封面
市場調查報告書
商品編碼
1460684

電腦輔助綜合規劃市場中的人工智慧 - 全球產業規模、佔有率、趨勢、機會和預測,按應用、最終用戶、地區、競爭細分,2019-2029F

AI in Computer Aided Synthesis Planning Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Application, By End-user, By Region, By Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 181 Pages | 商品交期: 2-3個工作天內

價格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

簡介目錄

2023 年,全球人工智慧電腦輔助綜合規劃市場價值為 14 億美元,預計在預測期內將強勁成長,到 2029 年CAGR為43.8%。全球人工智慧電腦輔助綜合規劃市場正在經歷顯著的上升由人工智慧(AI)技術在有機合成領域的整合驅動。這一市場激增主要歸因於人工智慧為綜合規劃過程帶來的引人注目的優勢。人工智慧在電腦輔助合成規劃中的應用正在徹底改變製藥和化學工業,提高效率並加速藥物發現。透過利用機器學習演算法和預測模型,研究人員和化學家可以分析大量化學資料集,預測反應結果,並以前所未有的速度和準確性最佳化合成路線。

此外,人工智慧透過提供對複雜化學反應的寶貴見解來促進明智的決策,減少傳統上合成規劃所需的時間和資源。藥物開發和材料合成領域對創新和永續解決方案的需求不斷成長也推動了市場的成長。隨著各行業努力尋求具有成本效益和時間效率的方法,在電腦輔助合成規劃中採用人工智慧成為一種變革性的解決方案,有望在有機化學領域取得重大進展,並為全球現代合成方法的發展做出貢獻。規模。

主要市場促進因素

提高效率並加速藥物發現

目錄

第 1 章:服務概述

  • 市場定義
  • 市場範圍
    • 涵蓋的市場
    • 研究年份
    • 主要市場區隔

第 2 章:研究方法

第 3 章:執行摘要

第 4 章:COVID-19 對電腦輔助綜合規劃市場中全球 AI 的影響

第 5 章:客戶之聲

第 6 章:電腦輔助綜合規劃中的全球人工智慧

第 7 章:全球人工智慧電腦輔助綜合規劃市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 依應用(有機合成、合成設計)
    • 按最終用戶(醫療保健、化學品、其他)
    • 按地區(北美、歐洲、南美、中東非洲、亞太地區)
  • 按公司分類 (2023)
  • 市場地圖

第 8 章:北美人工智慧電腦輔助綜合規劃市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 北美:國家分析
    • 美國人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 加拿大人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 墨西哥人工智慧電腦輔助綜合規劃市場前景
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶

第 9 章:歐洲人工智慧電腦輔助綜合規劃市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 歐洲:國家分析
    • 德國人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 法國人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 英國人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 義大利人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 西班牙人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 比利時人工智慧電腦輔助綜合規劃市場前景
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶

第 10 章:南美洲人工智慧電腦輔助綜合規劃市場前景

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 南美洲:國家分析
    • 巴西
    • 哥倫比亞
    • 阿根廷
    • 智利
    • 秘魯

第 11 章:中東非洲人工智慧電腦輔助綜合規劃市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 中東非洲:國家分析
    • 沙烏地阿拉伯人工智慧電腦輔助綜合規劃市場前景
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 阿拉伯聯合大公國人工智慧電腦輔助綜合規劃市場前景
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 南非人工智慧電腦輔助綜合規劃市場前景
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 土耳其人工智慧電腦輔助綜合規劃市場前景
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶
    • 以色列人工智慧電腦輔助綜合規劃市場展望
      • 市場規模預測
        • 按價值
      • 市佔率預測
        • 按申請
        • 按最終用戶

第 12 章:亞太地區人工智慧電腦輔助綜合規劃市場展望

  • 市場規模預測
    • 按價值
  • 市佔率預測
    • 按申請
    • 按最終用戶
    • 按國家/地區
  • 亞太地區:國家分析
    • 中國
    • 印度
    • 日本
    • 韓國
    • 澳洲
    • 印尼
    • 越南

第 13 章:市場動態

  • 促進要素
  • 挑戰

第 14 章:市場趨勢與發展

第 15 章:公司簡介

  • IBM Corporation
  • Microsoft Corporation
  • Hoffmann-La Roche Limited
  • IKTOS
  • Medici Technologies, LLC
  • Merck KGaA
  • PostEra
  • Novartis AG
  • Deepmatter Group Limited
  • AbbVie Inc.

