NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

銻:未來展望 (到2030年)

Antimony: Outlook to 2030, 14th Edition

出版商 Roskill Information Services 商品編碼 942693
出版日期 內容資訊 英文
商品交期: 最快1-2個工作天內
價格
如有價格方面的疑問請按下「詢問」鍵來信查詢
銻:未來展望 (到2030年) Antimony: Outlook to 2030, 14th Edition
出版日期: 2020年11月30日內容資訊: 英文
簡介

全球銻消費量,2019年為低迷狀態,不過,受到2020年新型冠狀病毒感染疾病 (Covid-19)的影響恐怕進一步下滑。有資源回收的二次供給量增加,預計一次供給量減少。各用途中,非冶金學的用途,尤其是阻燃劑需求將成為中心。

本報告提供全球銻市場相關分析,全球資源蘊藏量、賦存情形,及近幾年的生產量、消費量、價格的變化,主要的推動及阻礙市場要素,今後的市場機會的方向性,主要企業的簡介,各國市場詳細趨勢等資訊彙整,為您概述為以下內容。

目錄

  • 1.摘要整理
  • 2.供應鏈的流程圖
  • 3.全球生產趨勢
  • 4.生產成本
  • 5.全球消費趨勢
  • 6.國際貿易
  • 7.價格
  • 8.未來展望
  • 9.背景情況
  • 10.永續性
  • 11.各國市場的簡介
  • 12. 企業簡介
  • 13.一次利用的消費量
目錄

Antimony is mostly consumed in flame retardants and lead-acid batteries. Together these end-uses account for more than 80% of antimony demand and trends in these two critical applications thus shape market dynamics.

In both cases, a similar situation prevails: while overall demand (for flame retardants and lead-acid batteries) has been steadily increasing, the antimony loading within these applications has been cut. In flame retardants, this is mainly because of high antimony prices prompting substitution of antimony, and legislative and requirements forcing changes to flame retardant formulas. In batteries, lead-calcium-tin alloys are increasingly used instead of antimonial lead in battery grids for sealed-for-life maintenance-free automotive batteries, also called valve-regulated lead-acid (VRLA) batteries. Other end-uses include plastics and heat stabilizers, ceramics and glass (specifically solar panel glass) and a variety of metallurgical applications.

Consumption of antimony was weak in 2019 and the impact of COVID-19 means that demand will remain sluggish in 2020. Roskill maintains a forecast of 1-2%py growth for non-metallurgical applications over the 2020s, which will be counterbalanced by a decline in metallurgical demand, leading to deceptively steady total demand. However, importantly, Roskill believes the market may soon experience a fundamental shift. Antimony enters the supply chain in two ways: primary mine production, and secondary recovery of antimonial lead. By the mid-2020s, secondary supply from antimonial lead will be sufficient to meet metallurgical demand. As such, little or no primary supply will be required for metallurgical applications, making the metallurgical side of the market effectively "self-sufficient". As a result, Roskill forecasts that the primary supply of mined antimony will then be entirely underpinned by non-metallurgical applications, specifically flame retardants.

The outlook for non-metallurgical antimony demand is positive when considering construction and plastics trends, which suggests demand for flame retardants will increase. Antimony demand in glass is far smaller but could potentially enjoy high growth rates due to use in photovoltaic panel production. With a modest growth in demand for antimony in non-metallurgical end uses expected, Roskill envisages that demand could start to outstrip current supply levels over the longer term. However, potential additional by-product antimony supply from existing gold producers is likely to keep the market in significant surplus for much of the next decade. In addition, growing secondary supply from antimonial lead will provide a new potential antimony source over the second half of the 2020s. While currently not commercially viable to meet flame-retardant-grade antimony trioxide specifications, processors might look to utilise this growing secondary resource.

Global mine supply declined over much of the 2010s and bottomed out in 2017, mostly tracking falling demand. China has by far the largest antimony resources and has, as a result, been the world's centre for antimony mine and refined production. While China remains the leading primary producer in 2020, declining reserves, market consolidation and regulatory inspections across China leading to closures of facilities has caused a significant decrease in Chinese output from over 80% of global production in 2010 to around 50% in 2020. As a result, China has sourced growing volumes of primary antimony units through imports.

Russia and Tajikistan are the next largest producers of antimony after China, both ramping up production in recent years to fill the gap left by China and causing global supply to rebound in 2018 and 2019. In 2018, Russian supply of antimony leapfrogged ahead of Tajikistan with Russian company Polyus, one of world's leading gold producers, supplying by-product antimony from its Olimpiada mine equivalent to 15% of global mined antimony supply.

