New England Biolabs
  • Quantabio
  • NanoString Technologies, Inc.

第 15 章:策略建議

第 16 章:關於我們免責聲明

簡介目錄
Product Code: 20900

Global MicroRNA Market was valued at USD 1548.20 million in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 12.20% through 2029.The Global MicroRNA Market has become a focal point of research and innovation within the molecular biology and diagnostics sectors. MicroRNAs (miRNAs) are short RNA molecules that play a critical role in gene expression regulation, influencing various biological processes. The market has experienced significant growth driven by increasing recognition of the importance of miRNAs in disease diagnosis, prognosis, and therapeutic development.One of the primary market drivers is the growing prevalence of chronic diseases, such as cancer and cardiovascular disorders, where miRNAs serve as promising biomarkers for early detection and disease monitoring. The ability of miRNAs to offer insights into the molecular mechanisms underlying diseases has led to their integration into diagnostic tools and personalized medicine strategies.

Technological advancements in sequencing and molecular biology techniques have further propelled market expansion. High-throughput sequencing technologies have improved the identification and profiling of miRNAs, enabling comprehensive studies and facilitating more targeted therapeutic interventions. Additionally, the increasing focus on precision medicine has spurred collaborations between pharmaceutical companies and research institutions to explore the therapeutic potential of miRNA-based therapies.The pharmaceutical and biotechnology sectors have actively pursued harnessing the therapeutic capabilities of miRNAs. Multiple clinical trials have been initiated to assess the safety and efficacy of miRNA-based therapeutics across various diseases, including cancer and neurological disorders. This has led to a dynamic market landscape, with numerous players introducing innovative products and solutions.Despite the promising outlook, the market faces challenges such as the complexity of miRNA biology, off-target effects, and delivery issues for therapeutic applications. Ongoing research endeavors aim to address these challenges to fully unlock the potential of miRNA-based diagnostics and therapeutics.

Key Market Drivers

Rising Prevalence of Chronic Diseases

The escalating prevalence of chronic diseases has become a significant global concern, with lifestyle factors, aging populations, and environmental influences contributing to their increasing incidence. This has created a pressing need for innovative solutions to enable early detection, monitoring, and intervention. MicroRNAs (miRNAs), short non-coding RNA molecules, have emerged as promising biomarkers for chronic diseases due to their role in gene expression regulation and influence on various biological processes. Dysregulation of miRNAs is often associated with specific diseases, making them valuable indicators for diagnostic purposes and prognostication.Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. MiRNAs play a crucial role in regulating cardiac function, and their dysregulation is linked to various cardiovascular pathologies. Researchers are actively exploring miRNAs as diagnostic markers for conditions such as myocardial infarction, heart failure, and atherosclerosis, offering a sensitive and non-invasive approach to assessing cardiovascular health.

In the realm of cancer, miRNAs are recognized for their involvement in cancer development and progression, rendering them valuable biomarkers for early detection and monitoring. The diverse expression profiles of miRNAs across different cancer types provide a molecular signature for specific malignancies, driving efforts to identify and validate miRNA signatures for early cancer diagnosis and facilitating more effective treatment strategies.The global increase in diabetes and metabolic disorders has prompted investigations into the role of miRNAs in these conditions. MiRNAs contribute to the regulation of insulin signaling, glucose metabolism, and lipid homeostasis, with their dysregulation implicated in diabetes pathogenesis. Consequently, miRNAs are being explored as potential biomarkers for early diagnosis and as therapeutic targets to modulate the underlying molecular mechanisms of metabolic disorders.

Technological Advancements in Sequencing and Profiling

Next-generation sequencing (NGS) has revolutionized genomics research, significantly impacting miRNA studies. NGS technologies have greatly enhanced the efficiency and cost-effectiveness of sequencing entire miRNA profiles. The capability to sequence multiple samples simultaneously with high precision has expedited the identification and quantification of miRNAs across various biological contexts. This has stimulated large-scale investigations and comprehensive analyses, offering a more nuanced comprehension of miRNA expression patterns in different tissues and diseases.

