鋰離子電池陽極材料:技術趨勢·市場預測(~2030年)
市場調查報告書
商品編碼
1230334

鋰離子電池陽極材料:技術趨勢·市場預測(~2030年)

<2023> Lithium Ion Battery Anode Technology Trend and Market Forecast (~2030)

出版日期: | 出版商: SNE Research | 英文 507 Pages | 商品交期: 請詢問到貨日

價格
簡介目錄

目前,石墨主要用作鋰二次電池的負極材料。從1991年索尼首次將鋰二次電池商業化到現在,石墨一直是負極材料的主導材料。雖然陰極材料和分離膜等其他材料發生了變化,但石墨在過去 20 年來幾乎保持不變。

石墨大致分為天然石墨和人工石墨。天然石墨的原料礦石產自石墨礦,含石墨量約5%~15%。為了使用石墨作為鋰二次電池的負極材料,其作為電池級的純度必須達到99.5%或更高。為了達到此純度水平,需要透過選礦和化學處理從開採的天然石墨礦石中去除雜質。它也可以被球化或塗瀝青。

本報告提供鋰離子電池陽極材的技術市場調查,彙整陽極材料的種類,製造技術,開發趨勢,市場規模的轉變·預測,主要製造商的分析等資訊。

目錄

報告概要

第1章 陽極材料的技術與開發趨勢

  • 陽極材料的種類
    • 鋰金屬
    • 碳陽極材料
    • 陽極材料的開發情形

第2章 碳陽極材料

  • 碳陽極材料概要
  • 碳陽極材料的製造
    • 氣相炭化
    • 液相炭化
    • 固相炭化
  • 軟體碳陽極材料
    • 結構的特徵
    • 電化學特性
    • 電極反應機制
    • 製造方法
    • 人造石墨
    • 天然石墨
    • 低溫可塑化碳
    • 其他的材料
  • 硬碳陽極
    • 結構的特徵
    • 電化學特性
    • 電極的反應機構
    • 製造方法
  • 廢電池的碳陽極的收集與回收

第3章 合金陽極材料

  • 合金陽極材料概要
  • 合金陽極材料的特性
  • 合金陽極的重大的問題和解決的辦法
    • 主要的問題
    • 金屬複合陽極
    • 金屬-碳複合陽極
  • SiOx陽極材料
    • 結構的特徵
    • 電化學特性
    • 製造方法
    • pre鋰化流程的應用
  • Si陽極的實用化相關研究
    • 電化學舉動的差異
    • Si系電極及Si/石墨複合電極
  • 其他的Si陽極材料
    • 3D多孔質Si
    • Si奈米碳管
    • 金屬/合金薄膜陽極

第4章 複合陽極材料

  • 氧化物系陽極材料
  • 氮化物為基礎的陽極材料
  • 2D平面結構無機化合物 (Mxenes)

第5章 高功率陽極材料

  • 高功率陽極材料概要
  • 插層材料
    • 碳材料
    • LTO (Li4Ti5O12)
  • 合金材料
  • 過渡材料
  • 奈米結構微粒子
    • 奈米結構微碳材料
    • 奈米結構微Li4Ti5O
    • 奈米結構微Si-碳材料複合活物質
  • 多通路結構石墨
  • Si-石墨混合材料 (SEAG)
  • 石墨烯-SiO2材料 (石墨烯球)
  • 陽極的急速充電
    • 陽極的影響要素
    • 電極的影響要素
    • 大電池製造商的急速充電技術設計
  • 整體概述·今後展望

第6章 鋰金屬陽極

  • 鋰金屬陽極概要
  • 鋰金屬陽極的R&D情形
    • ASEI (人工SEI)
    • 新結構
    • 混合結構
    • 電解質的改性
  • 鋰金屬陽極的適用的問題點與展望
  • 無陽極的鋰離子電池

