NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

LTE和5G公共安全市場:2020年-2030年機會/挑戰/戰略與預測

The Public Safety LTE & 5G Market: 2020 - 2030 Opportunities, Challenges, Strategies & Forecasts

出版商 SNS Telecom & IT 商品編碼 939591
出版日期 內容資訊 英文 1682 Pages; 218 Tables & Figures
商品交期: 最快1-2個工作天內
價格
LTE和5G公共安全市場:2020年-2030年機會/挑戰/戰略與預測 The Public Safety LTE & 5G Market: 2020 - 2030 Opportunities, Challenges, Strategies & Forecasts
出版日期: 2020年05月31日內容資訊: 英文 1682 Pages; 218 Tables & Figures
簡介

通過3GPP的MCX(關鍵任務PTT,視訊及數據),IOPS(公共安全隔離操作)、HPUE(大功率用戶設備)以及其他重要通訊功能的標準化,3GPP、LTE、以及5G NR(New Radio)網路,跟MCPTT (Mission-Critical PTT) 語音及傳統的LMR (Land Mobile Radio) 系統所提供的窄頻數據服務一樣,被認為是全面性的公共安全平台,可以發佈即時視訊,高解析度圖片,多媒體訊息,行動辦公室/現場數據應用,定位服務&地圖建構,狀況認知,無人資產管理及其他寬頻功能。除了關鍵通訊用的安全MVNO網路之外,經由急速擴大的公共安全LTE/5G設備的生態系統而補強的市場,在2020年到2023年的年複合成長率大約是10%,在2023年年底約佔30億美元以上。SNS Telecom&IT對公共安全LTE/5G的基礎設施年度投資,到2020年底將超過20億美元。這主要是由新的網路擴建,各種領域中現有的專用,混合型商用/民間網路的擴大所推動。快速擴展的公共安全級LTE/5G設備生態系統的補充下,該市場在2020年到2023年之間將有約10%的年複合成長率,到2023年年底為止將超過30億美元

此報告研究全球的公共安全LTE及5G市場,針對市場概述,推動市場的因素及挑戰,促成技術,應用場景,使用範例,應用模式以及主要趨勢進行分析,提供標準化的趨勢,監管狀況,未來的路線圖等

第1章 簡介

第2章 公共安全LTE及5G市場概述

  • 公共安全領域中的窄頻LMR(陸上行動無線)系統
  • 採用商用行動寬頻技術
  • 選擇LTE與5G的理由
  • 公共安全LTE/5G的應用模式
  • 公共安全LTE/5G專用網路資金調度及提供
  • 市場成長因素
  • 市場障礙

第3章 公共安全LTE/5G網路系統架構及技術

  • 公共安全LTE/5G網路系統架構及組件
  • 關鍵促成技術及概念

第4章 公共安全LTE/5G應用場景及使用案例

  • 關鍵高品質語音及群組通訊
  • 即時視訊及高解析度畫質
  • 訊息/傳送檔案/狀態服務
  • 安全無縫的行動寬頻連接
  • 定位服務及地圖建構
  • 命令及控制
  • 5G及高度公共安全寬頻應用