The introduction of single-cell sequencing has brought about a new era in miRNA research by enabling the exploration of cellular diversity at unprecedented detail. Traditional sequencing methods often obscured the heterogeneity within cell populations, but single-cell technologies allow for miRNA profiling at the individual cell level. This has unveiled intricate miRNA expression dynamics in complex tissues, unveiling cell-specific functions and responses. The insights derived from single-cell sequencing hold significant potential for elucidating disease mechanisms and devising targeted interventions.Technological progressions have notably enhanced the profiling of circulating miRNAs, which are present in body fluids like blood and saliva. Liquid biopsies, owing to their non-invasive nature, are increasingly appealing for diagnostic purposes. Advanced profiling techniques such as digital PCR and high-throughput sequencing enable sensitive and precise detection of circulating miRNAs, paving the way for early disease diagnosis and monitoring, particularly in conditions like cancer and cardiovascular disorders.

Specialized small RNA sequencing platforms have emerged to address the unique challenges associated with miRNA and other small RNA analyses. These platforms offer optimized protocols, heightened sensitivity, and streamlined bioinformatics pipelines tailored for small RNA profiling. Researchers can now more effectively capture the complexity of the miRNAome, identifying novel miRNAs and isoforms that were previously challenging to detect with traditional sequencing methods.Single-molecule sequencing technologies have brought about a paradigm shift by enabling direct sequencing of individual RNA molecules without the need for amplification. This approach mitigates biases introduced by amplification steps, allowing for more accurate quantification of miRNA expression levels. Single-molecule sequencing holds promise for uncovering rare miRNA isoforms and variants, offering deeper insights into the diversity of miRNA populations.

Increased involvement in Pharmaceutical and Biotechnology Sector

The pharmaceutical and biotechnology sectors are leading the charge in leveraging the therapeutic potential of miRNAs. Research endeavors are focused on identifying disease-specific miRNA signatures, laying the groundwork for novel biopharmaceuticals. MiRNAs are investigated both as diagnostic biomarkers and therapeutic targets, offering a dual approach to precision medicine. This dual functionality positions miRNAs as pivotal components in the pursuit of innovative treatment modalities across various diseases.

Strategic collaborations between pharmaceutical giants, biotechnology firms, and research institutions are increasingly prevalent, fostering a vibrant ecosystem for miRNA research. These partnerships bring together diverse expertise and resources, accelerating the translation of miRNA discoveries into practical applications. Collaborative initiatives span preclinical and clinical studies, with an emphasis on validating miRNA biomarkers and advancing miRNA-based therapeutic candidates. Such collaborations underscore a collective commitment to pushing the boundaries of medical innovation.The pharmaceutical and biotechnology sectors are making significant investments in miRNA research, demonstrating a strategic dedication to unlocking the full potential of these small RNA molecules. Funding supports research programs aimed at elucidating the role of miRNAs in disease mechanisms and exploring their utility in diagnostics and therapeutics. This financial support not only facilitates fundamental research but also expedites the development of miRNA-based products, propelling the growth of the Global MicroRNA Market.

MiRNA-based therapeutics have garnered considerable attention within the pharmaceutical and biotechnology sectors. The adaptability of miRNAs in regulating gene expression presents a unique avenue for developing targeted therapies. Preclinical and clinical trials are in progress to evaluate the safety and efficacy of miRNA mimics and inhibitors across various diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. The pursuit of miRNA-based therapeutics represents a paradigm shift in drug development, with the potential to offer more precise and personalized treatment options.The diagnostic landscape is undergoing transformation with the incorporation of miRNAs into diagnostic assays. Pharmaceutical and biotechnology companies are actively engaged in developing miRNA-based diagnostic tools for early disease detection and monitoring. MiRNAs, with their tissue-specific expression profiles, serve as valuable biomarkers. Additionally, companion diagnostics leveraging miRNA signatures are being explored to guide treatment decisions and enhance patient outcomes, particularly in the realm of personalized medicine.

