表紙
市場調查報告書
商品編碼
1020820

鋰離子電池的陽極市場(2021):技術趨勢和預測(2030)

<2021>Lithium Ion Battery Anode Technology Trend and Market Forecast (~2030)

出版日期: | 出版商: SNE Research | 英文 322 Pages | 商品交期: 請詢問到貨日

價格

Notice: The original report is written in Korean. Please ask us for more information regarding delivery time.

  • 全貌
  • 簡介
  • 目錄
簡介

2021年現在,對於大多數鋰離子二次電池的負極材料而使用石墨。第一次鋰二次電池是近30年來,因為它是在1991年商業化,碳基材料,包括石墨一直秉承的重大變化而不,陽極材料的寶座。

然而,電動車輛(xev的),電動工具,電子遷移率,無人駕駛飛機等,非常嚴格的條件被應用相繼出現是必需的,然後,就變成佔據市場的核心,傳統的石墨高能量密度是很難滿足的材料,壽命長,以滿足特性,例如高的充電和放電功率,現有的基於碳的石墨負極材料的性能的顯著提高,人們越來越需要新的陽極材料的增加。

本報告審查了鋰離子電池負極的市場,市場規模和預測,最新的趨勢和負極材料的研究和發展狀況,日本,中國,每一個生產負極材料製造商,如韓國,國家和材料-市場分析的供應商提供的信息,如個人資料的主要公司。

目錄

第 1 章陽極材料技術的現狀和發展趨勢

  • 簡介
  • 陽極材料的種類
    • 鋰金屬
    • 基於碳的陽極材料
    • 陽極材料的發展狀況

第 2 章基於碳的陽極材料

  • 基於碳的陽極材料的概述
  • 基於碳的陽極材料的生產
    • 氣相烴
    • 液相碳化
    • 固相碳化
  • 軟碳系負極材料
    • 的結構特徵
    • 電化學性能
    • 電極反應機理
    • 製造方法
    • 人造石墨
    • 天然石墨
    • 低溫共燒碳
    • 其他材料
  • 硬碳系負極材料
    • 的結構特徵
    • 電化學性能
    • 電極反應機理
    • 製造方法
  • 收集和基於碳的陽極材料的回收從廢棄電池

第 3 章合金系負極材料

  • 合金系負極材料的概述
  • 合金系負極材料的特徵
  • 合金系負極材料的問題和解決方案
    • 一個典型的問題
    • 金屬複合材料為基礎的陽極材料
    • 金屬 - 碳複合基材料的陽極材料
  • 基於SiOx的陽極材料
    • 的結構特徵
    • 電化學性能
    • 製造方法
    • 預鋰化過程的應用
  • 研究Si基陽極材料的實際應用
    • 電化學行為的差異
    • SI-單個電極和Si/石墨混合物電極
  • 基於Si的其它陽極材料
    • 3-牙科多孔Si
    • 的Si納米管
    • 金屬/合金薄膜的陽極材料的類型

第 4 章複合負極材料

  • 基於氧化物陽極材料
  • 基於氮化物的負極材料

第 5 章高輸出陽極材料

  • 高功率陽極材料的概述
  • 插入材料
    • 碳材料
    • LTO(鈦酸鋰)
  • 的合金類材料
  • 變材料
  • 納米結構的顆粒
    • 所述納米結構的微碳材料
    • 微納米結構鈦酸鋰
    • 納米結構化的微SI-碳複合活性材料
  • 的多聲道結構的石墨
  • SI-石墨混合材料(SEAG)
  • 石墨烯-SiO2材料(石墨烯球)
  • 結論和未來展望

第 6 章鋰金屬陽極

  • 鋰金屬
  • 的調查趨勢鋰金屬
    • 人工界面保護層(ASEI,形成人造SEI的)
    • 新結構
    • 混合結構
    • 電解質的變化