第 16 章:策略建議

第 17 章:關於我們免責聲明

簡介目錄
Product Code: 22202

Global AI in Computer Aided Synthesis Planning Market was valued at USD 1.4 Billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 43.8% through 2029.The Global AI in Computer Aided Synthesis Planning Market is experiencing a notable upswing driven by the integration of artificial intelligence (AI) technologies in the realm of organic synthesis. This market surge is primarily attributed to the compelling advantages AI brings to the synthesis planning process. The application of AI in computer-aided synthesis planning is revolutionizing the pharmaceutical and chemical industries, offering enhanced efficiency and accelerated drug discovery. By leveraging machine learning algorithms and predictive modeling, researchers and chemists can analyze vast chemical datasets, predict reaction outcomes, and optimize synthetic routes with unprecedented speed and accuracy.

Furthermore, AI facilitates informed decision-making by providing valuable insights into complex chemical reactions, reducing the time and resources traditionally required for synthesis planning. The market growth is also propelled by the increasing demand for innovative and sustainable solutions in drug development and material synthesis. As industries strive for cost-effective and time-efficient approaches, the adoption of AI in computer-aided synthesis planning emerges as a transformative solution, promising significant advancements in the field of organic chemistry and contributing to the evolution of modern synthesis methodologies on a global scale.

Key Market Drivers

Enhanced Efficiency and Accelerated Drug Discovery

The primary impetus driving the Global AI in Computer Aided Synthesis Planning Market is the profound enhancement in efficiency and the acceleration of drug discovery processes. At the heart of this surge is the application of AI algorithms, powered by machine learning and data analytics, which furnishes researchers with an unprecedented ability to swiftly and precisely analyze vast chemical databases. This transformative capability expedites the identification of potential drug candidates and streamlines synthetic routes, markedly diminishing the time required for drug discovery. The automation of repetitive tasks and intricate analyses by AI empowers chemists to redirect their focus towards more strategic and creative aspects of synthesis planning. This strategic shift in emphasis enables the rapid identification of novel compounds with therapeutic potential. The heightened efficiency facilitated by AI not only expedites the drug development pipeline but also contributes significantly to cost savings. Consequently, AI in computer-aided synthesis planning emerges as a pivotal catalyst, revolutionizing and expediting the drug discovery landscape by enabling more effective and rapid processes.

Predictive Modeling for Reaction Outcome Optimization

Another key driver in the ascent of the global AI in computer-aided synthesis planning market is the utilization of predictive modeling for optimizing reaction outcomes. AI algorithms can analyze historical data on chemical reactions, identifying patterns and correlations that human researchers might overlook. This enables the prediction of potential reaction outcomes, aiding in the selection of the most efficient and viable synthetic routes. The ability to anticipate the success or failure of a reaction before it is conducted is transformative, allowing researchers to prioritize and streamline synthesis efforts. As a result, the integration of predictive modeling through AI not only accelerates the planning process but also significantly reduces the need for trial-and-error approaches, contributing to a more resource-efficient and cost-effective drug discovery and synthesis workflow.

Informed Decision-Making in Complex Chemical Reactions

The growth of the global AI in computer-aided synthesis planning market is the facilitation of informed decision-making in the face of complex chemical reactions. AI systems can process and interpret intricate chemical data, providing researchers with valuable insights into the feasibility and challenges associated with various synthesis routes. By presenting comprehensive analyses of potential reaction pathways and their respective risks, AI empowers chemists to make informed decisions, mitigating uncertainties in the synthesis planning process. This informed decision-making not only improves the overall success rate of synthetic endeavors but also ensures a more rational allocation of resources. The ability to navigate the complexities of chemical reactions with AI-driven insights is a crucial factor driving the adoption of AI in synthesis planning across pharmaceutical and chemical industries.

Demand for Innovative and Sustainable Solutions

A crucial driving force behind the ascent of the global AI in computer-aided synthesis planning market is the escalating demand for pioneering and sustainable solutions in drug development and material synthesis. Faced with mounting pressure to devise processes that are both environmentally friendly and economically viable, industries are turning to AI as a formidable ally. The integration of AI-driven synthesis planning facilitates the exploration of more sustainable and eco-friendly synthetic routes, strategically optimizing chemical reactions to yield higher outputs while concurrently minimizing waste. This strategic alignment with the worldwide emphasis on sustainability positions AI as a pivotal enabler for the development of green chemical processes. Consequently, the market is experiencing a notable surge in adoption as companies endeavor to meet the burgeoning demand for sustainable practices in synthesis planning. This surge in adoption is acting as a powerful catalyst, further propelling the growth trajectory of AI integration within these industries, establishing AI as a cornerstone for fostering sustainable and environmentally conscious practices in drug development and material synthesis.