Key Market Challenges

Complexity of miRNA Biology

MicroRNAs are recognized for their role in finely regulating gene expression post-transcriptionally, but their multifaceted functions within cells introduce layers of complexity. A single miRNA can target multiple genes, participating in diverse biological processes simultaneously. This intricate network of interactions poses challenges for researchers in accurately deciphering the specific roles of individual miRNAs. Compounding this complexity is the fact that miRNA functions vary depending on the cell type.

MicroRNAs exhibit tissue-specific expression patterns, influencing distinct pathways in different cell types. Deciphering these cell-specific functions is a formidable task, especially considering the multitude of cell types within an organism. Understanding how miRNAs operate in specific cellular contexts is crucial for the development of targeted diagnostics and therapies.

Dysregulation of miRNAs is often linked to various diseases, such as cancer and neurodegenerative disorders. While this presents opportunities for diagnostic and therapeutic interventions, unraveling the intricate changes in miRNA expression profiles during disease progression poses challenges. The dynamic nature of miRNA expression adds complexity, as their levels may fluctuate across different disease stages.

Standardization of Detection Methods

MicroRNAs display a wide range of sequence diversity, posing challenges for developing standardized detection methods. Variations in sequence lengths, post-transcriptional modifications, and similarities among miRNAs require tailored approaches to ensure accurate and specific detection. Achieving consistency across this diverse landscape of miRNA sequences is crucial for obtaining reliable and consistent results. Additionally, post-transcriptional modifications, such as methylation or uridylation, can affect the stability and activity of miRNAs, further complicating detection standardization. Harmonizing detection methods to accommodate these modifications is essential for accurate miRNA profiling.

Sample types used for miRNA detection vary, including tissues, blood, and other bodily fluids. Variability in sample processing methods, RNA extraction techniques, and storage conditions introduces potential inconsistencies in miRNA detection. Standardizing these pre-analytical steps is necessary to minimize variations and improve result reproducibility across different laboratories and research settings.

Many miRNA detection methods involve amplification steps, such as polymerase chain reaction (PCR), to enhance sensitivity. However, differences in amplification techniques, primer design, and reaction conditions among laboratories can lead to disparate results. Standardizing amplification methods is critical for ensuring the comparability of miRNA expression levels across various studies and platforms.

Key Market Trends

Advancements in Sequencing Technologies

Advancements in sequencing technologies have played a pivotal role in driving the growth of the Global MicroRNA Market. Specifically, the evolution of high-throughput sequencing, notably next-generation sequencing (NGS), has transformed miRNA research. This technological progression has empowered researchers to delve deeper into the intricacies of miRNA expression patterns, offering unprecedented insights into their regulatory functions within cellular processes.High-throughput sequencing platforms enable the simultaneous analysis of thousands of miRNAs, delivering a comprehensive and precise snapshot of the miRNAome across various biological samples. The heightened sensitivity, specificity, and throughput of these technologies have not only expedited the discovery of novel miRNAs but also facilitated a more profound comprehension of their implications in health and disease.

Researchers leverage advanced sequencing technologies to elucidate tissue-specific miRNA expression patterns and investigate the dynamics of miRNA-mediated regulatory networks. These breakthroughs significantly contribute to identifying disease-specific miRNA signatures, offering valuable insights for diagnostic and therapeutic purposes. The continuous enhancement of sequencing methodologies addresses challenges related to miRNA diversity, post-transcriptional modifications, and dynamic expression, thereby enriching the pool of data driving innovations in personalized medicine, disease diagnosis, and miRNA-based therapeutics.

The integration of these advancements not only advances our knowledge of miRNA functions but also positions the Global MicroRNA Market as a hub for groundbreaking research and transformative applications in molecular medicine.