第7章 陽極的安全性的影響

  • 陽極的熱穩定性
  • 急速充電的時候的安全性

第8章 鋰離子電池陽極材料市場現狀與展望

  • 需求情形:各國
  • 需求情形:各材料
  • 市場情形:各供應商
  • 需求情形:各LIB製造商
    • SDI
    • LGC
    • SKI
    • Panasonic
    • CATL
    • ATL
    • BYD
    • Lishen
    • Guoxuan
    • AESC
    • CALB
  • 陽極材料的生產能力的展望
  • 需求預測:不同材料
  • 陽極材料價格的轉變
  • 陽極材料的市場規模的展望

第9章 陽極材料製造商狀況

  • 韓國的陽極材料供應商
    • Posco Chemical
    • Daejoo
    • Aekyung
    • MKE
    • Iljin
    • EG
    • PCT
    • LPN
    • Hansol
    • Dongjin
  • 日本的陽極材料供應商
    • Hitachi
    • Mitsubishi
    • Nippon Carbon
    • JFE
    • Tokai Carbon
    • Showa Denko
    • Shinetsu
    • Kureha
  • 中國的陽極材料供應商
    • BTR
    • Shanshan
    • Zichen
    • Shinzoom
    • XFH
    • ZETO
    • Sinuo
    • Chuangya
    • SHANGTAITECH
    • KAIJIN

第10章 參考文獻

簡介目錄
Product Code: 194

Currently, graphite is mostly being used as an anode material for lithium secondary batteries. It means that from 1991 - when Sony firstly commercialized lithium secondary batteries - until now, graphite has firmly maintained its throne of anode materials. This has nearly been steadfast even for the last 20 years, while other materials, including cathode materials, separation membranes, etc, have changed.

Graphite is largely divided into natural and artificial graphite. Raw ores of natural graphite are yielded with graphite containing about 5-15% in graphite mines. In order for graphite to be used as an anode material for lithium secondary batteries, it must obtain the purity of at least 99.5% as a battery grade. To increase the purity up to such a degree, the dug natural graphite ore should go through beneficiation, chemical processing, etc. to remove impurities. It can sometimes be spheroidized and pitch-coated.

Artificial graphite, on the other hand, is the graphite generated by heating carbon precursors, such as petroleum, coal tar, and coke, whose starting materials are not natural minerals, at the high temperature higher than 2800°C.

Other than graphite, other anode materials include soft carbon and hard carbon, which are manufactured by heat-treating coke, consisting of carbon, at 1000-1200°C, relatively low temperature. Of these, hard carbon has had increasing importance as an anode material for EVs due to its excellent power characteristics.

For the composite-based, LTO, the oxide composite-based, is representative, and the metal composite-based includes Sn-Co-C and others. In addition, in the case of an anode using graphite, an electrode is sometimes manufactured by partially mixing silicon- and SiOx-based compounds with graphite to increase capacity.

In order to increase the energy density of Li secondary batteries, research on Li-metal as the ultimate anode material is also being conducted, and it is expected that Li metal is mainly used as an anode material for all solid batteries (ASBs), the next-generation battery.

Table of Contents

Report Overview

Chapter I. Anode Material Technology and Development Trend

  • 1.1. Introduction
  • 1.2. Anode Material Types
    • 1.2.1. Li-metal
    • 1.2.2. Carbon Anode Material
    • 1.2.3. Anode Material Development Status

Chapter II. Carbon Anode Material

  • 2.1. Carbon Anode Material Overview
  • 2.2. Carbon Anode Material Manufacturing
    • 2.2.1. Vapor-phase carbonization
    • 2.2.2. Liquid-phase carbonization
    • 2.2.3. Solid-phase carbonization
  • 2.3. Soft Carbon Anode Material
    • 2.3.1. Structural Characteristics
    • 2.3.2. Electrochemical Characteristics
    • 2.3.3. Electrode Reaction Mechanism
    • 2.3.4. Manufacturing Methods
    • 2.3.5. Artificial Graphite
    • 2.3.6. Natural Graphite
    • 2.3.7. Low-temperature Plasticized Carbon
    • 2.3.8. Other Materials
  • 2.4. Hard Carbon Anode
    • 2.4.1. Structural Characteristics
    • 2.4.2. Electrochemical Characteristics
    • 2.4.3. Electrode Reaction mechanism
    • 2.4.4. Manufacturing Methods
  • 2.5. Carbon Anode Recovery and Recycling from Wasted Battery