Roskill experts will answer your questions:

  • Are reserves in China dwindling, and what is the future for global mine supply?
  • How have environmental inspections impacted smelters in China and what is the global landscape of antimony processing?
  • What portion of supply is made up of gold-bearing concentrates and where are these processed?
  • Which projects might produce antimony units in the future?
  • How might regulation impact demand for antimony in flame retardants and batteries?
  • How will COVID-19 impact demand in the short term?

Subscribe now and receive:

  • Detailed report with ten-year forecasts for demand, supply and prices
  • Access to the report via Roskill Interactive for up to 5 users
  • Quarterly updates to keep you up to speed on our latest view of the industry
  • Access to Roskill specialists for key market queries
  • Option to download tables and graphs from the report
  • A summary PowerPoint of key report findings

Table of Contents

1. Executive summary

  • 1.1 Market developments
    • 1.1.1 China
    • 1.1.2 Structural changes
    • 1.1.3 Market balance and impact of COVID-19
  • 1.2 Consumption
  • 1.3 Production and production costs
  • 1.4 Prices
  • 1.5 Outlook

2. Supply chain flowchart

3. World production

  • 3.1 Mine production
    • 3.1.1 Antimony supply by source type
  • 3.2 Antimonial lead production
  • 3.3 Saleable ingot production
  • 3.4 Oxide (and equivalent) production

4. Production costs

  • 4.1 Cost of production of antimony
  • 4.2 Costing Methodology
  • 4.3 Trends in production costs

5. World consumption

  • 5.1 Stocks and Fanya
  • 5.2 Non-metallurgical applications
  • 5.3 Metallurgical applications
  • 5.4 Consumption by region

6. International trade

  • 6.1 Ore & concentrate trade
  • 6.2 Ingot trade
  • 6.3 Oxide trade
  • 6.4 Chinese export quotas and VAT on antimony products

7. Prices

  • 7.1 Historical price trends
  • 7.2 Ores and concentrates
  • 7.3 Antimony ingot
  • 7.4 Antimony oxide

8. Outlook

  • 8.1 COVID-19
  • 8.2 Historical market balance
  • 8.3 Outlook for antimony demand
    • 8.3.1 Metallurgical demand
    • 8.3.2 Non-metallurgical demand
      • 8.3.2.1 Low-case scenario
  • 8.4 Outlook for antimony supply
    • 8.4.1 Project pipeline
    • 8.4.2 Outlook supply by concentrate type
    • 8.4.3 Outlook of secondary antimony supply
  • 8.5 Outlook market balance
    • 8.5.1 Metallurgical self-sufficiency
    • 8.5.2 Available to oxide
  • 8.6 Outlook for antimony prices
    • 8.6.1 Scenarios

9. Background

  • 9.1 Occurrence
  • 9.2 Reserves and resources
  • 9.3 Mining
  • 9.4 Processing of antimony ores
    • 9.4.1 Pyrometallurgy
      • 9.4.1.1 Low-grade ores
      • 9.4.1.2 Intermediate-grade ores
      • 9.4.1.3 High-grade ores
    • 9.4.2 Hydrometallurgy
  • 9.5 Processing refined antimony trioxide
  • 9.6 Processing of gold-antimony ores
  • 9.7 Processing of antimonial lead
  • 9.8 Specifications
    • 9.8.1 Stibnite ores
    • 9.8.2 Antimony metal
    • 9.8.3 Antimony ingot
    • 9.8.4 Antimony compounds

10. Sustainability

  • 10.1 Environmental, Social and Governance (ESG)
    • 10.1.1 Environmental
      • 10.1.1.1 Resource consumption
      • 10.1.1.2 Emissions
      • 10.1.1.3 Biodiversity and land use
      • 10.1.1.4 Tailings disposal
      • 10.1.1.5 Artisanal and small-scale mining (ASM)
      • 10.1.1.6 Human rights
    • 10.1.2 Governance
      • 10.1.2.1 Corruption
      • 10.1.2.2 Ease of Doing Business (EoDB)
  • 10.2 Critical materials
  • 10.3 Responsible sourcing initiatives
    • 10.3.1 Organisation for Economic Cooperation and Development (OECD)
    • 10.3.2 Global Reporting Initiative
    • 10.3.3 Responsible Mining Index
    • 10.3.4 Initiative for Responsible Mining Assurance

