封面
市場調查報告書
商品編碼
1258893

到 2028 年的分佈式光纖傳感器市場預測——按類型、散射方法、工作原理(光頻域反射計、光時域反射計)、應用、最終用戶和地區進行的全球分析

Distributed Fiber Optic Sensor Market Forecasts to 2028 - Global Analysis By Type, Scattering Method, Operating principle (Optical Frequency Domain Reflectometry and Optical Time Domain Reflectometry ), Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3個工作天內

價格

根據 Stratistics MRC 的數據,2022 年全球分佈式光纖傳感器市場規模將達到 14.4 億美元,預計 2028 年將達到 23.8 億美元,預測期內預計將增長年復合增長率為 8.8%

在光纖通信中,WDM 技術用於通過使用不同的激光波長(顏色)來存儲單個信號,將許多光信號復用到單根光纖上。它一直是。 數據通信業務的快速普及,對傳輸設備、網絡帶寬和多業務傳輸能力提出了更高的可用性要求。 希望簡化機械系統傳感操作的公司和組織的需求增加,這為擴展創造了機會。

根據印度政府出口促進機構印度品牌資產基金會的數據,2020 年石油產品的消費量增長了 4.5%,達到 2.1369 億噸。

市場動態:

驅動程序

對基礎設施垂直整合的需求增加

分佈式光纖傳感器現在在基礎設施領域的使用越來越頻繁,尤其是用於監測結構的健康狀況。 了解水壩、橋樑和高速公路等設施的結構和經濟方面已成為推動該行業採用分佈式傳感器的關鍵目標。 一種新型分佈式光纖傳感器可以同時檢測不同位置的壓力、溫度和應變。 分佈式傳感器可用於任何具有挑戰性的環境,實時跟蹤結構問題的能力是推動分佈式傳感器在土木工程中廣泛使用的關鍵因素。

約束:

安裝技術問題

阻礙分佈式光纖傳感器市場拓展的主要因素是與分佈式傳感器安裝相關的技術問題。 光纖必須小心處理,以防止在安裝過程中損壞。 纜狀光纖對應變的敏感性較差,因此在安裝過程中發生的任何彎曲都會損壞分佈式光纖。 傳感器電纜設計已得到顯著改進,但不完善的電纜實施通常會導致數據不准確。 由於安裝成本高,此類缺陷可能導致客戶在未來的項目中忽略該技術。 這些風險阻礙了市場的擴張。

機會

對數據庫分析的需求不斷擴大

數據是通過沿光纖長度放置的光纖傳感器收集的。 由於生成的數據量巨大,許多分析技術被用來檢查收集到的數據。 在全球範圍內,使用數據驅動的決策和策略變得越來越普遍。 這些是通過識別管理層可以評估的數據模式、破譯洞察力以及改進績效和決策制定來實現的。 使用光散射,傳感器可以跟蹤沿光纖長度的溫度、壓力、振動和應變的變化。 隨著企業更頻繁地採用數據密集型決策,分佈式光纖傳感器市場預計將在整個預測期內擴大。

威脅

分佈式光纖傳感器系統成本高

企業採用分佈式傳感器系統來監控惡劣的工作環境並捕獲實時數據。 分佈式傳感器的市場由於其準確性和可靠性等眾多優勢而不斷增長。 然而,這項技術仍然很昂貴,對於所有需要實時監控和傳感的企業來說都是遙不可及的。 此外,這些系統的構建和維護成本很高,因此部署起來很困難。 因此,分佈式光纖傳感器系統的高價格是市場拓展的主要障礙。

COVID-19 的影響:

COVID-19 疫情對該行業產生了重大影響。 由於生產活動減少和產品開發減少,光纖在工業和土木工程領域的使用正在下降。 然而,製造技術的進步和關鍵任務情況下對光纖的需求有望擴大該行業。 等離子體光纖吸收生物傳感器的發展有望使醫務人員能夠進行更快、更準確的測試。 隨著疾病迅速傳播並需要治療,預計這一趨勢將在預測期內持續。