Liquid Biopsies for Non-Invasive Diagnostics

Liquid biopsies, a groundbreaking method for non-invasive diagnostics, are revolutionizing cancer detection and monitoring, consequently driving significant growth in the Global MicroRNA Market. Unlike conventional tissue biopsies, liquid biopsies analyze circulating microRNAs (miRNAs), small RNA molecules present in bodily fluids like blood or urine. The appeal of liquid biopsies lies in their minimally invasive nature, offering a more accessible and repeatable approach to detecting and monitoring various cancers.

MicroRNAs, as pivotal regulators of gene expression, play a critical role in cancer development and progression. Analyzing circulating miRNAs in liquid biopsies provides valuable insights into cancer presence, type, and stage, enabling early diagnosis and personalized treatment strategies. As liquid biopsies become integral to precision medicine, the Global MicroRNA Market experiences heightened demand, driven by their less intrusive and more dynamic approach to cancer management.Liquid biopsies offer more than just early diagnosis-they enable real-time monitoring of treatment responses and the emergence of resistance, allowing for timely adjustments to therapeutic interventions. This dynamic monitoring capability is particularly crucial in the era of targeted therapies and immunotherapies, where treatment strategies often require adaptability based on evolving cancer mutations.

Also, liquid biopsies address challenges associated with tumor heterogeneity by capturing a comprehensive and representative profile of the tumor's genetic makeup. This holistic approach enhances the accuracy of diagnostics and prognostics, providing clinicians with a more nuanced understanding of the disease.The Global MicroRNA Market also benefits from ongoing research and technological advancements that enhance the sensitivity and specificity of liquid biopsy assays. As these assays become more sophisticated, the market experiences increased adoption, driven by growing confidence in the reliability and accuracy of miRNA-based diagnostics..

Segmental Insights

Products Services Insights

Based on the Products Services, services emerged as the dominant segment in the global market for GlobalMicroRNA in 2022.This prominence can be attributed to the increasing demand for specialized services in the field of microRNA research, diagnostics, and therapeutic development. Services offered in the Global MicroRNA Market encompass a wide array of crucial activities, including miRNA profiling, target identification, data analysis, and custom assay development. The complexity of miRNA biology and the need for precise methodologies have driven a surge in demand for expert services, particularly from research institutions, pharmaceutical companies, and biotechnology firms.

End-User Insights

Based on the End-User, academic and government research institute emerged as the dominant segment in the global market for Global MicroRNA Market in 2022.This prominence can be attributed to the pivotal role these institutions play in advancing fundamental research and understanding the intricate world of microRNA (miRNA) biology. Academic and government research institutes are at the forefront of groundbreaking discoveries, unraveling the complexities of miRNA expression patterns, functions, and their implications in various diseases.

Regional Insights

The North American region has been at the forefront of technological innovation in healthcare, including diabetes management. This regional dominance is attributed to a confluence of factors that contribute to the robust growth and advancement of the microRNA sector. The well-established presence of leading pharmaceutical and biotechnology companies, coupled with a sophisticated healthcare infrastructure, positions North America at the forefront of microRNA research and commercialization. The region's strong emphasis on research and development, particularly in the field of molecular diagnostics and personalized medicine, has fueled substantial investments in microRNA-related initiatives.

Key Market Players

Merck KGaA

Thermo Fisher Scientific, Inc.

Horizon Discovery Ltd.

Synlogic Inc.

QIAGEN NV

GeneCopoeia, Inc.

New England Biolabs

Quantabio

NanoString Technologies, Inc.

Report Scope:

In this report, the Global MicroRNA Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

MicroRNA Market,By Products Services:

  • Instruments
  • Consumables
  • Services

MicroRNA Market,By Application:

  • Cancer
  • Infectious Diseases
  • Immunological Disorder
  • Cardiovascular Disease
  • Neurological Disease
  • Others

MicroRNA Market,By End-User:

  • Biotechnology Pharmaceutical Companies
  • Academic Government Research Institutes
  • Other end-users

Blood Glucose Test Strips Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Egypt

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global MicroRNA Market.