11. Country profiles

  • 11.1 Algeria
  • 11.2 Argentina
  • 11.3 Australia
  • 11.4 Austria
  • 11.5 Belgium
  • 11.6 Bolivia
  • 11.7 Brazil
  • 11.8 Bulgaria
  • 11.9 Canada
  • 11.10 Chile
  • 11.11 China
  • 11.12 Colombia
  • 11.13 Czech Republic
  • 11.14 Ecuador
  • 11.15 France
  • 11.16 Germany
  • 11.17 Ghana
  • 11.18 Greece
  • 11.19 Guatemala
  • 11.20 Honduras
  • 11.21 India
  • 11.22 Indonesia
  • 11.23 Iran
  • 11.24 Ireland
  • 11.25 Israel
  • 11.26 Italy
  • 11.27 Japan
  • 11.28 Kazakhstan
  • 11.29 Kenya
  • 11.30 Kyrgyz Republic
  • 11.31 Laos
  • 11.32 Lebanon
  • 11.33 Malaysia
  • 11.34 Mexico
  • 11.35 Morocco
  • 11.36 Mozambique
  • 11.37 Myanmar
  • 11.38 Netherlands
  • 11.39 New Zealand
  • 11.40 Nigeria
  • 11.41 North Korea
  • 11.42 Oman
  • 11.43 Pakistan
  • 11.44 Peru
  • 11.45 Philippines
  • 11.46 Poland
  • 11.47 Portugal
  • 11.48 Romania
  • 11.49 Russia
  • 11.50 Saudi Arabia
  • 11.51 Serbia
  • 11.52 Slovakia
  • 11.53 Slovenia
  • 11.54 South Africa
  • 11.55 South Korea
  • 11.56 Spain
  • 11.57 Sri Lanka
  • 11.58 Sweden
  • 11.59 Taiwan
  • 11.60 Tajikistan
  • 11.61 Thailand
  • 11.62 Turkey
  • 11.63 UAE
  • 11.64 Ukraine
  • 11.65 UK
  • 11.66 USA
  • 11.67 Venezuela
  • 11.68 Vietnam
  • 11.69 Zimbabwe

12. Company profiles

  • 12.1 Anzob
    • 12.1.1 AMCO smelter
  • 12.2 AMG
  • 12.3 Beaver Brook Antimony Mine (BBAM)
  • 12.4 Campine
  • 12.5 Chemico Chemicals
  • 12.6 GeoProMining
  • 12.7 Guangxi China Tin Group
    • 12.7.1 Hechi Wuji
  • 12.8 Guangxi Youngsun Chemical
  • 12.9 Hunan Gold
    • 12.9.1 Chenzhou Mining Group
      • 12.9.1.1 Chenzhou Anhua Zhazixi
      • 12.9.1.2 Changde Chenzhou Antimony
      • 12.9.1.3 Other subsidiaries
    • 12.9.2 Chenzhou Xinlong
    • 12.9.3 Huangjindong Mining
  • 12.10 Hsikwang Shan Twinkling Star
  • 12.11 Jiefu Group
    • 12.11.1 Guizhou Dongfeng Mining Group
  • 12.12 Mandalay Resources
  • 12.13 Nihon Seiko
  • 12.14 Novoangarsky
  • 12.15 Polyus
  • 12.16 Quartzchem
  • 12.17 Strategic and Precious Metals Processing (SPMP)
  • 12.18 Taojiang Jiutong
  • 12.19 Tha Byu Mining
  • 12.20 Talco Gold (Tibet Huayu)
  • 12.21 Umicore
  • 12.22 United States Antimony Corporation
  • 12.23 Yunnan Muli