預測期內拉曼散射效應場預計最大

由於雲計算在巨型結構安全、冷卻水洩漏檢測和火災檢測等關鍵情況下的應用,以及先進技術的採用,拉曼散射效應領域正在獲得優勢數據處理技術,估計會增長。 此外,該技術不受電磁干擾,支持連續監測,並防止橋樑和鐵路等大型設施出現結構問題。

在預測期內,預計石油和天然氣行業的複合年增長率最高。

由於管道和基礎設施健康監測對分佈式傳感技術的需求不斷增長,預計石油和天然氣行業在預測期內將以最快的複合年增長率增長。 此外,在預測期內,由於管道監測和氣體洩漏檢測的研發增加,石油和天然氣行業預計將成為分佈式光纖傳感器的最大用戶。

市場份額最高的地區

由於美國蓬勃發展的石油和天然氣行業以及分佈式光纖連接的廣泛採用,預計在預測期內北美將佔據最大的市場份額。 不斷上漲的油價正在鼓勵石油和天然氣行業採用更容易獲得和更有效的支持系統,以提高其創造利潤的能力。 這增加了該行業的增長前景。

複合年增長率最高的地區:

由於該地區的技術發展,光纖市場不斷擴大,預計歐洲在預測期內的複合年增長率最高。 疫情增加了對更強大的基礎設施連接和更快的互聯網服務的需求。 因此,服務提供商鼓勵使用光纖來滿足客戶需求。 由於基礎設施開發和建設項目數量不斷增加,以及對過程安全和保障的需求,亞太地區具有巨大的增長潛力。

市場主要參與者

分佈式光纖傳感器市場的主要參與者包括:Omnisens SA、Halliburton、Luna Innovations Inc.、Schlumberger Ltd.、AP Sensing GmbH、Yokogawa Electric Corporation、Brugg Kable AG、OFS Fitel, LLC, Qinetiq Group PLC, Weatherford, Bandweaver, Ziebel, FISO, Osena, Lockheed Martin Corporation, Solifos AG, NEC Corporation, Verizon。

主要發展:

2023年3月,橫河電機與大塚化學宣布成立Syncrest株式會社。 該合資企業將作為合同研發和製造機構進行中分子藥物的研究、開發和製造。

2021 年 5 月,AP Sensing 宣布推出其第 5 代分佈式聲學傳感 (DAS) 系統。 隨著這種新型分佈式聲學傳感 (DAS) 的推出,AP Sensing 跨入資產監控技術領域,其係統與傳統點傳感器不同,可無縫監控管道、電力電纜和鐵路等有價值的基礎設施,帶來重大進展。

本報告內容

  • 區域和國家/地區細分市場份額評估
  • 向新進入者提出戰略建議
  • 2020、2021、2022、2025 和 2028 年的綜合市場數據
  • 市場驅動因素(市場趨勢、制約因素、機遇、威脅、挑戰、投資機會、建議等)
  • 根據市場預測在關鍵業務領域提出戰略建議
  • 競爭格局和趨勢
  • 公司簡介,包括詳細的戰略、財務狀況和近期發展
  • 供應鏈趨勢反映了最新的技術進步。

提供免費定制

購買此報告的客戶將免費獲得以下定制之一。

  • 公司簡介
    • 其他市場參與者的綜合概況(最多 3 家公司)
    • 主要參與者的 SWOT 分析(最多 3 人)
  • 區域細分
    • 根據客戶要求提供主要國家/地區的市場估算、預測和復合年增長率(注意:基於可行性檢查。)
  • 競爭基準
    • 根據產品組合、地域分佈和戰略聯盟對主要參與者進行基準測試

內容

第 1 章執行摘要

第二章前言

  • 概覽
  • 利益相關者
  • 調查範圍
  • 調查方法
    • 數據挖掘
    • 數據分析
    • 數據驗證
    • 研究方法
  • 調查來源
    • 主要研究信息來源
    • 二手研究資源
    • 假設

