表紙
市場調查報告書

鋰離子電池陽極材料:技術趨勢、市場預測 (∼2030年)

<2020> Lithium Ion Battery Anode Technology Trend and Market Forecast (~2030)

出版商 SNE Research 商品編碼 926051
出版日期 內容資訊 英文 204 Pages
商品交期: 請詢問到貨日
價格

Notice: The original report is written in Korean. Please ask us for more information regarding delivery time.

鋰離子電池陽極材料:技術趨勢、市場預測 (∼2030年) <2020> Lithium Ion Battery Anode Technology Trend and Market Forecast (~2030)
出版日期: 2020年02月12日內容資訊: 英文 204 Pages
簡介

鋰二次電池的陽極材料主要使用石墨。陰極,隔板等其他二次電池材料過去變更過,不過,過去20年石墨維持主要部分材料其地位。在石墨以外的陽極材料中,有軟碳和硬碳。其中,硬碳由於其優秀輸出特性,作為EV的陽極材料重要性高漲。

本報告提供鋰離子電池陽極材料的技術及市場調查,陽極材料種類與概要,R&D趨勢,安全性的影響,各材料、企業、地區的需求預測,價格趨勢,主要製造商的簡介等資訊彙整。

第1章 陽極材料技術的現狀、開發趨勢

  • 簡介
  • 陽極材料的類型
    • 鋰金屬
    • 碳系陽極材料
    • 陽極材料的開發情形

第2章 碳系陽極材料

  • 概要
  • 製造
  • 軟碳系陽極材料
  • 硬碳系陽極材料
  • 來自廢棄電池的碳系陽極材料的回收、再利用

第3章 合金系陽極材料

  • 概要
  • 特性
  • 課題與解決方案
  • SiOx系陽極材料:特性、用途
  • Si系陽極材料的實用化相關研究
  • 其他的Si系陽極材料
    • 3維多孔Si
    • Si奈米碳管
    • 金屬/合金薄膜陽極材料

第3章 複合陽極材料

  • 氧化物系陽極材料
  • 氮化物系陽極材料

第4章 高功率陽極材料

  • 概要
  • 插層材料
    • 碳材料
    • Li4Ti5O12
  • 合金系材料
  • 變遷材料
  • 奈米結構微粒子
  • 多頻道結構石墨
  • Si-石墨混合材料 (SEAG)
  • 未來展望

第5章 陽極對安全性的影響

  • 熱穩定性
  • 急速充電的穩定性

第6章 陽極材料市場趨勢、預測

  • 陽極需求:各國
  • 陽極需求:各材料
  • 陽極市場:各供應商
  • 陽極需求:各LIB企業
    • SDI
    • LGC
    • SKI
    • Panasonic
    • CATL
    • ATL
    • BYD
    • Lishen
    • Guoxuan
    • AESC
  • 陽極製造能力
  • 需求預測:各材料
  • 價格趨勢

第7章 陽極材料製造商

  • 韓國
    • Posco
    • Daejoo
    • Aekyung
    • MK
  • 日本
    • 日立
    • 三菱
    • Nippon Carbon
    • JFE
    • 昭和電工
    • 信越化學工業
    • Tokai Carbon
  • 中國
    • BTR
    • Shanshan
    • Shanzoom
    • Zichen
    • ZETO
    • Sinuo
    • XFH
目錄

Graphite is mostly being used as an anode material for lithium secondary batteries. It means that from 1991 - when Sony firstly commercialized lithium secondary batteries - until now, graphite has firmly maintained its throne of anode materials. This has nearly been steadfast even for the last 20 years, while other materials, including cathode, separator, etc., have changed.

Graphite is largely divided into natural and artificial graphite. Raw ores of natural graphite are yielded with graphite containing about 5-15% in graphite mines. In order for graphite to be used as an anode material for lithium secondary batteries, it must obtain the purity of at least 99.5% as a battery grade. To increase the purity up to such a degree, the dug natural graphite ore should go through beneficiation, chemical processing, etc. to remove impurities. It can sometimes be spheroidized or pitch-coated.

Artificial graphite, on the other hand, is the graphite generated by heating carbon precursors, such as petroleum, coal tar, and coke, whose starting materials are not natural minerals, at the high temperature higher than 2800°C.

Other than graphite, other anode materials include soft carbon and hard carbon, which are manufactured by heat-treating coke, consisting of carbon, at 1000-1200°C, relatively low temperature. Of these, hard carbon has had increasing importance as an anode material for EVs due to its excellent output characteristics.