13. Consumption by first use

  • 13.1 Lead-acid batteries
    • 13.1.1 Tin versus antimony use in VRLA batteries
    • 13.1.2 Trends in lead-acid batteries
    • 13.1.3 Major producers of lead-acid batteries
    • 13.1.4 Use in motor vehicles
    • 13.1.5 Use in e-bikes
    • 13.1.6 Use in other applications
    • 13.1.7 Consumption of antimony in lead-acid batteries
    • 13.1.8 Outlook for antimony in lead-acid batteries
      • 13.1.8.1 Outlook for motor vehicles
      • 13.1.8.2 Outlook for e-bikes and other applications
      • 13.1.8.3 Outlook for lead-acid batteries
      • 13.1.8.4 Outlook for antimony in lead-acid batteries
  • 13.2 Other metallurgical applications
    • 13.2.1 Consumption of antimony in other metallurgical applications
    • 13.2.2 Outlook for antimony in other metallurgical applications
  • 13.3 Flame retardants
    • 13.3.1 Types of flame retardant
      • 13.3.1.1 Mode of action of flame retardants
      • 13.3.1.2 Halogenated flame retardants
      • 13.3.1.3 Non-halogenated flame retardants
    • 13.3.2 Use of antimony in flame retardants
    • 13.3.3 Major producers of flame retardants
    • 13.3.4 Use by polymer type
      • 13.3.4.1 Thermoplastics
      • 13.3.4.2 Thermosets
      • 13.3.4.3 Elastomers
    • 13.3.5 Use by sector
      • 13.3.5.1 Electrical and electronics applications
      • 13.3.5.2 Construction
      • 13.3.5.3 Furnishings
      • 13.3.5.4 Transport
    • 13.3.6 Regulatory environment
      • 13.3.6.1 Fire safety regulations
      • 13.3.6.2 Regulation of antimony compounds
      • 13.3.6.3 Antimony oxide risk management
      • 13.3.6.4 Regulation of halogenated flame retardants
      • 13.3.6.5 Alternative halogenated flame retardants
    • 13.3.7 Alternatives to antimony oxides
      • 13.3.7.1 Direct replacement
      • 13.3.7.2 Replacement of halogenated flame retardants
      • 13.3.7.3 Removal of flame retardants
    • 13.3.8 Consumption of antimony in flame retardants
    • 13.3.9 Outlook for antimony in flame retardants
  • 13.4 Plastics
    • 13.4.1 Use as a catalyst in polyester production
    • 13.4.2 Use in PVC stabilisation
    • 13.4.3 Major producers of PVC and PET
    • 13.4.4 Consumption of antimony in plastics and heat stabilisers
    • 13.4.5 Outlook for antimony in plastics and heat stabilisers
  • 13.5 Glass
    • 13.5.1 Consumption of antimony in glass
    • 13.5.2 Outlook for antimony in glass
  • 13.6 Ceramics
    • 13.6.1 Consumption of antimony in ceramics
    • 13.6.2 Outlook for antimony in ceramics
  • 13.7 Other non-metallurgical applications
    • 13.7.1 Outlook for antimony in other non-metallurgical applications