Chapter III. Alloy Anode Material

  • 3.1. Alloy Anode Material Overview
  • 3.2. Alloy Anode Material Characteristics
  • 3.3. Alloy Anode Material Issues and Solutions
    • 3.3.1. Key Issues
    • 3.3.2. Metal-composite Anode
    • 3.3.3. Metal-Carbon Composite Anode
  • 3.4. SiOx Anode Material
    • 3.4.1. Structural Characteristics
    • 3.4.2. Electrochemical Characteristics
    • 3.4.3. Manufacturing Methods
    • 3.4.4. Prelithiation Process Application
  • 3.5. Study on Actual Application of Si Anode
    • 3.5.1. Difference of Electrochemical Behavior
    • 3.5.2. Si-based Electrode and Si/Graphite Composite Electrode
  • 3.6. Other Si Anode Material
    • 3.6.1. 3D Porous Si
    • 3.6.2. Si Nanotube
    • 3.6.3. Metal/Alloy Thin-film Anode

Chapter IV. Compound Anode Material

  • 4.1. Oxide-based Anode Material
  • 4.2. Nitride -based Anode Material
  • 4.3. 2D planar structure inorganic compound (Mxenes)

Chapter V. High-power Anode Material

  • 5.1. High-power Anode Material Overview
  • 5.2. Intercalation Materials
    • 5.2.1. Carbon Material
    • 5.2.2. LTO(Li4Ti5O12)
  • 5.3. Alloy Material
  • 5.4. Transition Material
  • 5.5. Nano-structure Microparticle
    • 5.5.1. Nano-structure Micro Carbon Material
    • 5.5.2. Nano-structure Micro Li4Ti5O
    • 5.5.3. Nano-structure Micro Si-Carbon Material Composite Active Material
  • 5.6. Multi Channel Structure Graphite
  • 5.7. Si-Graphite Hybrid Material(SEAG)
  • 5.8. Graphene-SiO2 Material (Graphene Ball)
  • 5.9. Fast-charging from Anode Perspective
    • 5.9.1. Anode (Active Material) Influence Factors
    • 5.9.2. Electrode Influence Factors
    • 5.9.3. Fast-charging Technology Design of Major Battery Makers
  • 5.10. Summary and Future Outlook

Chapter VI. Li-metal Anode

  • 6.1. Li metal Anode Overview
  • 6.2. Li metal Anode R&D Status
    • 6.2.1. ASEI (Artificial SEI)
    • 6.2.2. New Structure
    • 6.2.3. Hybrid Structure
    • 6.2.4. Electrolyte Modification
  • 6.3. Li Metal Anode Application Issues and Outlook
  • 6.4. Anode-Free Lithium-Ion Battery

Chapter VII. Anode Influence on Safety

  • 7.1. Thermal Stability of Anode
  • 7.2. Safety during Fast Charging

Chapter VIII. LiB Anode Material Market Status and Outlook

  • 8.1. Demand Status by Country
  • 8.2. Demand Status by Material
  • 8.3. Market Status by Supplier
  • 8.4. Demand Status by LIB Maker
    • SDI/LGC/SKI/Panasonic/CATL/ATL/BYD/Lishen/Guoxuan/AESC/CALB
  • 8.5. Anode Material Production Capacity Outlook
  • 8.6. Demand Outlook by Material
  • 8.7. Anode Material Price Trend
  • 8.8. Anode Material Market Size Outlook

Chapter IX. Anode Material Manufacturers Status

  • 9.1. Korean Anode Material Suppliers
    • Posco Chemical/Daejoo/Aekyung/MKE/Iljin/EG/PCT/LPN/Hansol/Dongjin
  • 9.2. Japanese Anode Material Suppliers
    • Hitachi/Mitsubishi/Nippon Carbon/JFE/Tokai Carbon/Showa Denko/Shinetsu/Kureha
  • 9.3. Chinese Anode Material Suppliers
    • BTR/Shanshan/Zichen/Shinzoom/XFH/ZETO/Sinuo/Chuangya/SHANGTAITECH/KAIJIN

Chapter X. References