第三章市場趨勢分析

  • 司機
  • 約束因素
  • 機會
  • 威脅
  • 應用分析
  • 最終用戶分析
  • 新興市場
  • COVID-19 的影響

第 4 章波特五力分析

  • 供應商的議價能力
  • 買家的議價能力
  • 替代品的威脅
  • 新進入者的威脅
  • 競爭公司之間的敵對關係

第 5 章全球分佈式光纖傳感器市場,按類型

  • 多模式
  • 單一模式

第 6 章全球分佈式光纖傳感器市場:按散射法

  • 布裡淵散射效應
  • 拉曼散射效應
  • 光纖布拉格光柵
  • 瑞利散射效應
  • 布拉格光柵
  • 干涉儀

第 7 章全球分佈式光纖傳感器市場:按操作原理

  • 光頻域反射計 (OFDR)
  • 光時域反射計 (OTDR)

第 8 章全球分佈式光纖傳感器市場,按應用

  • 聲學傳感
  • 溫度感應
  • 應變傳感
  • 其他應用

第 9 章全球分佈式光纖傳感器市場:按最終用戶分類

  • 安全與保障
  • 油氣
  • 溝通
  • 電力和公用事業
  • 工業
  • 基礎設施
  • 土木工程
  • 軍事和邊境安全
  • 交通
  • 其他最終用戶

第 10 章全球分佈式光纖傳感器市場:按地區

  • 北美
    • 美國
    • 加拿大
    • 墨西哥
  • 歐洲
    • 德國
    • 英國
    • 意大利
    • 法國
    • 西班牙
    • 其他歐洲
  • 亞太地區
    • 日本
    • 中國
    • 印度
    • 澳大利亞
    • 新西蘭
    • 韓國
    • 其他亞太地區
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中東和非洲
    • 沙特阿拉伯
    • 阿拉伯聯合酋長國
    • 卡塔爾
    • 南非
    • 其他中東和非洲地區

第11章主要發展

  • 合同、夥伴關係、協作和合資企業
  • 收購與合併
  • 新產品發布
  • 業務擴展
  • 其他關鍵策略

第12章公司簡介

  • Omnisens SA
  • Halliburton
  • Luna Innovations Inc.
  • Schlumberger Ltd.
  • AP Sensing GmbH
  • Yokogawa Electric Corp.
  • Brugg Kable AG
  • OFS Fitel, LLC
  • Qinetiq Group PLC
  • Weatherford
  • Bandweaver
  • Ziebel
  • FISO
  • Osensa
  • Lockheed Martin Corporation.
  • Solifos AG
  • NEC Corporation
  • Verizon
Product Code: SMRC22773

According to Stratistics MRC, the Global Distributed Fiber Optic Sensor Market is accounted for $1.44 billion in 2022 and is expected to reach $2.38 billion by 2028 growing at a CAGR of 8.8% during the forecast period. In fiber-optic communications, WDM technology is used to multiplex many optical signals on a single fibre by employing diverse laser light wavelengths, or colours, to store the individual signals. A higher level of transmission equipment availability, network bandwidth, and multi-service transmission capabilities are required due to the quick proliferation of data services. The increasing demand from businesses and companies for efficient machine system sensing operations is creating expansion opportunities.

According to India Brand Equity Foundation, an Indian Government export promotion agency, the consumption of petroleum products increased by 4.5% to 213.69 million metric tons in 2020.

Market Dynamics:

Driver:

Increasing demand for infrastructure vertical

Distributed fiber optic sensors are now more frequently used in the infrastructure sector, especially for monitoring structural health. Understanding the structural and economic aspects of facilities like dams, bridges, and highways, among others, is the main goal driving the increased penetration of distributed sensors in this industry. The novel distributed fibre optic sensors can simultaneously detect pressure, temperature, and strain at various sites. The ability of distributed sensors to be used in any difficult environment and the ability to track structural problems in real time are the main drivers of greater use of distributed sensing in the civil engineering sector.