第 7 章對安全的影響陽極

  • 熱穩定性的陽極
  • 快速充電的穩定性

第8章的LiB陽極材料前景市場趨勢

  • 國家的具體需求狀況
  • 材料的另一需求情況
  • 市場供應情況 公司
  • LIB需求情況
    • SDI/LGC/SKI/Panasonic/CATL/ATL/BYD/Lishen/Guoxuan/AESC
  • 前景的陽極生產能力
  • 所述材料的由需求前景
  • 陽極材料價格趨勢
  • 的陽極材料的前景的市場規模

第 9 章的陽極材料製造商的情況

  • 韓國陽極材料公司
    • Posco/Daejoo/Aekyung/MKE/Iljin/EG/PCT
  • 日本陽極材料公司
    • Hitachi/Mitsubishi/Nippon Carbon/JFE/Tokai Carbon/Showa Denko/Shinetsu/Kureha
  • 中國負極材料公司
    • BTR/Shanshan/Zichen/Shinzoom/XFH/ZETO/Sinuo/Chuangya
目錄

As of 2021, graphite is being utilized as the anode material for most lithium-ion secondary batteries. For nearly 30 years from the time, when Sony firstly commercialized lithium secondary batteries in 1991, until now, carbon-based materials - including graphite - have firmly maintained the throne of anode materials without any major changes.

The reason why graphite has been used as an anode material of Li-ion secondary batteries for such a long time is that it more satisfies the following requirements, compared to other materials:

  • High charge and discharge capacity (per unit weight or volume)
  • Initial irreversible capacity losses must be small
  • Must have excellent life characteristic, such as charge/discharge cycles
  • High electrical conductivity and ion diffusion rate
  • Small volume change caused by Li intercalation/de-intercalation
  • Must be made of eco-friendly materials
  • Easiness to manufacture and low price

However, as applications, such as electric vehicles (xEV), power tools, e-mobility, and drones, that require very tough requirements have appeared one after another and then become the core of the market, in order to satisfy properties, such as high energy density, long life, and high charging/discharging power, which are difficult to meet with conventional graphite materials, the need for a significant improvement in the performance of the existing carbon-based graphite anode materials or for a new anode material is increasing.

It is Silicon-based and Li-metal that are representative candidates for new anode materials that are being researched/developed or partially applied to meet these needs, and improvements for the existing carbon-based anode materials are being implemented in parallel with it; in this report, we faithfully reflected these recent trends and R&D status.

Particularly, the latest technology trends centered on the Silicon-based and Li-metal were discussed in depth, and we also examined the performance improvement of existing materials and new substances and the R&D status of hybrid products. In addition, we further discussed in detail the current status of anode material production for each anode material manufacturer in Japan, China, Korea, and other countries, and lastly, in the market sector, with respect to the status for the past 5 years, we analyzed the trends of LiB makers in the consumer side, and the industry pipelines by country, company, and anode material chemistry for the performance of anode material suppliers in the supplier side. In addition to that, we also forecasted the anode material market demand by 2030, against the background of the EV and ESS markets - which are expected to grow explosively.

Table of Contents

Chapter 1. Status and Development Trend of Anode Material Technology

  • 1.1. Introduction
  • 1.2. Types of Anode Material
    • 1.2.1. Li-metal
    • 1.2.2. Carbon-Based Anode Material
    • 1.2.3. Development Status of Anode Materials

Chapter 2. Carbon-Based Anode Material

  • 2.1. Outline of Carbon-Based Anode Materials
  • 2.2. Manufacture of Carbon-Based Anode Materials
    • 2.2.1. Gas-Phase Carbonization
    • 2.2.2. Liquid-Phase Carbonation
    • 2.2.3. Solid-Phase Carbonation
  • 2.3. Soft Carbone-Based Anode Material
    • 2.3.1. Structural Characteristics
    • 2.3.2. Electrochemical Properties
    • 2.3.3. Electrode Reaction Mechanism
    • 2.3.4. Manufacturing Method
    • 2.3.5. Artificial Graphite
    • 2.3.6. Natural Graphite
    • 2.3.7. Low Temperature Fired Carbon
    • 2.3.8. Other Materials
  • 2.4. Hard Carbon-Based Anode Materials
    • 2.4.1. Structural Characteristics
    • 2.4.2. Electrochemical Properties
    • 2.4.3. Electrode Reaction Mechanism
    • 2.4.4. Manufacturing Method
  • 2.5. Collection and Recycling of Carbon-Based Anode Materials from Wasted Batteries

