表紙
市場調查報告書

鈮的全球市場:到2029年的展望 (第15版)

Niobium: Outlook to 2029, 15th Edition

出版商 Roskill Information Services 商品編碼 923165
出版日期 內容資訊 英文
商品交期: 最快1-2個工作天內
價格
如有價格方面的疑問請按下「詢問」鍵來信查詢
鈮的全球市場:到2029年的展望 (第15版) Niobium: Outlook to 2029, 15th Edition
出版日期: 2019年12月31日內容資訊: 英文
簡介

鈮的約90%,在製鐵上作為鈮鐵消費。其餘約10%,是用於含超合金的高性能合金,炭化物,超導體,電子元件,功能性陶瓷等,少量更高價值的廣泛用途。

本報告提供鈮的全球市場的最新形勢與未來展望相關分析,市場基本結構和供給、需求體制,主要的推動及阻礙市場要素,市場機會,市場規模 (生產量、消費量、貿易額) 及國際價格趨勢預測,主要企業的簡介等資訊彙整,為您概述為以下內容。

第1章 摘要整理

  • 需求
  • 供給
  • 國際貿易
  • 價格
  • 預測

第2章 鈮的流程圖

第3章 全球生產量

  • 鈮礦物的生產
  • 鈮鐵的生產
  • 其他鈮產品的生產
  • 鈮產品的生產成本
    • 鈮鐵
    • 其他鈮產品

第4章 全球消費量

  • 鈮的表面消費量
  • 鈮的各形狀、用途消費量
  • 鈮鐵的各地區表面消費量
  • 鈮鐵的使用強度
  • 替代品

第5章 國際貿易

  • 鈮礦物
  • 鈮礦石和其精礦
  • 鈮鐵
  • 鈮化合物和金屬
  • 貿易管理與課題

第6章 價格

  • 礦石和精礦
  • 鈮鐵
  • 氧化鈮
  • 鈮金屬

第7章 未來展望

  • 鈮需求預測
  • 鈮供給預測
  • 鈮鐵的市場平衡預測
  • 價格預測

第8章 背景

  • 鈮的特性
  • 鈮的生產
  • 鈮的蘊藏量和資源數量
  • 鈮的開採和加工

第9章 各國簡介

  • 阿根廷
  • 亞美尼亞
  • 澳洲
  • 奧地利
  • 比利時
  • 玻利維亞
  • 巴西
  • 布隆迪
  • 喀麥隆
  • 加拿大
  • 中國
  • 哥倫比亞
  • 剛果共和國
  • 剛果民主共和國
  • 愛沙尼亞
  • 衣索比亞
  • 法國
  • 加彭
  • 德國
  • 蓋亞那共和國
  • 印度
  • 日本
  • 哈薩克
  • 肯亞
  • 吉爾吉斯
  • 馬拉威
  • 馬來西亞
  • 莫三比克
  • 奈及利亞
  • 俄羅斯
  • 盧安達
  • 獅子山共和國
  • 索馬利亞
  • 南非
  • 西班牙
  • 坦尚尼亞
  • 烏干達
  • 英國
  • 美國
  • 辛巴威

第10章 終端用戶

  • 鋼鐵
  • 鎳合金、非鐵合金
  • 鈮金屬、鈮合金
  • 超硬合金
  • 鈮化學品
  • 二次電池

第11章 企業簡介

  • 鈮生產業者
  • 鈮加工業者
  • 鈮計劃

第12章 宏觀經濟展望

目錄

Demand for ferroniobium has increased considerably over the past two years. A tight vanadium market coupled with the introduction of new rebar standards in China caused ferrovanadium prices to spike in 2018. This prompted unexpected levels of substitution. Chinese steel makers started to use ferroniobium in Grade 3 rebar which, coupled with strong demand for ferroniobium in line pipe and automotive applications, meant that imports into China (and exports out of Brazil) reached record highs.

Approximately 90% of all niobium used is consumed as ferroniobium in steelmaking. The rest goes into a wide range of smaller-volume but higher-value applications, such as high-performance alloys (which include superalloys), carbides, superconductors, electronic components and functional ceramics.