Evolution of Modern Synthesis Methodologies

The trajectory of the global AI in computer-aided synthesis planning market is significantly defined by its pivotal role in driving the evolution of modern synthesis methodologies. Beyond the realm of automating established processes, AI serves as a catalyst, propelling the development of novel and unconventional synthetic routes. Its capacity to navigate a vast chemical space and propose innovative reaction pathways acts as a cornerstone, expanding the synthesis toolkit available to researchers. This dynamic evolution not only nurtures scientific discovery but also positions AI as a transformative force shaping the future landscape of organic chemistry. The continual pursuit of more efficient and diverse synthesis strategies serves as a powerful impetus for the widespread adoption of AI, solidifying its status as an indispensable driver in the ongoing transformation of modern synthesis methodologies on a global scale. The synergy between AI capabilities and the perpetual quest for enhanced methodologies underscores the profound impact of AI in shaping the trajectory of synthesis planning in the broader field of organic chemistry.

Key Market Challenges

Data Quality and Availability

One significant challenge impeding the seamless growth of the Global AI in Computer Aided Synthesis Planning Market is the issue of data quality and availability. While AI heavily relies on large datasets for training and effective decision-making, the quality and accessibility of chemical data remain major hurdles. The data required for training AI models must be comprehensive, diverse, and accurately annotated. However, there is a considerable gap in the availability of high-quality, standardized chemical data, hindering the development of robust AI algorithms. Additionally, much of the existing chemical data is often proprietary, limiting its accessibility for broader research and hindering the creation of universally applicable AI models. Addressing these challenges requires collaborative efforts within the scientific community to establish standardized datasets and promote data-sharing practices, ensuring that AI in synthesis planning can reach its full potential by leveraging high-quality and diverse data.

Interpretability and Explainability of AI Models

A critical challenge facing the adoption of AI in computer-aided synthesis planning is the inherent complexity of AI models, leading to concerns about their interpretability and explainability. As AI systems, particularly deep learning models, become more sophisticated, their decision-making processes become increasingly opaque, making it challenging for researchers and regulatory bodies to understand how specific predictions are generated. In the context of synthesis planning, where the consequences of decisions can have profound implications for safety and efficacy, the lack of interpretability raises concerns about the reliability of AI-driven recommendations. Overcoming this challenge requires the development of transparent AI models and methodologies that provide clear insights into how predictions are made. Striking a balance between the complexity required for accuracy and the need for interpretability is crucial to building trust in AI-driven synthesis planning applications.

Integration with Traditional Approaches

Another obstacle facing the global AI in computer-aided synthesis planning market is the seamless integration of AI with traditional synthetic chemistry approaches. Many research and development processes in the pharmaceutical and chemical industries have been established based on conventional methods, and transitioning to AI-driven methodologies presents integration challenges. Achieving synergy between AI and traditional approaches requires overcoming resistance to change, addressing compatibility issues, and ensuring that AI tools complement existing workflows rather than disrupt them. Furthermore, there is a need for cross-disciplinary collaboration between computer scientists, chemists, and engineers to bridge the gap between AI expertise and domain-specific knowledge, fostering a harmonious integration that maximizes the strengths of both traditional and AI-driven synthesis planning methods.

Ethical and Regulatory Considerations

The ethical and regulatory landscape poses a formidable challenge to the widespread adoption of AI in computer-aided synthesis planning. The autonomous nature of AI algorithms raises ethical concerns regarding accountability, bias, and unintended consequences. Ensuring the ethical use of AI in synthesis planning involves addressing issues related to algorithmic transparency, data privacy, and fairness in model predictions. Additionally, regulatory bodies are tasked with developing frameworks to evaluate and approve AI-driven synthesis planning tools, establishing standards for their reliability and safety. The evolving nature of AI technology and the need for adaptive regulations further complicate this challenge. Striking a balance between fostering innovation and safeguarding ethical considerations requires ongoing collaboration between industry stakeholders, regulatory bodies, and ethicists to develop and implement guidelines that ensure responsible and transparent use of AI in computer-aided synthesis planning.