14. Macro economic outlook

List of Tables

  • Table 1: World: Consumption of antimony by end use, 2014-2020
  • Table 2: World: Mine production of antimony, 2014-2020
  • Table 3: World: Production of antimonial lead, 2014-2020
  • Table 4: World: Production of saleable antimony ingot, 2014-2020
  • Table 5: World: Production of antimony oxides, 2014-2020
  • Table 6: World: Consumption of antimony by end use, 2014-2020
  • Table 7: World: Exports of antimony ores & concentrates, 2014-2020
  • Table 8: World: Imports of antimony ores & concentrates, 2014-2020
  • Table 9: World: Exports of antimony metal/ingot, 2014-2020
  • Table 10: World: Imports of antimony metal/ingot, 2014-2020
  • Table 11: World: Exports of antimony oxides, 2014-2020
  • Table 12: World: Imports of antimony oxides, 2014-2020
  • Table 13: Forecast antimony demand, 2020-2030
  • Table 14: Forecast metallurgical consumption of antimony by end use, 2020-2030
  • Table 15: Forecast non-metallurgical consumption of antimony by end use, 2020-2030
  • Table 16: Forecast low-case non-metallurgical demand scenario, 2020-2030
  • Table 17: Forecast antimony mine supply, 2020-2030
  • Table 18: Overview of advanced antimony projects and idle antimony-gold mines
  • Table 19: Forecast secondary antimony supply
  • Table 20: Forecast antimony metal price, Rotterdam warehouse, 2019-2030 99.65% Sb
  • Table 21: USGS: Antimony reserve data
  • Table 22: Typical stibnite ore mineral processing results
  • Table 23: Properties of stibnite
  • Table 24: Properties of antimony metal
  • Table 25: ASTM specifications for antimony metal
  • Table 26: Typical specifications for high-purity antimony ingot (ppm max unless specified)
  • Table 27: Formulae and antimony contents of antimony compounds
  • Table 28: Specifications for KR grade antimony trioxide produced by Amspec
  • Table 29: Antimony mine production vs Human Freedom Index
  • Table 30: Antimony mine production vs Transparency International's Corruption Perceptions Index
  • Table 31: Antimony mine production vs World Bank's Ease of Doing Business Index
  • Table 32: Critical raw materials identified by key Government bodies
  • Table 33: Responsible sourcing initiatives and policies, 2020
  • Table 34: OECD Due Diligence Guidance for minerals - 5-Step Framework for Upstream and Downstream Supply Chains
  • Table 35: Algeria: Summary statistics, 2014-2020
  • Table 36: Argentina: Summary statistics, 2014-2020
  • Table 37: Argentina: Summary of operations
  • Table 38: Australia: Summary statistics, 2014-2020
  • Table 39: Australia: Summary of primary operations
  • Table 40: Australia: Summary of projects
  • Table 41: Austria: Summary statistics, 2014-2020
  • Table 42: Austria: Summary of secondary operations
  • Table 43: Belgium: Summary statistics, 2014-2020
  • Table 44: Belgium: Summary of operations
  • Table 45: Bolivia: Summary statistics, 2014-2020
  • Table 46: Bolivia: Summary of operations
  • Table 47: Brazil: Summary statistics, 2014-2020
  • Table 48: Brazil: Summary of operations
  • Table 49: Bulgaria: Summary statistics, 2014-2020
  • Table 50: Brazil: Summary of secondary operations
  • Table 51: Canada: Summary statistics, 2014-2020
  • Table 52: Canada: Summary of primary operations
  • Table 53: Canada: Summary of projects
  • Table 54: Reserves at major mines in China
  • Table 55: China: Summary statistics, 2014-2020
  • Table 56: China: Summary of primary operations
  • Table 57: China: Summary of largest secondary operations
  • Table 58: Colombia: Summary statistics, 2014-2020
  • Table 59: Colombia: Summary of operations
  • Table 60: Czech Republic: Summary statistics, 2014-2020
  • Table 61: Czech Republic: Summary of operations
  • Table 62: Ecuador: Summary statistics, 2014-2020
  • Table 63: Ecuador: Summary of projects
  • Table 64: France: Summary statistics, 2014-2020
  • Table 65: France: Summary of operations
  • Table 66: Germany: Summary statistics, 2014-2020
  • Table 67: Germany: Summary of primary operations
  • Table 68: Ghana: Summary statistics, 2014-2020
  • Table 69: Ghana: Summary of operations
  • Table 70: Greece: Summary statistics, 2014-2020
  • Table 71: Greece: Summary of operations
  • Table 72: Guatemala: Summary statistics, 2014-2020
  • Table 73: Guatemala: Summary of operations
  • Table 74: Honduras: Summary statistics, 2014-2020
  • Table 75: Honduras: Summary of operations
  • Table 76: India: Summary statistics, 2014-2020
  • Table 77: India: Summary of primary operations