Restraint:

Technical issues in installation

The main obstacle to the market expansion for distributed fibre optic sensors is technical problems with the installation of distributed sensors. The optical fibre must be handled cautiously to prevent breakage during installation. Due to the poor strain sensitivity of cabled fibres, any bending that occurs during installation would harm the dispersed optical fibre. Although the design of the sensor cables has greatly improved, inaccurate data can still not be obtained with faulty cable implementation. Such failures may cause clients to disregard the technology in upcoming projects due to the high installation costs. These kinds of risk would hinder market expansion.

Opportunity:

Growing demand for data base analysis

Data is gathered through distributed fibre optic sensors along the optical fiber's length. Due to the vast amount of data that is produced, many analytical techniques are utilised to examine the data that has been gathered. Globally, the use of data-driven decision-making and tactics is becoming more and more popular. These are accomplished by identifying a pattern in the data that the management can assess, deciphering the insights, and improving performance and decision-making. Using light scattering, the sensors can track changes in temperature, pressure, vibration, or strain along the length of the fibre. The distributed fibre optic sensors market is anticipated to expand throughout the projected period as businesses adopt data-intensive decisions more frequently.

Threat:

High cost of distributed fiber optic sensor systems

Businesses employ distributed sensor systems to monitor demanding work conditions and comprehend dealing with real-time data accurately. The market is expanding as a result of the many benefits these dispersed sensors provide, including their precision and dependability. Yet, this technology is still expensive, making it unaffordable for every business that needs real-time monitoring and sensing. Furthermore, these systems are expensive to build and maintain, which makes their implementation challenging. As a result, the high price of distributed fibre optic sensor systems is a major obstacle to market expansion.

COVID-19 Impact:

The COVID-19 epidemic has had a profound effect on the sector. Due to fewer production operations and less product development, fibre optics use in the industrial and civil engineering sectors has decreased. The industry has prospects for expansion, nonetheless, as a result of evolving manufacturing techniques and the requirement to use fibre optics in mission-critical situations. It is anticipated that the development of plasmonic fiber-optic absorbance biosensors will enable medical professionals to conduct tests more quickly and with more accuracy. Due to the disease's rapid spread and the requirement for treatment, this trend is anticipated to persist over the projected period.

The Raman scattering effect segment is expected to be the largest during the forecast period

The Raman scattering effect segment is estimated to have a lucrative growth, due to the cloud computing application in crucial circumstances, such as the security of huge structures, the detection of coolant leaks, and the detection of fires, as well as its employment in sophisticated data processing techniques. Additionally, the technology's tolerance to electromagnetic interference supports ongoing monitoring and guards against structural issues in large-scale facilities like bridges and rail tracks.

The oil & gas segment is expected to have the highest CAGR during the forecast period

The oil & gas segment is anticipated to witness the fastest CAGR growth during the forecast period, due to the growing need of distributed sensing technology in pipeline and infrastructure health monitoring. Additionally, it is projected that during the forecast period, the oil and gas industry would be the biggest user of distributed fibre optical sensors due to growing research and development for pipeline monitoring and gas leakage detection.

Region with highest share:

North America is projected to hold the largest market share during the forecast period owing to the U.S. having a sizable oil and gas industry, which encourages higher adoption rates for dispersed fibre optic connections. In order to increase their capacity for profit generation, oil and gas businesses are encouraged by the rising price of crude oil to implement more accessible and effective support systems. This increases the industry's growth prospects.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period, owing to regional technological development, the fibre optics market is expanding. The epidemic increased the demand for more robust infrastructure connections and speedier internet services. As a result, service providers are being encouraged to use fibre optics to meet customer demands. A growing number of infrastructure and building projects in the region as well as a need for process safety and security make Asia Pacific another location where the sector has great growth potential.