Key Market Trends

Integration of Machine Learning for Reaction Prediction

A prominent trend in the Global AI in Computer Aided Synthesis Planning Market is the increasing integration of machine learning for reaction prediction. Researchers are leveraging advanced machine learning algorithms to predict the outcomes of chemical reactions, enabling more accurate and efficient synthesis planning. By analyzing vast datasets of chemical reactions, these algorithms can identify patterns and relationships, providing valuable insights into the reactivity of different compounds. This trend is revolutionizing the traditional trial-and-error approach to synthesis, allowing chemists to prioritize and explore the most promising reaction pathways. As the capabilities of machine learning continue to advance, the accuracy of reaction predictions is expected to improve, further accelerating the drug discovery and material synthesis processes.

Rise of Generative Models for Molecule Design

A noteworthy trend shaping the AI in Computer Aided Synthesis Planning Market is the rise of generative models for molecule design. Generative models, such as generative adversarial networks (GANs) and variational autoencoders (VAEs), enable the creation of novel chemical structures with desirable properties. This trend is particularly significant in the drug discovery field, where the ability to design new molecules with specific characteristics is crucial. AI-driven molecule design not only expedites the exploration of chemical space but also facilitates the development of innovative compounds that may not have been considered through traditional methods. The integration of generative models is poised to play a pivotal role in expanding the diversity of synthesized molecules, opening new avenues for drug development and materials science.

Emergence of Hybrid Approaches

An emerging trend in the Global AI in Computer Aided Synthesis Planning Market is the adoption of hybrid approaches that combine the strengths of AI with traditional synthesis planning methods. Rather than replacing conventional approaches, AI is increasingly being integrated into existing workflows to enhance efficiency and decision-making. Hybrid models leverage AI for predictive analytics, data processing, and optimization, while human expertise guides the overall synthesis strategy. This trend reflects a pragmatic approach to AI adoption, acknowledging the value of both computational intelligence and human intuition in synthesis planning. The hybridization of AI and traditional methods is proving to be a strategic and effective way to leverage the benefits of AI while respecting the expertise and experience of chemists and researchers.

Cloud-Based AI Solutions for Collaborative Research

A notable trend influencing the AI in Computer Aided Synthesis Planning Market is the increasing adoption of cloud-based AI solutions for collaborative research. Cloud computing offers scalable and accessible platforms that enable researchers from different locations to collaborate in real-time. Cloud-based AI solutions facilitate the sharing of large datasets, computational resources, and AI models, fostering collaborative efforts in synthesis planning. This trend is particularly advantageous for research organizations and pharmaceutical companies that operate across geographically dispersed teams. The ability to access and contribute to AI-driven synthesis planning projects through cloud platforms enhances collaboration, accelerates research timelines, and promotes knowledge exchange in the global scientific community.

Growing Focus on Explainable AI in Synthesis Planning

A growing trend in the Global AI in Computer Aided Synthesis Planning Market is the increased focus on explainable AI (XAI) methodologies. As the complexity of AI models used in synthesis planning grows, there is a parallel emphasis on ensuring transparency and interpretability. Explainable AI techniques aim to provide clear insights into how AI models arrive at specific decisions, making the reasoning behind predictions more understandable to researchers and regulatory bodies. This trend addresses concerns related to the black-box nature of some advanced AI algorithms, especially in critical applications such as drug discovery. The integration of explainable AI in synthesis planning not only enhances trust in AI-driven recommendations but also aligns with regulatory requirements for accountability and transparency in decision-making processes.

Segmental Insights

End-user Insights

The Healthcare segment emerged as the dominant force in the Global AI in Computer Aided Synthesis Planning Market and is anticipated to sustain its leadership throughout the forecast period. The dominance of the Healthcare segment is a testament to the transformative impact of AI on drug discovery and development processes. AI applications in computer-aided synthesis planning have revolutionized the way pharmaceutical research is conducted, offering accelerated analysis of chemical data, predictive modeling for reaction outcomes, and innovative molecule design. The healthcare industry, particularly pharmaceutical companies, has embraced AI to enhance the efficiency and precision of organic synthesis, leading to faster drug discovery and optimization of synthetic routes. As the demand for novel therapeutics and drug candidates continues to grow, the Healthcare segment is expected to witness sustained dominance, driven by the imperative for more rapid and cost-effective drug development. The integration of AI in healthcare not only expedites the identification of potential drug candidates but also contributes to the advancement of precision medicine and personalized treatment strategies. With the persistent need for innovative solutions in the healthcare sector, the Healthcare segment is well-positioned to maintain its dominance, leveraging AI to navigate the complexities of synthesis planning and address the evolving challenges in drug discovery and development. As AI technology continues to evolve, the Healthcare segment will likely play a central role in shaping the future landscape of computer-aided synthesis planning, providing valuable contributions to the broader healthcare and pharmaceutical industries.