  • Table 78: Indonesia: Summary statistics, 2014-2020
  • Table 79: Indonesia: Summary of operations
  • Table 80: Iran: Summary statistics, 2014-2020
  • Table 81: Iran: Summary of primary operations
  • Table 82: Ireland: Summary statistics, 2014-2020
  • Table 83: Israel: Summary statistics, 2014-2020
  • Table 84: Israel: Summary of secondary operations
  • Table 85: Italy: Summary statistics, 2014-2020
  • Table 86: Italy: Summary of secondary operations
  • Table 87: Japan: Summary statistics, 2014-2020
  • Table 88: Japan: Summary of secondary operations
  • Table 89: Kazakhstan: Summary statistics, 2014-2020
  • Table 90: Kazakhstan: Summary of secondary operations
  • Table 91: Kenya: Summary statistics, 2014-2020
  • Table 92: Kyrgyz Republic: Summary statistics, 2014-2020
  • Table 93: Kyrgyz Republic: Summary of operations
  • Table 94: Laos: Summary statistics, 2014-2020
  • Table 95: Laos: Summary of primary operations
  • Table 96: Lebanon: Summary statistics, 2014-2020
  • Table 97: Malaysia: Summary statistics, 2014-2020
  • Table 98: Malaysia: Summary of secondary operations
  • Table 99: Mexico: Summary statistics, 2014-2020
  • Table 100: Mexico: Summary of primary operations
  • Table 101: Morocco: Summary statistics, 2014-2020
  • Table 102: Morocco: Summary of operations
  • Table 103: Mozambique: Summary statistics, 2014-2020
  • Table 104: List of main antimony deposits
  • Table 105: Myanmar: Summary statistics, 2014-2020
  • Table 106: Myanmar: Summary of operations
  • Table 107: Netherlands: Summary statistics, 2014-2020
  • Table 108: New Zealand: Summary statistics, 2014-2020
  • Table 109: Nigeria: Summary statistics, 2014-2020
  • Table 110: North Korea: Summary statistics, 2014-2020
  • Table 111: Oman Summary statistics, 2014-2020
  • Table 112: Oman: Summary of operations
  • Table 113: Pakistan: Summary statistics, 2014-2020
  • Table 114: Pakistan: Summary of operations
  • Table 115: Peru: Summary statistics, 2014-2020
  • Table 116: Philippines: Summary statistics, 2014-2020
  • Table 117: Philippines: Summary of operations
  • Table 118: Poland: Summary statistics, 2014-2020
  • Table 119: Poland: Summary of operations
  • Table 120: Portugal: Summary statistics, 2014-2020
  • Table 121: Romania: Summary statistics, 2014-2020
  • Table 122: Romania: Summary of operations
  • Table 123: Russia: Summary statistics, 2014-2020
  • Table 124: Russia: Summary of operations
  • Table 125: Saudi Arabia: Summary statistics, 2014-2020
  • Table 126: Saudi Arabia: Summary of operations
  • Table 127: Serbia: Summary statistics, 2014-2020
  • Table 128: Serbia: Summary of operations
  • Table 129: Slovakia: Summary statistics, 2014-2020
  • Table 130: Slovakia: Summary of projects
  • Table 131: Slovenia: Summary statistics, 2014-2020
  • Table 132: South Africa: Summary statistics, 2014-2020
  • Table 133: South Africa: Summary of primary operations
  • Table 134: South Korea: Summary statistics, 2014-2020
  • Table 135: South Korea: Summary of operations
  • Table 136: Spain: Summary statistics, 2014-2020
  • Table 137: Spain: Summary of operations
  • Table 138: Sri Lanka: Summary statistics, 2014-2020
  • Table 139: Sri Lanka: Summary of operations
  • Table 140: Sweden: Summary statistics, 2014-2020
  • Table 141: Sweden: Summary of operations
  • Table 142: Taiwan: Summary statistics, 2014-2020
  • Table 143: Taiwan: Summary of secondary operations
  • Table 144: Tajikistan: Summary statistics, 2014-2020
  • Table 145: Tajikistan: Summary of operations
  • Table 146: Thailand: Summary statistics, 2014-2020
  • Table 147: Thailand: Summary of operations
  • Table 148: Turkey: Summary statistics, 2014-2020
  • Table 149: Turkey: Summary of operations
  • Table 150: UAE: Summary statistics, 2014-2020
  • Table 151: UAE: Summary of operations
  • Table 152: Ukraine: Summary statistics, 2014-2020
  • Table 153: UK: Summary statistics, 2014-2020
  • Table 154: UK: Summary of operations
  • Table 155: USA: Summary statistics, 2014-2020
  • Table 156: USA: Summary of operations
  • Table 157: USA: Summary of projects, 2018
  • Table 158: Venezuela: Summary statistics, 2014-2020
  • Table 159: Vietnam: Summary statistics, 2014-2020
  • Table 160: Vietnam: Summary of operations
  • Table 161: Zimbabwe: Summary statistics, 2014-2020
  • Table 162: Anzob
  • Table 163: Anzob: List of assets
  • Table 164: AMCO: List of assets
  • Table 165: AMG
  • Table 166: Beaver Brook Antimony Mine
