NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

LIB(鋰離子電池)快速充電技術的現狀與預測(2021)

Development Trend for Quick Charging Technology of Lithium-ion Battery

出版商 SNE Research 商品編碼 985542
出版日期 內容資訊 英文 250 Pages
商品交期: 請詢問到貨日
價格

Notice: The original report is written in Korean. Please ask us for more information regarding delivery time.

LIB(鋰離子電池)快速充電技術的現狀與預測(2021) Development Trend for Quick Charging Technology of Lithium-ion Battery
出版日期: 2021年01月22日內容資訊: 英文 250 Pages
簡介

電動汽車(EV)的時代已真正開始。 Model S發佈了一款可存儲超過60kWh能量的電動汽車,自然已經擴展了對快速充電的需求。這是因為傳統的低速充電器必須花費很長時間才能充電約8到9個小時。自然,該行業已開始將重點放在電動汽車的快速充電上。

本報告回顧了LIB(鋰離子電池)快速充電技術,電池材料和電池技術,並按國家/公司預測了IT和EV快速充電技術的發展趨勢和商業化。

目錄

第1章瞭解充電技術

  • 充電器技術
    • 充電器概述
    • 為設備供電的充電器
    • 通過USB標準充電
    • 直接為電池充電的充電器
  • 無線充電技術
    • 無線充電技術概述
    • 電感耦合模式
    • 共振耦合模式
    • 電感耦合模式與諧振耦合模式
    • 無線充電技術的優缺點

第2章瞭解快速充電技術

  • 用於移動IT設備的快速充電技術
    • 功率轉換技術
    • 動力傳輸技術
    • 電源I/C技術
    • 收費算法技術
    • 電池技術可快速充電
  • 瞭解EV快速充電技術
    • EV充電模式比較: "慢速充電與快速充電"
    • 電動汽車快速充電技術的範圍和問題
    • 快速充電網絡

第3章用於快速充電電池的材料和電池技術

  • 用於快速充電電池的陰極材料技術
    • 鋰離子電池正極的工作原理和要求
    • 層狀正極材料
    • 尖晶石基正極材料
    • 過渡金屬磷酸鹽基正極材料
  • 用於快速充電鋰離子電池的陽極材料技術
    • 石墨
    • 非晶碳
    • 金屬陽極(金屬陽極)
    • 鈦酸鋰(LTO)
    • 氧化物基高電位陽極
  • 用於快速充電電池的電解質材料技術
    • 概述
    • 電解質組成材料
    • 快速充電電池的電解質特性標準
    • 快速充電電池的電解質設計實例:高濃度鹽設計
    • 快速充電電池的電解質設計實例:異構鹽設計
  • 快速充電的電池材料和電池技術
    • 快速充電電池的電極設計原理(彎曲電極)
    • 快速充電電池的電極設計調查示例(1)
    • 快速充電電池的電極設計調查示例(2)

第4章快速充電技術的技術趨勢:按國家/公司分類

  • 快速充電技術的技術趨勢:按國家分類
    • 韓國
    • 日本
    • 中國
    • 美國
    • 歐洲
  • 快速充電技術的技術趨勢:按公司劃分
    • Enevate
    • Toshiba
    • Storedot
    • Honda
    • Nissan
    • Dyson
    • Toyota
    • Porsche
    • Daimler
    • BMW
    • Hyundai
    • Tesla
    • Rimac
    • GM
    • KAIST
    • EUROCELL
    • PNNL
    • Stanford University
    • University of Texas
    • A123
    • GP Battery
    • Battrion
    • BESS technology
    • ABB
    • NTU
    • Drexel University
    • Guangzhou Automobile Group
    • Nanotech Energy
    • Samsung Electro-Mechanics
  • 與快速充電技術相關的專利審查
目錄

The Electric Vehicle (EV) Era has begun in earnest. Starting with the Model S, EVs that can store more than 60kWh of energy have been released, which has naturally expanded to the demand for fast charging. This is because the conventional slow charger has to spend a long time of around 8-9 hours for charging. Naturally, the industry started to focus on fast charging of EVs.