Application Insights

The Organic Synthesis segment emerged as the dominant force in the Global AI in Computer Aided Synthesis Planning Market and is poised to maintain its supremacy throughout the forecast period. The dominance of the Organic Synthesis segment can be attributed to the pivotal role AI plays in revolutionizing the efficiency and precision of organic chemistry processes. AI applications in organic synthesis have significantly expedited the identification of novel compounds, optimized synthetic routes, and enhanced overall drug discovery efforts. The ability of AI to analyze vast datasets, predict reaction outcomes, and propose innovative pathways has provided a substantial competitive edge in organic synthesis planning. As pharmaceutical and chemical industries continue to focus on developing new drugs and materials, the Organic Synthesis segment is expected to witness sustained growth, driven by the continual advancements in AI technology. The integration of AI in organic synthesis not only accelerates research and development processes but also contributes to the evolution of modern synthesis methodologies, making it a critical and enduring driver in the global market landscape. As the demand for efficient and cost-effective solutions in organic synthesis intensifies, the Organic Synthesis segment is positioned to maintain its dominance, offering a transformative approach to synthesis planning that aligns with the evolving needs of the pharmaceutical and chemical industries.

Regional Insights

North America emerged as the dominant region in the Global AI in Computer Aided Synthesis Planning Market and is anticipated to maintain its leadership throughout the forecast period. The dominance of North America can be attributed to the region's robust infrastructure, significant investments in research and development, and the presence of key market players and leading academic institutions at the forefront of AI and chemical sciences. The United States, in particular, has witnessed a surge in AI-driven innovation in synthesis planning, with pharmaceutical and chemical industries leveraging advanced technologies to expedite drug discovery processes. The region's favorable regulatory environment and collaborative ecosystem between academia and industry further contribute to the widespread adoption of AI in synthesis planning. As the demand for efficient and data-driven solutions in organic synthesis continues to grow, North America is expected to maintain its dominance, fostering advancements in AI applications for computer-aided synthesis planning. The continuous emphasis on technological innovation, coupled with a strong commitment to research, positions North America as a key hub for the development and implementation of AI-driven strategies in the synthesis planning landscape. With the convergence of expertise, resources, and a conducive business environment, North America is likely to remain a frontrunner in shaping the trajectory of the global market, driving advancements in AI applications that redefine the landscape of computer-aided synthesis planning across various industries.

Key Market Players

IBM Corporation

Microsoft Corporation

Hoffmann-La Roche Limited

IKTOS

Medici Technologies, LLC

Merck KGaA

PostEra

Novartis AG

Deepmatter Group Limited

AbbVie Inc.

Report Scope:

In this report, the Global AI in Computer Aided Synthesis Planning Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

AI in Computer Aided Synthesis Planning Market,By End-user:

  • Healthcare
  • Chemicals
  • Others

AI in Computer Aided Synthesis Planning Market,By Application:

  • Organic Synthesis
  • Synthesis Design

AI in Computer Aided Synthesis Planning Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
    • Belgium
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    • Indonesia
    • Vietnam
  • South America
    • Brazil
    • Argentina
    • Colombia
    • Chile
    • Peru
  • Middle East Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Turkey
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global AI in Computer Aided Synthesis Planning Market.

Available Customizations:

Global AI in Computer Aided Synthesis Planning market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1.Service Overview

  • 1.1.Market Definition
  • 1.2.Scope of the Market
    • 1.2.1.Markets Covered
    • 1.2.2.Years Considered for Study
    • 1.2.3.Key Market Segmentations

2.Research Methodology

  • 2.1.Objective of the Study
  • 2.2.Baseline Methodology
  • 2.3.Formulation of the Scope
  • 2.4.Assumptions and Limitations
  • 2.5.Sources of Research
    • 2.5.1.Secondary Research
    • 2.5.2.Primary Research
  • 2.6.Approach for the Market Study
    • 2.6.1.The Bottom-Up Approach
    • 2.6.2.The Top-Down Approach
  • 2.7.Methodology Followed for Calculation of Market Size Market Shares
  • 2.8.Forecasting Methodology
    • 2.8.1.Data Triangulation Validation