Available Customizations:

Global MicroRNA Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1.Product Overview

  • 1.1.Market Definition
  • 1.2.Scope of the Market
    • 1.2.1.Markets Covered
    • 1.2.2.Years Considered for Study
    • 1.2.3.Key Market Segmentations

2.Research Methodology

  • 2.1.Objective of the Study
  • 2.2.Baseline Methodology
  • 2.3.Key Industry Partners
  • 2.4.Major Association and Secondary Sources
  • 2.5.Forecasting Methodology
  • 2.6.Data Triangulation Validation
  • 2.7.Assumptions and Limitations

3.Executive Summary

  • 3.1.Overview of the Market
  • 3.2.Overview of Key Market Segmentations
  • 3.3.Overview of Key Market Players
  • 3.4.Overview of Key Regions/Countries
  • 3.5.Overview of Market Drivers, Challenges, Trends

4.Global MicroRNA Market Outlook

  • 4.1.Market Size Forecast
    • 4.1.1.By Value
  • 4.2.Market Share Forecast
    • 4.2.1.By Products Services (Instruments,Consumables, Services )
    • 4.2.2.By Application (Cancer, Infectious Diseases, Immunological Disorder, Cardiovascular Disease, Neurological Disease, Others)
    • 4.2.3.By End-User (Biotechnology Pharmaceutical Companies, Academic Government Research Institutes, Other)
    • 4.2.4.By Region
    • 4.2.5.By Company (2023)
  • 4.3.Market Map
    • 4.3.1.By Products Services
    • 4.3.2.By Application
    • 4.3.3.By End-User
    • 4.3.4.By Region

5.Asia Pacific MicroRNA Market Outlook

  • 5.1.Market Size Forecast
    • 5.1.1.By Value
  • 5.2.Market Share Forecast
    • 5.2.1.By Products Services
    • 5.2.2.By Application
    • 5.2.3.By End-User
    • 5.2.4.By Country
  • 5.3.Asia Pacific: Country Analysis
    • 5.3.1.China MicroRNA Market Outlook
      • 5.3.1.1.Market Size Forecast
        • 5.3.1.1.1.By Value
      • 5.3.1.2.Market Share Forecast
        • 5.3.1.2.1.By Products Services
        • 5.3.1.2.2.By Application
        • 5.3.1.2.3.By End-User
    • 5.3.2.India MicroRNA Market Outlook
      • 5.3.2.1.Market Size Forecast
        • 5.3.2.1.1.By Value
      • 5.3.2.2.Market Share Forecast
        • 5.3.2.2.1.By Products Services
        • 5.3.2.2.2.By Application
        • 5.3.2.2.3.By End-User
    • 5.3.3.Australia MicroRNA Market Outlook
      • 5.3.3.1.Market Size Forecast
        • 5.3.3.1.1.By Value
      • 5.3.3.2.Market Share Forecast
        • 5.3.3.2.1.By Products Services
        • 5.3.3.2.2.By Application
        • 5.3.3.2.3.By End-User
    • 5.3.4.Japan MicroRNA Market Outlook
      • 5.3.4.1.Market Size Forecast
        • 5.3.4.1.1.By Value
      • 5.3.4.2.Market Share Forecast
        • 5.3.4.2.1.By Products Services
        • 5.3.4.2.2.By Application
        • 5.3.4.2.3.By End-User
    • 5.3.5.South Korea MicroRNA Market Outlook
      • 5.3.5.1.Market Size Forecast
        • 5.3.5.1.1.By Value
      • 5.3.5.2.Market Share Forecast
        • 5.3.5.2.1.By Products Services
        • 5.3.5.2.2.By Application
        • 5.3.5.2.3.By End-User