Key players in the market:

Some of the key players profiled in the Distributed Fiber Optic Sensor Market include: Omnisens SA, Halliburton, Luna Innovations Inc., Schlumberger Ltd., AP Sensing GmbH, Yokogawa Electric Corp., Brugg Kable AG, OFS Fitel, LLC, Qinetiq Group PLC, Weatherford, Bandweaver, Ziebel, FISO, Osensa, Lockheed Martin Corporation., Solifos AG, NEC Corporation and Verizon.

Key Developments:

In March 2023, Yokogawa Electric and Otsuka Chemical announced the establishment of Syncrest Inc. This joint venture would research, develop, and manufacture middle molecular pharmaceuticals as a contract research, development, and manufacturing organization.

In May 2021, AP Sensing announced the release of its 5th-Generation Distributed Acoustic Sensing (DAS) system. With the launch of this new Distributed Acoustic Sensing (DAS), AP Sensing makes strides in asset monitoring technology with a system that, unlike traditional point sensors, provides gapless monitoring of valuable infrastructures such as pipelines, power cables, and railways.

Types Covered:

  • Multimode
  • Single- Mode

Scattering Methods Covered:

  • Brillouin Scattering Effect
  • Raman Scattering Effect
  • Fiber Brag Grating
  • Rayleigh Scattering Effect
  • Bragg Grating
  • Interferometric

Operating principles Covered:

  • Optical Frequency Domain Reflectometry (OFDR)
  • Optical Time Domain Reflectometry (OTDR)

Applications Covered:

  • Acoustic Sensing
  • Temperature Sensing
  • Strain Sensing
  • Other Applications

End Users Covered:

  • Safety and Security
  • Oil & Gas
  • Telecommunication
  • Power and Utility
  • Industrial
  • Infrastructure
  • Civil Engineering
  • Military & Border Security
  • Transportation
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Distributed Fiber Optic Sensor Market, By Type

  • 5.1 Introduction
  • 5.2 Multimode
  • 5.3 Single- Mode

6 Global Distributed Fiber Optic Sensor Market, By Scattering Method

  • 6.1 Introduction
  • 6.2 Brillouin Scattering Effect
  • 6.3 Raman Scattering Effect
  • 6.4 Fiber Brag Grating
  • 6.5 Rayleigh Scattering Effect
  • 6.6 Bragg Grating
  • 6.7 Interferometric

7 Global Distributed Fiber Optic Sensor Market, By Operating principle

  • 7.1 Introduction
  • 7.2 Optical Frequency Domain Reflectometry (OFDR)
  • 7.3 Optical Time Domain Reflectometry (OTDR)

8 Global Distributed Fiber Optic Sensor Market, By Application

  • 8.1 Introduction
  • 8.2 Acoustic Sensing
  • 8.3 Temperature Sensing
  • 8.4 Strain Sensing
  • 8.5 Other Applications

9 Global Distributed Fiber Optic Sensor Market, By End User

  • 9.1 Introduction
  • 9.2 Safety and Security
  • 9.3 Oil & Gas
  • 9.4 Telecommunication
  • 9.5 Power and Utility
  • 9.6 Industrial
  • 9.7 Infrastructure
  • 9.8 Civil Engineering
  • 9.9 Military & Border Security
  • 9.10 Transportation
  • 9.11 Other End Users

10 Global Distributed Fiber Optic Sensor Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Omnisens SA
  • 12.2 Halliburton
  • 12.3 Luna Innovations Inc.
  • 12.4 Schlumberger Ltd.
  • 12.5 AP Sensing GmbH
  • 12.6 Yokogawa Electric Corp.
  • 12.7 Brugg Kable AG
  • 12.8 OFS Fitel, LLC
  • 12.9 Qinetiq Group PLC
  • 12.10 Weatherford
  • 12.11 Bandweaver
  • 12.12 Ziebel
  • 12.13 FISO
  • 12.14 Osensa
  • 12.15 Lockheed Martin Corporation.
  • 12.16 Solifos AG
  • 12.17 NEC Corporation
  • 12.18 Verizon