3.Executive Summary

4.Impact of COVID-19 on Global AI in Computer Aided Synthesis Planning Market

5.Voice of Customer

6.Global AI in Computer Aided Synthesis Planning

7.Global AI in Computer Aided Synthesis Planning Market Outlook

  • 7.1.Market Size Forecast
    • 7.1.1.By Value
  • 7.2.Market Share Forecast
    • 7.2.1.By Application (Organic Synthesis, Synthesis Design)
    • 7.2.2.By End-user (Healthcare, Chemicals, Others)
    • 7.2.3.By Region (North America, Europe, South America, Middle East Africa, Asia Pacific)
  • 7.3.By Company (2023)
  • 7.4.Market Map

8.North America AI in Computer Aided Synthesis Planning MarketOutlook

  • 8.1.Market Size Forecast
    • 8.1.1.By Value
  • 8.2.Market Share Forecast
    • 8.2.1.By Application
    • 8.2.2.By End-user
    • 8.2.3.By Country
  • 8.3.North America: Country Analysis
    • 8.3.1.United States AI in Computer Aided Synthesis Planning Market Outlook
      • 8.3.1.1.Market Size Forecast
        • 8.3.1.1.1.By Value
      • 8.3.1.2.Market Share Forecast
        • 8.3.1.2.1.By Application
        • 8.3.1.2.2.By End-user
    • 8.3.2.Canada AI in Computer Aided Synthesis Planning Market Outlook
      • 8.3.2.1.Market Size Forecast
        • 8.3.2.1.1.By Value
      • 8.3.2.2.Market Share Forecast
        • 8.3.2.2.1.By Application
        • 8.3.2.2.2.By End-user
    • 8.3.3.Mexico AI in Computer Aided Synthesis Planning Market Outlook
      • 8.3.3.1.Market Size Forecast
        • 8.3.3.1.1.By Value
      • 8.3.3.2.Market Share Forecast
        • 8.3.3.2.1.By Application
        • 8.3.3.2.2.By End-user

9.Europe AI in Computer Aided Synthesis Planning MarketOutlook

  • 9.1.Market Size Forecast
    • 9.1.1.By Value
  • 9.2.Market Share Forecast
    • 9.2.1.By Application
    • 9.2.2.By End-user
    • 9.2.3.By Country
  • 9.3.Europe: Country Analysis
    • 9.3.1.Germany AI in Computer Aided Synthesis Planning Market Outlook
      • 9.3.1.1.Market Size Forecast
        • 9.3.1.1.1.By Value
      • 9.3.1.2.Market Share Forecast
        • 9.3.1.2.1.By Application
        • 9.3.1.2.2.By End-user
    • 9.3.2.France AI in Computer Aided Synthesis Planning Market Outlook
      • 9.3.2.1.Market Size Forecast
        • 9.3.2.1.1.By Value
      • 9.3.2.2.Market Share Forecast
        • 9.3.2.2.1.By Application
        • 9.3.2.2.2.By End-user
    • 9.3.3.United Kingdom AI in Computer Aided Synthesis Planning Market Outlook
      • 9.3.3.1.Market Size Forecast
        • 9.3.3.1.1.By Value
      • 9.3.3.2.Market Share Forecast
        • 9.3.3.2.1.By Application
        • 9.3.3.2.2.By End-user
    • 9.3.4.Italy AI in Computer Aided Synthesis Planning Market Outlook
      • 9.3.4.1.Market Size Forecast
        • 9.3.4.1.1.By Value
      • 9.3.4.2.Market Share Forecast
        • 9.3.4.2.1.By Application
        • 9.3.4.2.2.By End-user
    • 9.3.5.Spain AI in Computer Aided Synthesis Planning Market Outlook
      • 9.3.5.1.Market Size Forecast
        • 9.3.5.1.1.By Value
      • 9.3.5.2.Market Share Forecast
        • 9.3.5.2.1.By Application
        • 9.3.5.2.2.By End-user
    • 9.3.6.Belgium AI in Computer Aided Synthesis Planning Market Outlook
      • 9.3.6.1.Market Size Forecast
        • 9.3.6.1.1.By Value
      • 9.3.6.2.Market Share Forecast
        • 9.3.6.2.1.By Application
        • 9.3.6.2.2.By End-user