As the composite-based, LTO, an oxide composite-based, is typical; the metal composite-based includes Sn-Co-C and the like. In addition, for anodes using graphite, an electrode may be manufactured by partially mixing Si and SiOx-based compounds with graphite to increase its capacity.

In order to be suitable as an anode material for lithium secondary batteries, the following conditions must be satisfied first:

  • High charge and discharge capacity (per unit weight or volume)
  • Initial irreversible capacity losses must be small
  • Excellent charge and discharge cycle attributes
  • High electrical conductivity and ion diffusion rate in active materials
  • Small volume change caused by intercalation of lithium/delithiation
  • Eco-friendly material
  • Easiness to manufacture and low price

It is graphite that best satisfies these conditions. However, the continuous requirements for anode materials are suitable characteristic for the high capacity and high output of lithium secondary batteries.

In this report, we described the technical trends on various types of anode materials, especially the latest technical trends focusing on the alloy- and composite-based. In addition, we also reviewed the current status of anode material production by anode material company in Japan, China, Korea, and other countries. Finally, in the market segment, the pipeline in the industry was analyzed by country, company, and anode material type, in terms of trends in consumers and suppliers for the last five years. Furthermore, the demand was forecasted for the anode material market by 2025, based on the IT and EV markets.

Table of Contents

Chapter 1. Current Status and Development Trend of Anode Material Technology

1. Introduction

2. Types of Anode Material

  • 1.2.1. Lithium Metal
  • 1.2.2. Carbon-Based Anode Material
  • 1.2.3. Development Status of Anode Materials

Chapter 2. Carbon-Based Anode Material

1. Outline of Carbon-Based Anode Materials

2. Production of Carbon-Based Anode Materials

3. Soft Carbon-Based Anode Materials

4. Hard Carbon-Based Anode Materials

5. Collection and Recycling of Carbon-Based Anode Materials from Wasted Batteries

Chapter 3. Alloy-Based Anode Material

1. Outline of Alloy-Based Anode Materials

2. Properties of Alloy-Based Anode Materials

3. Problems and Solutions for Alloy-Based Anode Materials

  • 3.3.1. Representative Problems
  • 3.3.2. Metal Composite-Based Anode Materials
  • 3.3.3. Metal-Carbon Composite-Based Anode Materials

4. SiOx-Based Anode Materials

  • 3.4.1. Structural Properties
  • 3.4.2. Electrochemical Properties
  • 3.4.3. Application of Prelithiation Process

5. Study on Practical Application of Si-Based Anode Materials

  • 3.5.1. Differences in Electrochemical Behaviors
  • 3.5.2. Si-Single Electrode and Si/Graphite-Mixed Electrode

6. Other Si-Based Anode Materials

  • 3.6.1. 3-Dementional Porous Si
  • 3.6.2. Si Nanotube
  • 3.6.3. Metal/Alloy Thin Film-Type Anode Materials

Chapter 3. Compound Anode Material

1. Oxide-Based Anode Material

2. Nitride-Based Anode Material

Chapter 4. High Power Anode Materials

1. Outline of High Power Anode Materials

2. Intercalation Materials

  • 5.2.1. Carbon Material
  • 5.2.2. Li4Ti5O12

3. Alloy-Based Materials

4. Transition Materials

5. Nano-Structured Micro Particles

  • 5.5.1. Nano-Structured Micro Carbon Materials
  • 5.5.2. Nano-Structured Micro Li4Ti5O12
  • 5.5.3. Nano-Structured Micro Si-Carbon Composite Active Material

6. Multichannel-Structured Graphite

7. Si-Graphite Hybrid Material (SEAG)

8. Future Outlook

Chapter 5. Influence of Anode on Safety

1. Thermal Stability of Anode

2. Stability for Quick Charging

Chapter 6. Trend and Outlook for Anode Material Markets

1. Anode Demand by Country

2. Anode Demand by Material

3. Anode Market by Supplier

4. Anode Demand by LIB Company

  • SDI/LGC/SKI/Panasonic/CATL/ATL/BYD/Lishen/Guoxuan/AESC

5. Anode Production Capacity

6. Demand Forecast by Material

7. Trend of Anode Prices

Chapter 7. Status of Anode Material Manufacturers

1. Korean Anode Company

  • Posco/Daejoo/Aekyung/MK

2. Japanese Anode Company

  • Hitachi/Mitsubishi/Nippon Carbon/JFE/Showa Denko/Shinetsu/Tokai Carbon

3. Chinese Anode Company

  • BTR/Shanshan/Shanzoom/Zichen/ZETO/Sinuo/XFH