6.Europe MicroRNA Market Outlook

  • 6.1.Market Size Forecast
    • 6.1.1.By Value
  • 6.2.Market Share Forecast
    • 6.2.1.By Products Services
    • 6.2.2.By Application
    • 6.2.3.By End-User
    • 6.2.4.By Country
  • 6.3.Europe: Country Analysis
    • 6.3.1.France MicroRNA Market Outlook
      • 6.3.1.1.Market Size Forecast
        • 6.3.1.1.1.By Value
      • 6.3.1.2.Market Share Forecast
        • 6.3.1.2.1.By Products Services
        • 6.3.1.2.2.By Application
        • 6.3.1.2.3.By End-User
    • 6.3.2.Germany MicroRNA Market Outlook
      • 6.3.2.1.Market Size Forecast
        • 6.3.2.1.1.By Value
      • 6.3.2.2.Market Share Forecast
        • 6.3.2.2.1.By Products Services
        • 6.3.2.2.2.By Application
        • 6.3.2.2.3.By End-User
    • 6.3.3.Spain MicroRNA Market Outlook
      • 6.3.3.1.Market Size Forecast
        • 6.3.3.1.1.By Value
      • 6.3.3.2.Market Share Forecast
        • 6.3.3.2.1.By Products Services
        • 6.3.3.2.2.By Application
        • 6.3.3.2.3.By End-User
    • 6.3.4.Italy MicroRNA Market Outlook
      • 6.3.4.1.Market Size Forecast
        • 6.3.4.1.1.By Value
      • 6.3.4.2.Market Share Forecast
        • 6.3.4.2.1.By Products Services
        • 6.3.4.2.2.By Application
        • 6.3.4.2.3.By End-User
    • 6.3.5.United Kingdom MicroRNA Market Outlook
      • 6.3.5.1.Market Size Forecast
        • 6.3.5.1.1.By Value
      • 6.3.5.2.Market Share Forecast
        • 6.3.5.2.1.By Products Services
        • 6.3.5.2.2.By Application
        • 6.3.5.2.3.By End-User

7.North America MicroRNA Market Outlook

  • 7.1.Market Size Forecast
    • 7.1.1.By Value
  • 7.2.Market Share Forecast
    • 7.2.1.By Products Services
    • 7.2.2.By Application
    • 7.2.3.By End-User
    • 7.2.4.By Country
  • 7.3.North America: Country Analysis
    • 7.3.1.United States MicroRNA Market Outlook
      • 7.3.1.1.Market Size Forecast
        • 7.3.1.1.1.By Value
      • 7.3.1.2.Market Share Forecast
        • 7.3.1.2.1.By Products Services
        • 7.3.1.2.2.By Application
        • 7.3.1.2.3.By End-User
    • 7.3.2.Mexico MicroRNA Market Outlook
      • 7.3.2.1.Market Size Forecast
        • 7.3.2.1.1.By Value
      • 7.3.2.2.Market Share Forecast
        • 7.3.2.2.1.By Products Services
        • 7.3.2.2.2.By Application
        • 7.3.2.2.3.By End-User
    • 7.3.3.Canada MicroRNA Market Outlook
      • 7.3.3.1.Market Size Forecast
        • 7.3.3.1.1.By Value
      • 7.3.3.2.Market Share Forecast
        • 7.3.3.2.1.By Products Services
        • 7.3.3.2.2.By Application
        • 7.3.3.2.3.By End-User