10.South America AI in Computer Aided Synthesis Planning Market Outlook

  • 10.1.Market Size Forecast
    • 10.1.1.By Value
  • 10.2.Market Share Forecast
    • 10.2.1.By Application
    • 10.2.2.By End-user
    • 10.2.3.By Country
  • 10.3.South America: Country Analysis
    • 10.3.1.Brazil AI in Computer Aided Synthesis Planning Market Outlook
      • 10.3.1.1.Market Size Forecast
        • 10.3.1.1.1.By Value
      • 10.3.1.2.Market Share Forecast
        • 10.3.1.2.1.By Application
        • 10.3.1.2.2.By End-user
    • 10.3.2.Colombia AI in Computer Aided Synthesis Planning Market Outlook
      • 10.3.2.1.Market Size Forecast
        • 10.3.2.1.1.By Value
      • 10.3.2.2.Market Share Forecast
        • 10.3.2.2.1.By Application
        • 10.3.2.2.2.By End-user
    • 10.3.3.Argentina AI in Computer Aided Synthesis Planning Market Outlook
      • 10.3.3.1.Market Size Forecast
        • 10.3.3.1.1.By Value
      • 10.3.3.2.Market Share Forecast
        • 10.3.3.2.1.By Application
        • 10.3.3.2.2.By End-user
    • 10.3.4.Chile AI in Computer Aided Synthesis Planning Market Outlook
      • 10.3.4.1.Market Size Forecast
        • 10.3.4.1.1.By Value
      • 10.3.4.2.Market Share Forecast
        • 10.3.4.2.1.By Application
        • 10.3.4.2.2.By End-user
    • 10.3.5.Peru AI in Computer Aided Synthesis Planning Market Outlook
      • 10.3.5.1.Market Size Forecast
        • 10.3.5.1.1.By Value
      • 10.3.5.2.Market Share Forecast
        • 10.3.5.2.1.By Application
        • 10.3.5.2.2.By End-user

11.Middle East Africa AI in Computer Aided Synthesis Planning MarketOutlook

  • 11.1.Market Size Forecast
    • 11.1.1.By Value
  • 11.2.Market Share Forecast
    • 11.2.1.By Application
    • 11.2.2.By End-user
    • 11.2.3.By Country
  • 11.3.Middle East Africa: Country Analysis
    • 11.3.1.Saudi Arabia AI in Computer Aided Synthesis Planning Market Outlook
      • 11.3.1.1.Market Size Forecast
        • 11.3.1.1.1.By Value
      • 11.3.1.2.Market Share Forecast
        • 11.3.1.2.1.By Application
        • 11.3.1.2.2.By End-user
    • 11.3.2.UAE AI in Computer Aided Synthesis Planning Market Outlook
      • 11.3.2.1.Market Size Forecast
        • 11.3.2.1.1.By Value
      • 11.3.2.2.Market Share Forecast
        • 11.3.2.2.1.By Application
        • 11.3.2.2.2.By End-user
    • 11.3.3.South Africa AI in Computer Aided Synthesis Planning Market Outlook
      • 11.3.3.1.Market Size Forecast
        • 11.3.3.1.1.By Value
      • 11.3.3.2.Market Share Forecast
        • 11.3.3.2.1.By Application
        • 11.3.3.2.2.By End-user
    • 11.3.4.Turkey AI in Computer Aided Synthesis Planning Market Outlook
      • 11.3.4.1.Market Size Forecast
        • 11.3.4.1.1.By Value
      • 11.3.4.2.Market Share Forecast
        • 11.3.4.2.1.By Application
        • 11.3.4.2.2.By End-user
    • 11.3.5.Israel AI in Computer Aided Synthesis Planning Market Outlook
      • 11.3.5.1.Market Size Forecast
        • 11.3.5.1.1.By Value
      • 11.3.5.2.Market Share Forecast
        • 11.3.5.2.1.By Application
        • 11.3.5.2.2.By End-user