List of Tables

  • Table 1 Global Distributed Fiber Optic Sensor Market Outlook, By Region (2020-2028) ($MN)
  • Table 2 Global Distributed Fiber Optic Sensor Market Outlook, By Type (2020-2028) ($MN)
  • Table 3 Global Distributed Fiber Optic Sensor Market Outlook, By Multimode (2020-2028) ($MN)
  • Table 4 Global Distributed Fiber Optic Sensor Market Outlook, By Single- Mode (2020-2028) ($MN)
  • Table 5 Global Distributed Fiber Optic Sensor Market Outlook, By Scattering Method (2020-2028) ($MN)
  • Table 6 Global Distributed Fiber Optic Sensor Market Outlook, By Brillouin Scattering Effect (2020-2028) ($MN)
  • Table 7 Global Distributed Fiber Optic Sensor Market Outlook, By Raman Scattering Effect (2020-2028) ($MN)
  • Table 8 Global Distributed Fiber Optic Sensor Market Outlook, By Fiber Brag Grating (2020-2028) ($MN)
  • Table 9 Global Distributed Fiber Optic Sensor Market Outlook, By Rayleigh Scattering Effect (2020-2028) ($MN)
  • Table 10 Global Distributed Fiber Optic Sensor Market Outlook, By Bragg Grating (2020-2028) ($MN)
  • Table 11 Global Distributed Fiber Optic Sensor Market Outlook, By Interferometric (2020-2028) ($MN)
  • Table 12 Global Distributed Fiber Optic Sensor Market Outlook, By Operating principle (2020-2028) ($MN)
  • Table 13 Global Distributed Fiber Optic Sensor Market Outlook, By Optical Frequency Domain Reflectometry (OFDR) (2020-2028) ($MN)
  • Table 14 Global Distributed Fiber Optic Sensor Market Outlook, By Optical Time Domain Reflectometry (OTDR) (2020-2028) ($MN)
  • Table 15 Global Distributed Fiber Optic Sensor Market Outlook, By Application (2020-2028) ($MN)
  • Table 16 Global Distributed Fiber Optic Sensor Market Outlook, By Acoustic Sensing (2020-2028) ($MN)
  • Table 17 Global Distributed Fiber Optic Sensor Market Outlook, By Temperature Sensing (2020-2028) ($MN)
  • Table 18 Global Distributed Fiber Optic Sensor Market Outlook, By Strain Sensing (2020-2028) ($MN)
  • Table 19 Global Distributed Fiber Optic Sensor Market Outlook, By Other Applications (2020-2028) ($MN)
  • Table 20 Global Distributed Fiber Optic Sensor Market Outlook, By End User (2020-2028) ($MN)
  • Table 21 Global Distributed Fiber Optic Sensor Market Outlook, By Safety and Security (2020-2028) ($MN)
  • Table 22 Global Distributed Fiber Optic Sensor Market Outlook, By Oil & Gas (2020-2028) ($MN)
  • Table 23 Global Distributed Fiber Optic Sensor Market Outlook, By Telecommunication (2020-2028) ($MN)
  • Table 24 Global Distributed Fiber Optic Sensor Market Outlook, By Power and Utility (2020-2028) ($MN)
  • Table 25 Global Distributed Fiber Optic Sensor Market Outlook, By Industrial (2020-2028) ($MN)
  • Table 26 Global Distributed Fiber Optic Sensor Market Outlook, By Infrastructure (2020-2028) ($MN)
  • Table 27 Global Distributed Fiber Optic Sensor Market Outlook, By Civil Engineering (2020-2028) ($MN)
  • Table 28 Global Distributed Fiber Optic Sensor Market Outlook, By Military & Border Security (2020-2028) ($MN)
  • Table 29 Global Distributed Fiber Optic Sensor Market Outlook, By Transportation (2020-2028) ($MN)
  • Table 30 Global Distributed Fiber Optic Sensor Market Outlook, By Other End Users (2020-2028) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.