8.South America MicroRNA Market Outlook

  • 8.1.Market Size Forecast
    • 8.1.1.By Value
  • 8.2.Market Share Forecast
    • 8.2.1.By Products Services
    • 8.2.2.By Application
    • 8.2.3.By End-User
    • 8.2.4.By Country
  • 8.3.South America: Country Analysis
    • 8.3.1.Brazil MicroRNA Market Outlook
      • 8.3.1.1.Market Size Forecast
        • 8.3.1.1.1.By Value
      • 8.3.1.2.Market Share Forecast
        • 8.3.1.2.1.By Products Services
        • 8.3.1.2.2.By Application
        • 8.3.1.2.3.By End-User
    • 8.3.2.Argentina MicroRNA Market Outlook
      • 8.3.2.1.Market Size Forecast
        • 8.3.2.1.1.By Value
      • 8.3.2.2.Market Share Forecast
        • 8.3.2.2.1.By Products Services
        • 8.3.2.2.2.By Application
        • 8.3.2.2.3.By End-User
    • 8.3.3.Colombia MicroRNA Market Outlook
      • 8.3.3.1.Market Size Forecast
        • 8.3.3.1.1.By Value
      • 8.3.3.2.Market Share Forecast
        • 8.3.3.2.1.By Products Services
        • 8.3.3.2.2.By Application
        • 8.3.3.2.3.By End-User

9.Middle East and Africa MicroRNA Market Outlook

  • 9.1.Market Size Forecast
    • 9.1.1.By Value
  • 9.2.Market Share Forecast
    • 9.2.1.By Products Services
    • 9.2.2.By Application
    • 9.2.3.By End-User
    • 9.2.4.By Country
  • 9.3.MEA: Country Analysis
    • 9.3.1.South Africa MicroRNA Market Outlook
      • 9.3.1.1.Market Size Forecast
        • 9.3.1.1.1.By Value
      • 9.3.1.2.Market Share Forecast
        • 9.3.1.2.1.By Products Services
        • 9.3.1.2.2.By Application
        • 9.3.1.2.3.By End-User
    • 9.3.2.Saudi Arabia MicroRNA Market Outlook
      • 9.3.2.1.Market Size Forecast
        • 9.3.2.1.1.By Value
      • 9.3.2.2.Market Share Forecast
        • 9.3.2.2.1.By Products Services
        • 9.3.2.2.2.By Application
        • 9.3.2.2.3.By End-User
    • 9.3.3.UAE MicroRNA Market Outlook
      • 9.3.3.1.Market Size Forecast
        • 9.3.3.1.1.By Value
      • 9.3.3.2.Market Share Forecast
        • 9.3.3.2.1.By Products Services
        • 9.3.3.2.2.By Application
        • 9.3.3.2.3.By End-User
    • 9.3.4.Egypt MicroRNA Market Outlook
      • 9.3.4.1.Market Size Forecast
        • 9.3.4.1.1.By Value
      • 9.3.4.2.Market Share Forecast
        • 9.3.4.2.1.By Products Services
        • 9.3.4.2.2.By Application
        • 9.3.4.2.3.By End-User

10.Market Dynamics

  • 10.1.Drivers
  • 10.2.Challenges

11.Market Trends Developments

  • 11.1.Recent Developments
  • 11.2.Product Launches
  • 11.3.Mergers Acquisitions

12.Global MicroRNA Market: SWOT Analysis

13.Porter's Five Forces Analysis

  • 13.1.Competition in the Industry
  • 13.2.Potential of New Entrants
  • 13.3.Power of Suppliers
  • 13.4.Power of Customers
  • 13.5.Threat of Substitute Product

14.Competitive Landscape

  • 14.1.Merck KGaA
    • 14.1.1.Business Overview
    • 14.1.2.Company Snapshot
    • 14.1.3.Products Services
    • 14.1.4.Financials (In case of listed)
    • 14.1.5.Recent Developments
    • 14.1.6.SWOT Analysis
  • 14.2.Thermo Fisher Scientific, Inc.
  • 14.3.Horizon Discovery Ltd.
  • 14.4.Synlogic Inc.
  • 14.5.QIAGEN NV
  • 14.6.GeneCopoeia, Inc.
  • 14.7.New England Biolabs
  • 14.8.Quantabio
  • 14.9.NanoString Technologies, Inc.

15.Strategic Recommendations

16.About Us Disclaimer