12.Asia Pacific AI in Computer Aided Synthesis Planning Market Outlook

  • 12.1.Market Size Forecast
    • 12.1.1.By Value
  • 12.2.Market Share Forecast
    • 12.2.1.By Application
    • 12.2.2.By End-user
    • 12.2.3.By Country
  • 12.3.Asia-Pacific: Country Analysis
    • 12.3.1.China AI in Computer Aided Synthesis Planning Market Outlook
      • 12.3.1.1.Market Size Forecast
        • 12.3.1.1.1.By Value
      • 12.3.1.2.Market Share Forecast
        • 12.3.1.2.1.By Application
        • 12.3.1.2.2.By End-user
    • 12.3.2.India AI in Computer Aided Synthesis Planning Market Outlook
      • 12.3.2.1.Market Size Forecast
        • 12.3.2.1.1.By Value
      • 12.3.2.2.Market Share Forecast
        • 12.3.2.2.1.By Application
        • 12.3.2.2.2.By End-user
    • 12.3.3.Japan AI in Computer Aided Synthesis Planning Market Outlook
      • 12.3.3.1.Market Size Forecast
        • 12.3.3.1.1.By Value
      • 12.3.3.2.Market Share Forecast
        • 12.3.3.2.1.By Application
        • 12.3.3.2.2.By End-user
    • 12.3.4.South Korea AI in Computer Aided Synthesis Planning Market Outlook
      • 12.3.4.1.Market Size Forecast
        • 12.3.4.1.1.By Value
      • 12.3.4.2.Market Share Forecast
        • 12.3.4.2.1.By Application
        • 12.3.4.2.2.By End-user
    • 12.3.5.Australia AI in Computer Aided Synthesis Planning Market Outlook
      • 12.3.5.1.Market Size Forecast
        • 12.3.5.1.1.By Value
      • 12.3.5.2.Market Share Forecast
        • 12.3.5.2.1.By Application
        • 12.3.5.2.2.By End-user
    • 12.3.6.Indonesia AI in Computer Aided Synthesis Planning Market Outlook
      • 12.3.6.1.Market Size Forecast
        • 12.3.6.1.1.By Value
      • 12.3.6.2.Market Share Forecast
        • 12.3.6.2.1.By Application
        • 12.3.6.2.2.By End-user
    • 12.3.7.Vietnam AI in Computer Aided Synthesis Planning Market Outlook
      • 12.3.7.1.Market Size Forecast
        • 12.3.7.1.1.By Value
      • 12.3.7.2.Market Share Forecast
        • 12.3.7.2.1.By Application
        • 12.3.7.2.2.By End-user

13.Market Dynamics

  • 13.1.Drivers
  • 13.2.Challenges

14.Market Trends and Developments

15.Company Profiles

  • 15.1.IBM Corporation
    • 15.1.1.Business Overview
    • 15.1.2.Key Revenue and Financials
    • 15.1.3.Recent Developments
    • 15.1.4.Key Personnel/Key Contact Person
    • 15.1.5.Key Product/Services Offered
  • 15.2.Microsoft Corporation
    • 15.2.1.Business Overview
    • 15.2.2.Key Revenue and Financials
    • 15.2.3.Recent Developments
    • 15.2.4.Key Personnel/Key Contact Person
    • 15.2.5.Key Product/Services Offered
  • 15.3.Hoffmann-La Roche Limited
    • 15.3.1.Business Overview
    • 15.3.2.Key Revenue and Financials
    • 15.3.3.Recent Developments
    • 15.3.4.Key Personnel/Key Contact Person
    • 15.3.5.Key Product/Services Offered
  • 15.4.IKTOS
    • 15.4.1.Business Overview
    • 15.4.2.Key Revenue and Financials
    • 15.4.3.Recent Developments
    • 15.4.4.Key Personnel/Key Contact Person
    • 15.4.5.Key Product/Services Offered
  • 15.5.Medici Technologies, LLC
    • 15.5.1.Business Overview
    • 15.5.2.Key Revenue and Financials
    • 15.5.3.Recent Developments
    • 15.5.4.Key Personnel/Key Contact Person
    • 15.5.5.Key Product/Services Offered
  • 15.6.Merck KGaA
    • 15.6.1.Business Overview
    • 15.6.2.Key Revenue and Financials
    • 15.6.3.Recent Developments
    • 15.6.4.Key Personnel/Key Contact Person
    • 15.6.5.Key Product/Services Offered
  • 15.7.PostEra
    • 15.7.1.Business Overview
    • 15.7.2.Key Revenue and Financials
    • 15.7.3.Recent Developments
    • 15.7.4.Key Personnel/Key Contact Person
    • 15.7.5.Key Product/Services Offered
  • 15.8.Novartis AG
    • 15.8.1.Business Overview
    • 15.8.2.Key Revenue and Financials
    • 15.8.3.Recent Developments
    • 15.8.4.Key Personnel/Key Contact Person
    • 15.8.5.Key Product/Services Offered
  • 15.9.Deepmatter Group Limited
    • 15.9.1.Business Overview
    • 15.9.2.Key Revenue and Financials
    • 15.9.3.Recent Developments
    • 15.9.4.Key Personnel/Key Contact Person
    • 15.9.5.Key Product/Services Offered
  • 15.10.AbbVie Inc.
    • 15.10.1.Business Overview
    • 15.10.2.Key Revenue and Financials
    • 15.10.3.Recent Developments
    • 15.10.4.Key Personnel/Key Contact Person
    • 15.10.5.Key Product/Services Offered

16.Strategic Recommendations

17.About Us Disclaimer