第5章 全球致力於公共安全LTE及5G的評論

  • 北美
  • 亞太地區
  • 歐洲
  • 中東,非洲
  • 中南美

第6章 公共安全LTE及5G的案例分析

  • 全國公共安全LTE/5G專案
  • 發展公共安全LTE/5G服務的其他案例分析

第7章 公共安全LTE,5G頻譜的可用性,分配和使用

  • 公共安全LTE及5G網路的頻段
  • 北美
  • 亞太地區
  • 歐洲
  • 中東,非洲
  • 中南美

第8章 標準化,監管與合作計劃

  • 3GPP (Third Generation Partnership Project)
  • 450 MHz Alliance
  • APCO (Association of Public-Safety Communications Officials) International
  • ASTRID
  • ATIS (Alliance for Telecommunications Industry Solutions)
  • BDBOS (Federal Agency for Public Safety Digital Radio, Germany)
  • BMWi (Federal Ministry for Economic Affairs and Energy, Germany)
  • B-TrunC (Broadband Trunking Communication) Industry Alliance
  • CATA (Canadian Advanced Technology Alliance)
  • CBRS Alliance
  • CITIG (Canadian Interoperability Technology Interest Group)
  • Department of Home Affairs, Australia
  • DRDC (Defence Research and Development Canada)
  • DSA (Dynamic Spectrum Alliance)
  • DSB (Directorate for Civil Protection, Norway)
  • Erillisverkot (State Security Networks Group, Finland)/Suomen Virveverkko
  • ETSI (European Telecommunications Standards Institute)
  • EWA (Enterprise Wireless Alliance)
  • FirstNet (First Responder Network) Authority
  • French Ministry of Interior
  • GCF (Global Certification Forum)
  • Home Office, United Kingdom
  • ICCRA (International Critical Control Rooms Alliance)
  • IETF (Internet Engineering Task Force)
  • IGOF (International Governmental Operators' Forum)
  • ISED (Innovation, Science and Economic Development Canada)
  • ITU (International Telecommunication Union)
  • MCOP (Mission-Critical Open Platform)
  • MCS-TaaSting (Mission-Critical Services - Testing-as-a-Service)
  • MOIS (Ministry of the Interior and Safety, South Korea)
  • MulteFire Alliance
  • National Police of the Netherlands
  • Nkom (Norwegian Communications Authority)
  • NSW (New South Wales) Telco Authority
  • OMA (Open Mobile Alliance)
  • Productivity Commission, Australia
  • PSBTA (Public Safety Broadband Technology Association)
  • PSCE (Public Safety Communications Europe)
  • PSTA (Public Safety Technology Alliance)
  • Public Safety Canada
  • Safe-Net Forum
  • TCCA (The Critical Communications Association)
  • TIA (Telecommunications Industry Association)
  • TTA (Telecommunications Technology Association, South Korea)
  • U.S. DHS (Department of Homeland Security)
  • U.S. FCC (Federal Communications Commission)
  • U.S. NIST (National Institute of Standards and Technology)
  • U.S. NPSTC (National Public Safety Telecommunications Council)
  • U.S. NTIA (National Telecommunications and Information Administration)
  • WInnForum (Wireless Innovation Forum)
  • 廠商主導的聯盟
  • 其他

第9章 未來的路線圖及價值鏈

  • 未來的路線圖
  • 價值鏈

第10章 主要的生態系統企業

第11章 市場規模與預測

  • 全球公共安全LTE和5G展望
  • 公共安全LTE&5G網路基礎設施
  • RAN
  • 行動核心
  • 回傳及傳輸
  • 公共安全LTE&5G設備
  • 公共安全LTE&5G訂閱/服務收入
  • 公共安全LTE&5G系統整合及管理解決方案
  • 公共安全寬頻應用
  • 地區展望
  • 北美
  • 亞太
  • 歐洲
  • 中東,非洲
  • 中南美

第12章 結論與戰略建議

  • 市場蓄勢待發的理由為何?
  • 業界的競爭格局:收購/聯盟/合併
  • 關鍵促成技術的標準化與商用可行性
  • 離網網路通信的臨時解決方案
  • 繼續投資專用的混合商用/私有及MVNO寬頻網路
  • 發展中國家:直接跨越基於LTE的重要通訊網路
  • 已發展國家中持續使用數位無線系統
  • 擴大採用可支持LTE及5G的系統
  • 在市場上佔有優勢的頻段為何?
  • 跨境的警察活動及對應緊急事件的國際漫遊
  • 商用行動業者的角色
  • 重要的通訊服務供應商:成為安全的MVNO
  • TCO的比較:獨立的公共安全寬頻網路與PPP(公私夥伴關係)
  • 確保公共安全寬頻網路的經濟可行性
  • 5G在公共安全通訊方面的優點
  • 用於事件現場管理的4.9 GHz 5G NR系統
  • 公共安全應用領域的趨勢
  • 戰略建議
目錄