Unlike small electronic devices, including smartphones, EVs should secure a life of more than 10 years and at the same time, be charged at a high voltage of at least 220V. Also, safety must be secured. The technological difficulty of quick charging to send higher voltage and current naturally increases more.

In the modes to charge the electric vehicle, there are various modes: the direct charging mode to supply energy directly by connecting the plug to the electric vehicle, the battery exchange mode to replace the whole battery itself, the non-contact charging mode to charge the battery by delivering the electric power through electromagnetic induction, etc. Among them, the direct-charging mode, which is most common, is divided into 2 kinds, depending on the charging speed: the Quick Charging Mode which can charge relatively quickly by using direct current, and the Slow Charging Mode which charges slowly compared to the Quick Charge by using alternating current.

Currently, the technology in the electric vehicle battery industry is being developed to the extent of being capable of charging up to about 80% of the battery capacity within 20 to 30 minutes. It is faster than the slow charge mode which takes about 9 hours (based on 60kWh vehicles) for 100% full-charge, but still needs to be improved, compared to the lubrication time of a general vehicle having an internal-combustion engine.

In the case of the existing known quick charging technology for lithium-ion secondary batteries, it is accompanied by a loss of the energy density of the battery, and thus, there may be a limit to the direct application to industrialization. Therefore, in order to realize a quick-charging Li-ion battery without loss of energy density, understanding the related electrochemical reaction mechanisms and designing and developing new innovative materials based on them are essential.

During the quick charge, lithium-ion desorption must occur at a rapid rate within the cathode oxide crystal structure; for the performance parameters to be possessed as an anode material, a low discharge potential, a high unit weight, and specific capacity per volume are preferentially considered. In addition to graphite anodes which have been widely used in small lithium-ion batteries, next-generation anode materials aiming at high capacity, high safety, and high durability should be reviewed.

This report will review rapid charging technologies, battery materials, and cell technologies and forecast the development trends and commercialization of IT and rapid charging technologies for EVs, by country/company.

The strong points of this report are as follows:

  • 1. Summarize the concepts of charging technology and rapid charging technology;
  • 2. Consider issues and materials of rapid charging technology, cells, and electrode design technology;
  • 3. Summarize technological trends by country/company for rapid charging technology;
  • 4. Present applied examples of rapid charging technology for each major company; and
  • 5. Introduce the technology and patents related to the rapid charging technology

And this report provides information on trends in rapid charging technology to date.

Table of Contents

1. Understanding of Charging Technology

  • 1.1. Charger Technology
    • 1.1.1. Outline of Charger
    • 1.1.2. Charger to Power the Device
    • 1.1.3. Charging via USB Standard
    • 1.1.4. Charger to Charge Batteries Directly
  • 1.2. Wireless Charging Technology
    • 1.2.1. Outline of Wireless Charging Technology
    • 1.2.2. Inductive Coupling Mode
    • 1.2.3. Resonance Coupling Mode
    • 1.2.4. Inductive Coupling Mode vs. Resonance Coupling Mode
    • 1.2.5. Advantages and Disadvantages of Wireless Charging Technology

2. Understanding of Quick Charge Technology

  • 2.1. Quick Charging Technology for Mobile IT Devices
    • 2.1.1. Power Conversion Technology
    • 2.1.2. Power Transmission Technology
    • 2.1.3. Power I/C Technology
    • 2.1.4. Charge Algorithm Technology
    • 2.1.5. Battery Technology for Quick Charge
  • 2.2. Understanding of Quick Charge Technology for EVs
    • 2.2.1. Comparison of Charging Modes of EVs: " Slow Charge vs. Quick Charge"
    • 2.2.2. Quick Charge Technology Scope and Issues for EVs
      • 2.2.2.1 Wireless Charging Technology
      • 2.2.2.2 Battery Exchange Mode
      • 2.2.2.3 Fast Charging Battery Technology
    • 2.2.3. Fast Charge Network
      • 2.2.3.1 PORSCHE MISSION E concept
      • 2.2.3.2 ABB TERRA HP program
      • 2.2.3.3 CONTINENTAL ALLCHARGE program
      • 2.2.3.4 Toshiba SciB Battery program