  • Table 167: Beaver Brook: Resources and reserves, 2009
  • Table 168: Campine
  • Table 169: Chemico Chemicals
  • Table 170: GeoProMining
  • Table 171: GeoProMining: Reserves
  • Table 172: Guangxi China Tin Group
  • Table 173: Hechi Wuji
  • Table 174: Guangxi Youngsun Chemical
  • Table 175: Hunan Gold Corporation
  • Table 176: Hunan Gold: Summary overview of main operations
  • Table 177: Chenzhou Anhua Zhazixi
  • Table 178: Hunan Chenzhou Mining: Overview of other projects and operations
  • Table 179: Chenzhou Xinlong Mining
  • Table 180: Twinkling Star
  • Table 181: Mandalay Resources
  • Table 182: Mandalay Resources: Resources and reserves, 2019
  • Table 183: Nihon Seiko
  • Table 184: Novoangarsky dressing plant
  • Table 185: Novoangarsky: List of assets
  • Table 186: Udereyskoe deposit: Resources and reserves
  • Table 187: Polyus
  • Table 188: Quartz High Quality Friction Chemicals
  • Table 189: Strategic and Precious Metals Processing
  • Table 190: Taojiang Jiutong
  • Table 191: Tha Byu Mining
  • Table 192: Talco Gold
  • Table 193: Talco Gold: List of assets
  • Table 194: Umicore
  • Table 195: United States Antimony Corporation
  • Table 196: Yunnan Muli
  • Table 197: Consumption of antimony in lead-acid batteries, 2014-2020
  • Table 198: Forecast: Antimony consumption in lead-acid batteries, 2020-2030
  • Table 199: Consumption of antimony in other metallurgical applications, 2014-2020
  • Table 200: Forecast: Antimony consumption in other metallurgical applications, 2020-2030
  • Table 201: Application of antimony oxides in selected materials
  • Table 202: Comparison of the properties of antimony pentoxide and antimony trioxide
  • Table 203: Example specifications for various antimony trioxide grades from a major supplier
  • Table 204: Limiting oxygen indices of various polymers
  • Table 205: Applications of PVC and use of flame retardant additives
  • Table 206: Applications of UPR resins and use of flame retardant additives
  • Table 207: Common applications for antimony-halogen flame retardant systems in electronic and electrical equipment
  • Table 208: Typical flame retardant uses in construction sub-sectors
  • Table 209: Existing European Union regulation relating to antimony as of 2020
  • Table 210: European occupational exposure limit for antimony compounds
  • Table 211: EPA Regulations relating to antimony compounds as of 2014
  • Table 212: Masterbatches available from antimony trioxide producers
  • Table 213: Flame retardants restricted under the Stockholm convention on POPs
  • Table 214: Summary of nation-wide restrictions on halogenated flame retardants in USA
  • Table 215: Halogenated flame retardants affected by current or proposed regulation for use in some applications in the USA by state, 2020
  • Table 216: Halogenated compounds currently used in flame retardant solutions marketed by ICL, Lanxess and Albemarle
  • Table 217: Consumption of antimony in flame retardants, 2014-2020
  • Table 218: Outline of selected, key regulations and evaluations with potential implications for antimony demand
  • Table 219: Forecast: Antimony consumption in flame retardants, 2020-2030
  • Table 220: Demand for PET, 2014-2020
  • Table 221: World: Demand for PVC, 2014-2020
  • Table 222: Consumption of antimony in plastics and heat stabilisers, 2014-2020
  • Table 223: Forecast: Antimony consumption in plastics and heat stabilisers, 2020-2030
  • Table 224: Consumption of antimony in glass, 2014-2020
  • Table 225: Forecast: Antimony consumption in glass, 2020-2030
  • Table 226: Production of ceramic tiles by main countries, 2010-2018
  • Table 227: World: Consumption of ceramic tiles by main countries, 2010-2018
  • Table 228: Italy: Most important pigments for tile manufacturing
  • Table 229: Consumption of antimony in ceramics, 2014-2020
  • Table 230: Forecast: Antimony consumption in ceramics, 2020-2030
  • Table 231: Forecast: Antimony consumption in other non-metallurgical applications, 2020-2030
  • Table 232: Base Case Forecast GDP for top-30 economies and regions, 2019-2030
  • Table 233: Base Case Forecast GDP growth rates for top-30 economies and regions, 2019-2030
  • Table 234: Base Case Forecast GDP per capita for top-30 economies and regions, 2019-2030
  • Table 235: Forecast population for top-30 economies and regions, 2019-2030
  • Table 236: Forecast inflation for top-30 economies and regions, 2019-2030
  • Table 237: Forecast exchange rates and energy prices, 2019-2030