Synopsis

With the standardization of MCX (Mission-Critical PTT, Video & Data), IOPS (Isolated Operation for Public Safety), HPUE (High-Power User Equipment) and other critical communications features by the 3GPP, LTE and 5G NR (New Radio) networks are increasingly gaining recognition as an all-inclusive public safety communications platform for the delivery of real-time video, high-resolution imagery, multimedia messaging, mobile office/field data applications, location services and mapping, situational awareness, unmanned asset control and other broadband capabilities, as well as MCPTT (Mission-Critical PTT) voice and narrowband data services provided by traditional LMR (Land Mobile Radio) systems.

A myriad of dedicated, hybrid commercial-private and MVNO-based public safety LTE and 5G-ready networks are operational or in the process of being rolled out throughout the globe. In addition to the high-profile FirstNet, South Korea's Safe-Net and Britain's ESN nationwide public safety broadband projects, many additional national-level engagements have recently come to light - most notably, the Royal Thai Police's LTE network which is already operational in the greater Bangkok region, Finland's VIRVE 2.0 mission-critical mobile broadband service, France's PCSTORM critical communications broadband project, and Russia's secure 450 MHz LTE network for police forces, emergency services and the national guard.

Other operational and pilot deployments range from nationwide systems in the oil-rich GCC (Gulf Cooperation Council) region to local and city-level private LTE networks for first responders in markets as diverse as Canada, China, Laos, Indonesia, the Philippines, Pakistan, Lebanon, Egypt, Kenya, Ghana, Cote D'Ivoire, Cameroon, Mali, Madagascar, Mauritius, Canary Islands, Spain, Italy, Serbia, Argentina, Brazil, Colombia, Venezuela, Bolivia, Ecuador and Trinidad & Tobago, as well as multi-domain critical communications broadband networks such as Nordic Telecom in the Czech Republic and MRC's (Mobile Radio Center) LTE-based advanced MCA digital radio system in Japan, and secure MVNO platforms in countries including but not limited to Mexico, Belgium, Switzerland, the Netherlands, Sweden, Slovenia and Estonia.

In addition, even though critical public safety-related 5G NR capabilities are yet to be standardized as part of the 3GPP's Release 17 specifications, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology's high-bandwidth and low-latency characteristics. For example, New Zealand Police are utilizing mobile operator Vodafone's 5G NR network to share real-time UHD (Ultra High Definition) video feeds from cellular-equipped drones and police cruisers with officers on the ground and command posts. In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz) which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.

SNS Telecom & IT estimates that annual investments in public safety LTE/5G-ready infrastructure will surpass $2 Billion by the end of 2020, predominantly driven by new build-outs and the expansion of existing dedicated and hybrid commercial-private networks in a variety of licensed bands across 420/450 MHz, 700 MHz, 800 MHz, 1.4 GHz and higher frequencies, in addition to secure MVNO networks for critical communications. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 10% between 2020 and 2023, eventually accounting for more than $3 Billion by the end of 2023.

The "Public Safety LTE & 5G Market: 2020 - 2030 - Opportunities, Challenges, Strategies & Forecasts" report presents an in-depth assessment of the public safety LTE/5G market including market drivers, challenges, enabling technologies, application scenarios, use cases, operational models, key trends, standardization, spectrum availability/allocation, regulatory landscape, case studies, opportunities, future roadmap, value chain, ecosystem player profiles and strategies. The report also presents global and regional market size forecasts from 2020 till 2030, covering public safety LTE/5G infrastructure, terminal equipment, applications, systems integration and management solutions, as well as subscriptions and service revenue.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a list and associated details of over 500 global public safety LTE/5G engagements - as of Q2'2020.