3. Materials and Cell Technology for Quick Charging Batteries

  • 3.1. Cathode Material Technology for Quick Charge Batteries
    • 3.1.1 Cathode Operation Principles and Requirements for Li-ion Batteries
    • 3.1.2 Layered Cathode Materials
      • 3.1.2.1 LCO/NCA
      • 3.1.2.2 NCM Ternary
      • 3.1.2.3 Quick Charge Technology for NCM Ternary Cathode Materials (1)
      • 3.1.2.4 Quick Charge Technology for NCM Ternary Cathode Materials (2)
    • 3.1.3 Spinel-based Cathode Materials
      • 3.1.3.1 Spinel-based Cathode Materials
      • 3.1.3.2 Quick Charge Technology for Spinel-based Cathode Materials
    • 3.1.4 Transition Metal Phosphate-based Cathode Materials
      • 3.1.4.1 Transition Metal Phosphate-based Cathode Materials
      • 3.1.4.2 Quick Charge Technology for Transition Metal Phosphate-based Cathode Materials
  • 3.2. Anode Material Technology for Quick Charge Li-ion Battery
    • 3.2.1 Graphite
    • 3.2.2 Amorphous Carbon
    • 3.2.3 Metal Anode (Metal Anode)
    • 3.2.4 Lithium Titanate (LTO)
    • 3.2.5 Oxide-based High Potential Anode
  • 3.3. Electrolyte Material Technology for Quick Charge Battery
    • 3.3.1 Outline
    • 3.3.2 Constituent Materials for Electrolyte
      • 3.3.2.1 Organic Solvent
      • 3.3.2.2 Lithium Salt
      • 3.3.2.3 Additive
    • 3.3.3 Electrolyte Property Criteria for Quick Charge Batteries
    • 3.3.4 Electrolyte Design Example for Quick Charge Batteries: High Concentration Salt Design
    • 3.3.5 Electrolyte Design Example for Quick Charge Batteries: Heterologous Salt Design
  • 3.4. Material and Cell Technology for Quick Charge Battery
    • 3.4.1 Electrode Design Principle for Quick Charge Battery (Electrode Tortuosity)
    • 3.4.2 Examples of Electrode Design Research for Quick Charge Battery (1)
    • 3.4.3 Examples of Electrode Design Research for Quick Charge Battery (2)

4. Technology Trends by Country/Company for Quick Charge Technology

  • 4.1. Technology Trends by Country for Quick Charge Technology
    • 4.1.1 Korea
    • 4.1.2 Japan
    • 4.1.3 China
    • 4.1.4 USA
    • 4.1.5 Europe
  • 4.2. Technology Trends by Company for Quick Charge Technology
    • 4.2.1 Enevate
    • 4.2.2 Toshiba
    • 4.2.3 Storedot
    • 4.2.4 Honda
    • 4.2.5 Nissan
    • 4.2.6 Dyson
    • 4.2.7 Toyota
    • 4.2.8 Porsche
    • 4.2.9 Daimler
    • 4.2.10 BMW
    • 4.2.11 Hyundai
    • 4.2.12 Tesla
    • 4.2.13 Rimac
    • 4.2.14 GM
    • 4.2.15 KAIST
    • 4.2.16 EUROCELL
    • 4.2.17 PNNL
    • 4.2.18 Stanford University
    • 4.2.19 University of Texas
    • 4.2.20 A123
    • 4.2.21 GP Battery
    • 4.2.22 Battrion
    • 4.2.23 BESS technology
    • 4.2.24 ABB
    • 4.2.25 NTU
    • 4.2.26 Drexel University
    • 4.2.27 Guangzhou Automobile Group
    • 4.2.28 Nanotech Energy
    • 4.2.29 Samsung Electro-Mechanics
    • 4.2.30 Xiaomi
  • 4.3. Patent Review related to Quick Charge Technology for 2015-2020