Cover Image

高性能矽晶型太陽能電池技術及市場預測 (2014-2020年)

<2016> High Efficiency Crystalline Si Solar Cell Technology and Market Forecast (2014~2020)

出版商 SNE Research 商品編碼 352399
出版日期 內容資訊 英文 333 Pages
商品交期: 請詢問到貨日

Notice: The original report is written in Korean. Please ask us for more information regarding delivery time.

Back to Top
高性能矽晶型太陽能電池技術及市場預測 (2014-2020年) <2016> High Efficiency Crystalline Si Solar Cell Technology and Market Forecast (2014~2020)
出版日期: 2016年01月01日 內容資訊: 英文 333 Pages

太陽能產業在這5年內展現出16.6%的年度年複合成長率之持續性成長。在太陽能光電發電需求逐年增加的趨勢下,主要的太陽能電池/模組廠商都在擴大生產。在2016年的第一季中,Hanwha Q CELLS 各自在太陽能電池·模組上擴大了5.2GW,5.5GW。LG Electronics則發表將從目前的1GW到2018年∼2019年擴大到1.8GW,此外2020年後預計將擴大到3.0GW。



第1章 矽晶型太陽能電池的簡介

第2章 使用了網版印刷的矽晶型太陽能電池技術

  • 製造工程
  • 效率損失機制
  • 針對提高效率·降低價格的技術開發趨勢

第3章 高性能矽晶型太陽能電池之要素技術

  • 紋理
  • 摻雜
  • ARC (防反射薄膜)
  • 鈍化處理 (表面穩定化處理)
  • 金屬噴敷 (硬化)

第4章 高性能矽晶型太陽能電池技術

  • BCSC (埋入式電極型太陽能電池) 或LGBC (雷射切溝埋入式太陽電池)
  • LFC (雷射燒結太陽電池)
  • HIT (非晶矽/結晶矽異質接面)
  • 背電極太陽電池
  • 射極鈍化太陽能電池
  • 選擇性射極型
  • 兩面受光型電池
  • 量子點太陽能電池


第5章 製造所的技術開發趨勢

  • 歐洲
  • 美國
  • 澳洲

第6章 製造商技術開發趨勢

  • 中國
  • 日本
  • 韓國
  • 歐洲
  • 美國
  • 台灣
  • 高性能太陽能電池效率狀況 (電池 & 模組) :各製造廠商

第7章 現在·未來的PV電池的效率

  • 目前太陽能電池效率冠軍:各技術
  • 太陽能電池理論上的效率限制及太陽能電池的溶融形態相關預測
  • ITRPV的國際太陽能光電發電技術藍圖

第8章 高性能結晶矽太陽能電池市場趨勢

  • 全球太陽能光電發電市場現狀及預測
  • 高性能太陽能電池市場預測
    • 高性能太陽能電池的預測:各技術
    • 高性能太陽能電池的供給預測:各類型基板
    • 高性能太陽能電池模組的價格預測
    • 高性能太陽能電池模組的銷售額預測



The solar energy industry has been growing continuously with an average annual growth rate of 16.6% over the past five years. The industry is expected to grow 15.8% this year with the influence of the Paris climate conference and rapid decrease of generation cost. As can be seen from the extension of the tax credit system of the United States and goals of China and India to introduce 100GW of solar power by 2020 and 2022 respectively, major countries are definitely leading the growth of the industry. Also, many organizations are reporting that 40-50% of newly installed generation capacity globally was solar power.

In the trend of increasing demand for solar power every year, major solar cell/module producers are increasing production. Major Korean firms Hanwha Q CELLS and LG Electronics also are aggressively increasing production scale. In the first quarter of 2016 the cell and module production scale of Hanwha Q CELLS increased to 5.2GW and 5.5GW respectively and LG Electronics has announced that they will expand their current production scale of 1GW to 1.8GW until 2018-2019 and to 3.0GW after 2020. Not only they are increasing production capacity but also developing high efficiency crystalline silicon solar cells. New investment equipment of LG Electronics are all for high efficiency crystalline silicon solar cells (Ntype).

How much will the solar power market grow in 2020? How will the market shares of Ntype, Ptype, monocrystalline, and polycrystalline high efficiency cell/modules change in the future? Which of the high efficiency technologies such as PERC, PERT, SHJ, and Back Contact is likely to take the leadership in the future? What is the status of development of high efficiency solar cells of the major producers? All answers can be found in this report.

Table of Contents

Part 1. Trends of Crystalline Structure and High Efficiency Silicon Solar Cell Technologies

1. Introduction to Crystalline Si Solar Cells

2. Crystalline Si Solar Cell Technology using Screen Printing

  • 2.1. Manufacturing Process
  • 2.2. Efficiency Loss Mechanism
  • 2.3. Trends of Technological Developments for Efficiency Increase and Price Decrease

3. Element Technologies for High Efficiency of Crystalline Si Solar Cells

  • 3.1. Texturing
    • 3.1.1. Laser Texturing
    • 3.1.2. RIE Dry Etching Texturing
  • 3.2. Doping
    • 3.2.1. Laser Doping
    • 3.2.2. Ion Implantation
  • 3.3. ARC (Anti-reflective Coating)
  • 3.4. Passivation
    • 3.4.1. PECVD SiNx
    • 3.4.2. ALD of Al2O3
  • 3.5. Metallization
    • 3.5.1. High Aspect Ratio Printing (Fine Print + Double Printing)
    • 3.5.2. Plating
    • 3.5.3. Ink Jet Printing

4. High Efficiency Crystalline Si Solar Cell Technologies

  • 4.1. BCSC (Buried Contact Solar Cell) or LGBC (Laser Grooved Buried Contact)
  • 4.2. LFC (Laser Fired Contact)
  • 4.3. HIT (Hetero-junction with Intrinsic Thin Layer)
  • 4.4. Back Contact Solar Cell
  • 4.5. Passivated Emitter Solar Cell
  • 4.6. Selective Emitter
  • 4.7. Bifacial Cell
  • 4.8. Quantum Dot Solar Cell

Part 2. Trends of High Efficiency Si Solar Cell Producers/Laboratories and Market Forecast

5. Trends of Technological Developments per Laboratory

  • 5.1. Europe
  • 5.2. United States
  • 5.3. Australia

6. Trends of Technological Developments per Producer

  • 6.1. China
  • 6.2. Japan
  • 6.3. Korea
  • 6.4. Europe
  • 6.5. United States
  • 6.6. Taiwan
  • 6.7. Status of Efficiency of High Efficiency Solar Cells per Producer (Cell & Module)

7. Current and Forecasted Efficiency of PV Cells

  • 7.1. Current Champion Efficiency per Solar Cell Technology
  • 7.2. Theoretical Efficiency Limit of Solar Cells and Forecast on Fused Forms of Solar Cells
  • 7.3. ITRPV's International Photovoltaics Technology Roadmap

8. Trends in the High Efficiency Crystalline Solar Cell Market

  • 8.1. Current Status of the Global Solar Power Market and Forecast (2014~2020F)
  • 8.2. Forecast of the High Efficiency Solar Cell Market (2013~2020F)
    • 8.2.1. Forecast per High Efficiency Solar Cell Technology (2013~2020F)
    • 8.2.2. Supply Forecast per High Efficiency Solar Cell Board Type (2013~2020F)
    • 8.2.3. Price Forecast of High Efficiency Solar Cell Modules (2013~2020F)
    • 8.2.4. Sales Forecast of High Efficiency Solar Cell Modules (2013~2020F)
Back to Top