Table of Contents

Chapter 1: Introduction

  • 1.1 Executive Summary
  • 1.2 Topics Covered
  • 1.3 Forecast Segmentation
  • 1.4 Key Questions Answered
  • 1.5 Key Findings
  • 1.6 Methodology
  • 1.7 Target Audience
  • 1.8 Companies & Organizations Mentioned

Chapter 2: An Overview of the Public Safety LTE & 5G Market

  • 2.1 Narrowband LMR (Land Mobile Radio) Systems in the Public Safety Sector
  • 2.2 Adoption of Commercial Mobile Broadband Technologies
  • 2.3 Why LTE & 5G?
  • 2.4 Public Safety LTE & 5G Operational Models
  • 2.5 Financing & Delivering Dedicated Public Safety LTE & 5G Networks
  • 2.6 Market Drivers
  • 2.7 Market Barriers

Chapter 3: System Architecture & Technologies for Public Safety LTE & 5G Networks

  • 3.1 Architectural Components of Public Safety LTE & 5G Networks
  • 3.2 Key Enabling Technologies & Concepts

Chapter 4: Public Safety LTE/5G Application Scenarios & Use Cases

  • 4.1 Mission-Critical HD Voice & Group Communications
  • 4.2 Real-Time Video & High-Resolution Imagery
  • 4.3 Messaging, File Transfer & Presence Services
  • 4.4 Secure & Seamless Mobile Broadband Access
  • 4.5 Location Services & Mapping
  • 4.6 Command & Control
  • 4.7 5G & Advanced Public Safety Broadband Applications

Chapter 5: Review of Public Safety LTE & 5G Engagements Worldwide

  • 5.1 North America
  • 5.2 Asia Pacific
  • 5.3 Europe
  • 5.4 Middle East & Africa
  • 5.5 Latin & Central America

Chapter 6: Public Safety LTE & 5G Case Studies

  • 6.1 Nationwide Public Safety LTE/5G Projects
  • 6.2 Additional Case Studies of Public Safety LTE/5G Network & Service Rollouts

Chapter 7: Public Safety LTE/5G Spectrum Availability, Allocation & Usage

  • 7.1 Frequency Bands for Public Safety LTE & 5G Networks
  • 7.2 North America
  • 7.3 Asia Pacific
  • 7.4 Europe
  • 7.5 Middle East & Africa
  • 7.6 Latin & Central America

Chapter 8: Standardization, Regulatory & Collaborative Initiatives

  • 8.1 3GPP (Third Generation Partnership Project)
  • 8.2 450 MHz Alliance
  • 8.3 APCO (Association of Public-Safety Communications Officials) International
  • 8.4 ASTRID
  • 8.5 ATIS (Alliance for Telecommunications Industry Solutions)
  • 8.6 BDBOS (Federal Agency for Public Safety Digital Radio, Germany)
  • 8.7 BMWi (Federal Ministry for Economic Affairs and Energy, Germany)
  • 8.8 B-TrunC (Broadband Trunking Communication) Industry Alliance
  • 8.9 CATA (Canadian Advanced Technology Alliance)
  • 8.10 CBRS Alliance
  • 8.11 CITIG (Canadian Interoperability Technology Interest Group)
  • 8.12 Department of Home Affairs, Australia
  • 8.13 DRDC (Defence Research and Development Canada)
  • 8.14 DSA (Dynamic Spectrum Alliance)
  • 8.15 DSB (Directorate for Civil Protection, Norway)
  • 8.16 Erillisverkot (State Security Networks Group, Finland)/Suomen Virveverkko
  • 8.17 ETSI (European Telecommunications Standards Institute)
  • 8.18 EWA (Enterprise Wireless Alliance)
  • 8.19 FirstNet (First Responder Network) Authority
  • 8.20 French Ministry of Interior
  • 8.21 GCF (Global Certification Forum)
  • 8.22 Home Office, United Kingdom
  • 8.23 ICCRA (International Critical Control Rooms Alliance)
  • 8.24 IETF (Internet Engineering Task Force)
  • 8.25 IGOF (International Governmental Operators' Forum)
  • 8.26 ISED (Innovation, Science and Economic Development Canada)
  • 8.27 ITU (International Telecommunication Union)
  • 8.28 MCOP (Mission-Critical Open Platform)
  • 8.29 MCS-TaaSting (Mission-Critical Services - Testing-as-a-Service)
  • 8.30 MOIS (Ministry of the Interior and Safety, South Korea)
  • 8.31 MulteFire Alliance
  • 8.32 National Police of the Netherlands
  • 8.33 Nkom (Norwegian Communications Authority)
  • 8.34 NSW (New South Wales) Telco Authority
  • 8.35 OMA (Open Mobile Alliance)
  • 8.36 Productivity Commission, Australia
  • 8.37 PSBTA (Public Safety Broadband Technology Association)
  • 8.38 PSCE (Public Safety Communications Europe)
  • 8.39 PSTA (Public Safety Technology Alliance)
  • 8.40 Public Safety Canada
  • 8.41 Safe-Net Forum
  • 8.42 TCCA (The Critical Communications Association)
  • 8.43 TIA (Telecommunications Industry Association)
  • 8.44 TTA (Telecommunications Technology Association, South Korea)
  • 8.45 U.S. DHS (Department of Homeland Security)
  • 8.46 U.S. FCC (Federal Communications Commission)
  • 8.47 U.S. NIST (National Institute of Standards and Technology)
  • 8.48 U.S. NPSTC (National Public Safety Telecommunications Council)
  • 8.49 U.S. NTIA (National Telecommunications and Information Administration)
  • 8.50 WInnForum (Wireless Innovation Forum)
  • 8.51 Vendor-Led Alliances
  • 8.52 Others