Chapter 3. Alloy-Based Anode Material

  • 3.1. Outline of Alloy-Based Anode Materials
  • 3.2. Features of Alloy-Based Anode Materials
  • 3.3. Problems and Solutions for Alloy-Based Anode Materials
    • 3.3.1. Representative Problems
    • 3.3.2. Metal Composite-Based Anode Materials
    • 3.3.3. Metal-Carbon Composite-Based Anode Materials
  • 3.4. SiOx-Based Anode Material
    • 3.4.1. Structural Characteristics
    • 3.4.2. Electrochemical Properties
    • 3.4.3. Manufacturing Method
    • 3.4.4. Application of Prelithiation Process
  • 3.5. Study on Practical Application of Si-Based Anode Materials
    • 3.5.1. Differences in Electrochemical Behaviors
    • 3.5.2. Si-Single Electrode and Si/Graphite-Mixed Electrode
  • 3.6. Other Si-Based Anode Materials
    • 3.6.1. 3-Dementional Porous Si
    • 3.6.2. Si Nanotube
    • 3.6.3. Metal/Alloy Thin Film-Type Anode Materials

Chapter 4. Compound Anode Material

  • 4.1. Oxide-Based Anode Materials
  • 4.2. Nitride-Based Anode Materials

Chapter 5. High Power Anode Material

  • 5.1. Outline of High Power Anode Materials
  • 5.2. Intercalation Materials
    • 5.2.1. Carbon Materials
    • 5.2.2. LTO(Li4Ti5O12)
  • 5.3. Alloy-Based Materials
  • 5.4. Transition Materials
  • 5.5. Nano-Structured Micro Particles
    • 5.5.1. Nano-Structured Micro Carbon Materials
    • 5.5.2. Nano-Structured Micro Li4Ti5O12
    • 5.5.3. Nano-Structured Micro Si-Carbon Composite Active Materials
  • 5.6. Multichannel-Structured Graphite
  • 5.7. Si-Graphite Hybrid Material (SEAG)
  • 5.8. Graphene-SiO2 Material (Graphene Ball)
  • 5.9. Conclusion and Future Outlook

Chapter 6. Li-metal Anode

  • 6.1. Li-metal
  • 6.2. Li-metal Research Trends
    • 6.2.1. Artificial Surface Protective Layer (ASEI, formation of Artificial SEI)
    • 6.2.2. New Structure
    • 6.2.3. Hybrid Structure
    • 6.2.4. Electrolyte Modification

Chapter 7. Influence of Anode on Safety

  • 7.1. Thermal Stability of Anode
  • 7.2. Stability for Quick Charging

Chapter 8. Trend and Outlook for LiB Anode Material Market

  • 8.1. Demand Status by Country
  • 8.2. Demand Status by Material
  • 8.3. Market Status by Supplier
  • 8.4. Demand Status by LIB Company
    • SDI/LGC/SKI/Panasonic/CATL/ATL/BYD/Lishen/Guoxuan/AESC
  • 8.5. Outlook for Anode Production Capacity
  • 8.6. Outlook for Demand by Material
  • 8.7. Trend of Anode Material Price
  • 8.8. Outlook for Anode Material Market Size

Chapter 9. Status of Anode Material Manufacturers

  • 9.1. Korean Anode Material Company
    • Posco/Daejoo/Aekyung/MKE/Iljin/EG/PCT
  • 9.2. Japanese Anode Material Company
    • Hitachi/Mitsubishi/Nippon Carbon/JFE/Tokai Carbon/Showa Denko/Shinetsu/Kureha
  • 9.3. Chinese Anode Material Company
    • BTR/Shanshan/Zichen/Shinzoom/XFH/ZETO/Sinuo/Chuangya