List of Figures

  • Figure 1: Global antimony supply chain schematic
  • Figure 2: Antimony supply-demand and market balance (RHS) , 2014-2020
  • Figure 3: Apparent consumption of antimony in non-metallurgical uses, 2019
  • Figure 4: World: Leading mine producers of antimony, 2014-2020
  • Figure 5: World: Leading mine producers of antimony, 2019 & 2020
  • Figure 6: Cost curve for major antimony ore producers, 2019
  • Figure 7: World: Antimonial lead production, 2014-2020
  • Figure 8: Saleable antimony ingot production, 2014-2020
  • Figure 9: Antimony oxide production, by major producer, 2014-2020
  • Figure 10: Long-term trends in antimony ingot prices, Jan 2000-Oct 2020
  • Figure 11: Forecast antimony supply-demand balance, 2019-2030
  • Figure 12: Forecast antimony metal price, Rotterdam warehouse, 99.65% Sb
  • Figure 13: Antimony flowchart, 2020
  • Figure 14: World map of antimony mine production, 2020
  • Figure 15: World: Leading mine producers of antimony, 2014-2020
  • Figure 16: World: Leading mine producers of antimony, 2019 & 2020
  • Figure 17: World: Antimonial lead production, 2014-2020
  • Figure 18: World map of saleable ingot production, 2020
  • Figure 19: Saleable antimony ingot production, 2014-2020
  • Figure 20: World: Antimony oxide production, 2020
  • Figure 21: Antimony oxide production, by major producer, 2014-2020
  • Figure 22: Cost curve for major antimony ore producers, 2019
  • Figure 23: All-in sustaining costs curve by primary/by-product mine revenue stream, 2019
  • Figure 24: Exchange rates of major antimony producing countries, 2015-2020
  • Figure 25: Inflation rate of major antimony producing countries
  • Figure 26: Key energy prices
  • Figure 27: Key co-product and by-product metal prices
  • Figure 28: Metallurgical versus non-metallurgical consumption of antimony, 2010-2020
  • Figure 29: Consumption of antimony in non-metallurgical applications, 2019
  • Figure 30: Consumption of antimony in non-metallurgical applications, 2010-2020
  • Figure 31: Metallurgical consumption of antimony, 2010-2020
  • Figure 32: Antimonial lead supply and metallurgical demand, 2010-2020
  • Figure 33: Apparent consumption of antimony in non-metallurgical uses, 2019
  • Figure 34: Trade flow of antimony ores and concentrates, 2019
  • Figure 35: Trade flow of antimony ingot, 2019
  • Figure 36: Trade flow of antimony oxides, 2019
  • Figure 37: Long-term trends in antimony ingot prices, Jan 2000-Oct 2020
  • Figure 38: Comparison of unit values of exports of antimony concentrates, 2015-2020
  • Figure 39: Antimony ingot price series, 99.65% Sb, Rotterdam warehouse
  • Figure 40: Comparison of antimony oxide prices, 99.5% Sb2O3
  • Figure 41: Comparison of 99.5% and 99.8% antimony trioxide prices, Jul 2017-Aug 2020
  • Figure 42: Forecast Global GDP growth scenarios, 2015-2022
  • Figure 43: Forecast Chinese GDP growth scenarios, 2015-2022
  • Figure 44: Antimony supply-demand market balance, 2014-2020
  • Figure 45: Non-metallurgical antimony supply-demand market balance, 2014-2020
  • Figure 46: Forecast metallurgical antimony demand, 2019-2030
  • Figure 47: Forecast non-metallurgical antimony demand, 2019-2030
  • Figure 48: Prolonged recovery scenario forecasts for non-metallurgical antimony demand, 2019-2030
  • Figure 49: Forecast antimony mine supply by concentrate type, 2011-2030
  • Figure 50: Forecast antimony supply-demand balance, 2019-2030
  • Figure 51: Forecast metallurgical consumption and secondary supply, 2019-2030
  • Figure 52: Forecast non-metallurgical supply-demand balance, 2019-2030
  • Figure 53: Forecast antimony metal price, Rotterdam warehouse, 2019-2030 99.65% Sb
  • Figure 54: World map of major antimony resource countries (shaded purple)
  • Figure 55: Pyrometallurgical treatment of antimony concentrates
  • Figure 56: Reverberatory treatment of antimony oxides
  • Figure 57: UN Sustainable Development Goals
  • Figure 58: Roskill's ESG framework
  • Figure 59: Criticality matrix
  • Figure 60: European CRM list 2020
  • Figure 61: Trends in the production of rechargeable batteries, 2014-2020
  • Figure 62: Trends in the production of rechargeable batteries, 2014-2020
  • Figure 63: World: Forecast vehicle sales, 2014-2030
  • Figure 64: World: Forecast lead-acid cell production, 2014-2030
  • Figure 65: World: Forecast lead-acid cell production, 2014-2030
  • Figure 66: Global consumption of major thermoplastic polymers, 2019
  • Figure 67: Global consumption of major thermoset plastic polymers, 2019
  • Figure 68: Approximate market share of major elastomer types, 2019
  • Figure 69: Estimated antimony use in flame retardant plastics in the EU
  • Figure 70: Comparison of antimony, zinc and tin prices