全固態電池的技術現狀和到2030年(2022年)的市場前景
市場調查報告書
商品編碼
1068491

全固態電池的技術現狀和到2030年(2022年)的市場前景

<2022> Technology Status and Market Outlook of All-Solid-State Battery (~2030)

出版日期: | 出版商: SNE Research | 英文 222 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

隨著與鋰電池的穩定性和能量密度相關的問題層出不窮,人們對開發能夠解決這些問題的下一代電池越來越感興趣。其中,全固態電池以其穩定性和發展響應能力最受業內人士關注。

在本報告中,我們調查了固態電池市場,每種類型的優勢、劣勢和挑戰,詳細解釋了製造過程,每個電池製造商的主要市場發展和成就□□,以及每個市場到 2030 年輸入。它提供諸如前景等信息。

內容

第一章介紹

  • 電池發展史
    • 以往的電池開發歷史
    • 錳電池(Leclanchet 電池)
    • 鹼性電池
    • 鉛蓄電池
    • 鎳鎘電池
    • 鎳氫電池
    • 鋰離子電池
  • 鋰離子電池問題
    • 安全
    • 能量密度

第 2 章固態電池

  • 全固態電池的優勢
  • 全固態電池製造工藝
  • 固體電解質
  • 全固態電池對現有 SCM 的影響

第 3 章硫化物電解質

  • 硫化物電解質的種類
  • 硫化物基電解質的合成
  • 核心原料合成

第 4 章氧化物電解質

  • 氧化物電解質的種類
  • 氧化物基電解質的合成方法

第 5 章聚合物基電解質

  • 高分子電解質的種類
  • 高分子電解質的合成

第六章固態電池的研發趨勢

  • 全固態電池的問題
  • 全固態電池的研發趨勢
    • 提高鋰金屬的穩定性
    • 提高電極耦合能力
    • 改進的電極板製造工藝
  • 硫化物基電解質的研究與發展趨勢
    • 提高了固體電解質和電極的界面穩定性
    • 改進了粒子分離
    • 抑制空洞生成
    • 提高固體電解質的性能
  • 氧化物電解質的研發趨勢
    • 改善固體電解質/電極接觸
    • 提高固體電解質的性能
  • 高分子電解質研發趨勢
    • 提高了電解質層的獨立性
    • 抑制鋰枝晶的形成

第七章全固態電池專利趨勢

  • 全固態電池專利匯總
  • 聚合物類型的主要專利
  • 無機和有機/聚合物雜化物的主要專利
  • 全固態電池專利-原材料
  • 全固態電池專利-電池應用
  • 全固態電池材料核心專利

第 8 章 ASB 開發人員現狀

  • 亞洲
    • Samsung Electronics
    • Korea Institute of Industrial Technology
    • LG Chem
    • SK Innovation
    • Hyundai Motors
    • Seven King Energy
    • Toyota
    • Hitachi Zosen
    • TDK
    • Ohara
    • Murata
    • Idemitsu Kosan
    • APB
    • FDK
    • NGK SPARK PLUG
    • Taiyo Yuden
    • CATL
    • Prologium
    • Ganfeng Lithium
    • TDL
    • Coslight
    • Welion New Energy
    • BYD
    • Daejoo Electronic Materials
    • ISU Chemical
    • CIS
    • Hannong Hawseong
  • 歐洲
    • Ilika
    • Blue Solutions
    • IMEC
    • Embatt
    • Innolith
    • Saft
  • 北美
    • Solid Power
    • Solid Energy Systems
    • 24M
    • Hydro Québec
    • Sakti3
    • SEEO
    • Brightvolt
    • Ionic Materials
    • TeraWatt
    • QuantumScape
    • Infinite Power Solution
    • Prieto
    • Factorial
    • Amprius
    • EoCell
    • Cymbet
    • Johnson energy storage
  • 固態電池開發聯合夥伴關係的現狀
  • 各地區支持組織的狀況
    • 國際政府資助的國際合作
    • 亞洲主要經銷商
    • 歐洲主要經銷商
    • 北美主要經銷商
  • 區域支持系統
    • 日本
    • 歐洲

第 9 章 SNE 見解

  • 按電解液類型劃分的缺點(大面積電池)
  • 不同電解質的挑戰及發展方向
  • 電池(混合/半固態)
  • 企業全固態電池量產時代
  • 全固態電池正負極的現狀和未來
  • 全固態電池類型(氧化物/硫化物/聚合物)之間的競爭
  • 全固態電池的各種用途
  • 全固態電池生產設施圖片

第十章固態電池市場前景

  • 概覽
  • 市場展望
簡介目錄
Product Code: 180

With the issues related to the stability and energy density of LiB continuously emerging in the industry, there are growing interests in developing next-generation batteries to address those issues. Among them, the all-solid-state battery has been attracting the biggest attention from the industry players in terms of stability and development readiness.