Chapter 9: Future Roadmap & Value Chain

  • 9.1 Future Roadmap
  • 9.2 Value Chain

Chapter 10: Key Ecosystem Players

Chapter 11: Market Sizing & Forecasts

  • 11.1 Global Outlook for Public Safety LTE & 5G
  • 11.2 Public Safety LTE & 5G Network Infrastructure
  • 11.3 RAN
  • 11.4 Mobile Core
  • 11.5 Backhaul & Transport
  • 11.6 Public Safety LTE & 5G Terminal Equipment
  • 11.7 Public Safety LTE & 5G Subscriptions/Service Revenue
  • 11.8 Public Safety LTE & 5G Systems Integration & Management Solutions
  • 11.9 Public Safety Broadband Applications
  • 11.10 Regional Outlook
  • 11.11 North America
  • 11.12 Asia Pacific
  • 11.13 Europe
  • 11.14 Middle East & Africa
  • 11.15 Latin & Central America

Chapter 12: Conclusion & Strategic Recommendations

  • 12.1 Why is the Market Poised to Grow?
  • 12.2 Competitive Industry Landscape: Acquisitions, Alliances & Consolidation
  • 12.3 Standardization & Commercial Availability of Key Enabling Technologies
  • 12.4 Interim Solutions for Off-Network Communications
  • 12.5 Continued Investments in Dedicated, Hybrid Commercial-Private & MVNO Broadband Networks
  • 12.6 Developing Countries: Leapfrogging Directly to LTE-Based Critical Communications Networks
  • 12.7 Continued Use of Digital Radio Systems in the Developed World
  • 12.8 Growing Adoption of Deployable LTE & 5G-Ready Systems
  • 12.9 Which Frequency Bands Dominate the Market?
  • 12.10 International Roaming for Cross-Border Policing & Emergency Response
  • 12.11 The Role of Commercial Mobile Operators
  • 12.12 Critical Communications Service Providers: Becoming Secure MVNOs
  • 12.13 TCO Comparison: Independent Public Safety Broadband Networks vs. PPPs (Public-Private Partnerships)
  • 12.14 Ensuring the Economic Viability of Public Safety Broadband Networks
  • 12.15 The Benefits of 5G for Public Safety Communications
  • 12.16 4.9 GHz 5G NR Systems for Incident Scene Management
  • 12.17 Public Safety Application Sector Trends
  • 12.18 Strategic Recommendations