The all-solid-state battery can be categorized into three types: sulfide-based, oxide-based, and polymer-based. Each type has different advantages/disadvantages and pending issues. This report describes the advantages/disadvantages and issues related to each type as well as the details of their manufacturing processes. Furthermore, this report explores the major developments and achievements made by each battery maker and offers a market outlook for each type till 2030.

This report draws market estimates from comprehensive research on the level of technology development, requirements by OEMs and mass production targets of all-solid-state battery makers. The market analysis provided in this report is categorized into battery maker types, companies, and applications.

All of the above are provided in 10 chapters of which brief indexes are as stated in the following table of contents.

To provide a deeper insight, the 2022 report adds the SNE Insight chapter which deals with the challenges facing different electrolytes and tries to guide directions for their improvement. The chapter also investigates Semi Solid/Hybrid batteries and the mass production time and targets of different battery makers. The report is all the more meaningful as it offers a more detailed market outlook than the 2021 edition, based on the current status and future plans of all-solid-state battery developers.

Table of Contents

1. Introduction

  • 1.1. History of Battery Development
    • 1.1.1. History of Ancient Battery Development
    • 1.1.2. Manganese Battery (Leclanché cell)
    • 1.1.3. Alkaline cell
    • 1.1.4. Lead-acid battery
    • 1.1.5. Ni-Cd battery
    • 1.1.6. Ni-MH battery
    • 1.1.7. Lithium-ion battery
  • 1.2. Challenges with Lithium-Ion Battery
    • 1.2.1. Safety
    • 1.2.2. Energy Density

2. All-Solid-State Battery

  • 2.1. Advantages of All-Solid-State Battery
    • 2.1.1. Increase of Energy Density
    • 2.1.2. Availability in Application of New Active Materials
    • 2.1.3. Low Activation Energy
  • 2.2. Manufacturing Process of All-Solid-State Battery
    • 2.2.1. Manufacturing of Electrolyte Layers
    • 2.2.2. Production of Anode and Cathode Composite Layers
    • 2.2.3. Cell Assembly
  • 2.3. Solid Electrolyte
    • 2.3.1. History of Solid Electrolyte Development
    • 2.3.2. Operation Mechanism of Solid Electrolyte
    • 2.3.3. Classification of Solid Electrolyte
  • 2.4. Influences of All-Solid-State Battery on Existing SCMs

3. Sulfide-Based Electrolyte

  • 3.1. Types of Sulfide-Based Electrolyte
    • 3.1.1. Thio-LISICON-based
    • 3.1.2. Binary sulfide-based
    • 3.1.3. Argyrodite-based
    • 3.1.4. Others: Li7P2S8I
  • 3.2. Synthesizing Methods for Sulfide-Based Electrolyte
    • 3.2.1. Solid-phase Synthesis
    • 3.2.2. Liquid-phase Synthesis
    • 3.2.3. Wet-chemical Synthesis
  • 3.3. Synthesizing Methods for Core Raw Materials
    • 3.3.1. Core Raw Materials: Li2S
    • 3.3.2. Synthesis of Starting Materials
    • 3.3.3. Starting Material: Li metal
    • 3.3.4. Starting Material: Li2SO4
    • 3.3.5. Starting Material: Li2CO3
    • 3.3.6. Starting Material: LiOH
    • 3.3.7. Starting Material: Li-R

4. Oxide-Based Electrolyte

  • 4.1. Types of Oxide-Based Electrolyte
    • 4.1.1. Perovskite-based
    • 4.1.2. Garnet-based
    • 4.1.3. NASICON-based
    • 4.1.4. Li1+xAlxGe2-x(PO4)3 (LAGP)
    • 4.1.5. Others: Li2.9PO3.3N0.46 (LiPON)
  • 4.2. Synthesizing Methods for Oxide-Based Electrolyte
    • 4.2.1. Solid-phase Synthesis
    • 4.2.2. Solid-phase Synthesis

5. Polymer-Based Electrolyte

  • 5.1. Types of Polymer-Based Electrolyte
    • 5.1.1. PEO-based Electrolyte
    • 5.1.2. Polymer/Ceramic Composite
  • 5.2. Synthesizing Methods for Polymer-Based Electrolyte
    • 5.2.1. Blending method - PEO-based Electrolyte
    • 5.2.2. Blending method - Polymer/Ceramic Composite

6. All-Solid-State Battery R&D Trend

  • 6.1. Problems of All-Solid-State Battery
  • 6.2. All-Solid-State Battery R&D Trend
    • 6.2.1. Enhancement of Li metal stability
    • 6.2.2. Improvement of Electrode Binding Capacity
    • 6.2.3. Improvement of Pole Plate Manufacturing Process
  • 6.3. Sulfide-Based Electrolyte R&D Trend
    • 6.3.1. Improvement of Interfacial Stability of Solid Electrolyte/Electrode
    • 6.3.2. Improvement of Particle Segregation
    • 6.3.3. Suppression of Void Generation
    • 6.3.4. Improvement of Solid Electrolyte Performance
  • 6.4. Oxide-Based Electrolyte R&D Trend
    • 6.4.1. Improvement of Solid Electrolyte/Electrode Contact
    • 6.4.2. Improvement of Solid Electrolyte Performance
  • 6.5. Polymer-Based Electrolyte R&D Trend
    • 6.5.1. Enhancement of Self-standing Characteristics of Electrolyte Layers
    • 6.5.2. Suppression of Li Dendrite Formation

7. Trend of All-Solid-State Battery Patents

  • 7.1. Outline of All-Solid-State Battery Patents
  • 7.2. Polymer-type Major Patents
  • 7.3. Inorganic, Organic/Polymer Hybrid Major Patens
  • 7.4. All-Solid-State Battery Patents - Raw Materials
  • 7.5. All-Solid-State Battery Patents - Battery Application
  • 7.6. Core Patents by All-Solid-State Battery Material

8. Current Status of ASB Developers

  • 8.1. In Asia
    • 8.1.1. Samsung Electronics
    • 8.1.2. Korea Institute of Industrial Technology
    • 8.1.3. LG Chem
    • 8.1.4. SK Innovation
    • 8.1.5. Hyundai Motors
    • 8.1.6. Seven King Energy
    • 8.1.7. Toyota
    • 8.1.8. Hitachi Zosen
    • 8.1.9. TDK
    • 8.1.10. Ohara
    • 8.1.11. Murata
    • 8.1.12. Idemitsu Kosan
    • 8.1.13. APB
    • 8.1.14. FDK
    • 8.1.15. NGK SPARK PLUG
    • 8.1.16. Taiyo Yuden
    • 8.1.17. CATL
    • 8.1.18. Prologium
    • 8.1.19. Ganfeng Lithium
    • 8.1.20. TDL
    • 8.1.21. Coslight
    • 8.1.22. Welion New Energy
    • 8.1.23. BYD
    • 8.1.24. Daejoo Electronic Materials
    • 8.1.25. ISU Chemical
    • 8.1.26. CIS
    • 8.1.27. Hannong Hawseong
  • 8.2. In Europe
    • 8.2.1. Ilika
    • 8.2.2. Blue Solutions
    • 8.2.3. IMEC
    • 8.2.4. Embatt
    • 8.2.5. Innolith
    • 8.2.6. Saft
  • 8.3. In North America
    • 8.3.1. Solid Power
    • 8.3.2. Solid Energy Systems
    • 8.3.3. 24M
    • 8.3.4. Hydro Québec
    • 8.3.5. Sakti3
    • 8.3.6. SEEO
    • 8.3.7. Brightvolt
    • 8.3.8. Ionic Materials
    • 8.3.9. TeraWatt
    • 8.3.10. QuantumScape
    • 8.3.11. Infinite Power Solution
    • 8.3.12. Prieto
    • 8.3.13. Factorial
    • 8.3.14. Amprius
    • 8.3.15. EoCell
    • 8.3.16. Cymbet
    • 8.3.17. Johnson energy storage
  • 8.4. Current Status of Joint Partnership for All-Solid-State Battery Development
  • 8.5. Status of Supporting Agencies by Region
    • 8.5.1. Global Cooperation Through Inter-national Government Funding
    • 8.5.1. Major Agencies in Asia
    • 8.5.2. Major Agencies in Europe
    • 8.5.3. Major Agencies in North America
  • 8.6. Support Programs by Region
    • 8.6.1. Japan
    • 8.6.2. Europe

9. SNE Insight

  • 9.1. Drawbacks of Electrolyte by Type (Large-area Battery)
  • 9.2. Challenges and Development Direction for Different Electrolytes
  • 9.3. Various Types of Batteries (Hybrid/Semi Solid)
  • 9.4. Time of All-Solid-State Battery Mass Production by Companies
  • 9.5. Current Status and Future Direction of All-solid-state Battery Anode/Cathode
  • 9.6. Competition Amongst All-Solid-State Battery Types (Oxide/Sulfide/Polymer)
  • 9.7. Various Applications of All-Solid-State Battery
  • 9.8. Images of All-Solid-State Battery Production Facilities

10. All-Solid-State Battery Market Outlook

  • 10.1. Overview
  • 10.2. Market Outlook