Although the unit consumption is very small-fractions of a percent by weight of a tonne of finished steel-the benefits are large. Niobium additions in steel significantly increases strength, so less steel is required overall, which can reduce cost substantially. This has been the basis for the development and growth in its use of steels over the last few decades and should remain the driver in the years to come. Niobium intensity of use is relatively low in several large, steel-producing nations, such as China, but also India and Southeast Asia. The capacity for an increase in niobium intensity of use and a potential increasing usage in long products (rebar) provide an area of potential growth in niobium demand. With Chinese regulations now requiring higher ferroalloy loadings in construction, the outlook for ferroniobium and ferrovanadium demand, looks positive.

Almost all ferroniobium supply is from three industrialised producers, two in Brazil and one in Canada. By far the largest is Companhia Brasileira de Metalurgia e Mineração (CBMM), which operates a pyrochlore mine and processing plant near Araxà in east-central Minas Gerais state in Brazil. While historically the company has operated comfortably below operational capacity, recent increases in demand translated into rising operating rates and prompted an increase its ferroniobium capacity by 50% over the period to 2021. The other major producers, Magris Resources in Canada and China Molybdenum in Brazil are thought to be operating at close to capacity.

In addition to expansion at current operations, there are numerous niobium projects in the pipeline, some of which could come on-stream over the coming years. However, while some have released feasibility studies, none have started construction.

Niobium pentoxide (Nb2O5) is the starting product for most specialised non-steel applications. Nickel-based high-performance alloys are used in the aerospace industry, where high-temperature strength is required. Commercial niobium oxide products are generally termed high-purity (optical-grade) oxide to distinguish them from intermediate forms. Niobium is also produced as pure metal along with other alloys typically containing titanium and zirconium. Niobium chemicals have a wide range of applications, e.g. in catalysts and functional ceramics.

Roskill experts will answer your questions:

  • How have Chinese construction regulations impacted demand?
  • To what extent are ferrovanadium and ferroniobium viable substitutes for each other?
  • What is the outlook for ferroniobium demand in automotive and line pipe?
  • How will the supply base develop over the coming years?
  • What is the outlook for prices?

Subscribe now and receive:

  • Analysis report with forecast to 2029
  • Access to the report online through Roskill Interactive for up to 5 users
  • Access to the analysts for discussion around report content
  • Hard copy of the report on request

Table of Contents

1. Executive summary

  • 1.1. Demand
  • 1.2. Supply
  • 1.3. International trade
  • 1.4. Prices
  • 1.5. Outlook

2. Niobium flowchart

3. World production

  • 3.1. Production of niobium minerals
  • 3.2. Production of ferroniobium
  • 3.3. Production of other niobium products
  • 3.4. Niobium products production costs
    • 3.4.1. Ferroniobium
    • 3.4.2. Other niobium products

4. World consumption

  • 4.1. Apparent consumption of niobium
  • 4.2. Consumption of niobium by form and application
  • 4.3. Apparent consumption of ferroniobium by region
  • 4.4. Intensity of use of ferroniobium
  • 4.5. Substitution

5. International trade in niobium

  • 5.1. Niobium minerals
  • 5.2. Niobium ores and concentrates
    • 5.2.1. Gross weight basis
    • 5.2.2. Contained Nb2O5 basis
      • 5.2.2.1. Exports (estimated from imports)
      • 5.2.2.2. Imports
      • 5.2.2.3. Market value
  • 5.3. Ferroniobium
  • 5.4. Niobium compounds and metal
  • 5.5. Trade controls and issues
    • 5.5.1. Conflict-free sourcing
    • 5.5.2. Transport regulations
    • 5.5.3. Import duties

6. Prices

  • 6.1. Ores and concentrates
  • 6.2. Ferroniobium
  • 6.3. Niobium oxide
  • 6.4. Niobium metal

7. Outlook

  • 7.1. Outlook for niobium demand
    • 7.1.1. Ferroniobium
  • 7.2. Outlook for niobium supply
    • 7.2.1. Ramp-ups, expansions and capacity utilisation at existing operations
    • 7.2.2. Project pipeline
    • 7.2.3. Niobium minerals
    • 7.2.4. Ferroniobium
    • 7.2.5. Other niobium applications
  • 7.3. Outlook for ferroniobium market balance
  • 7.4. Outlook for prices
    • 7.4.1. Outlook for ores and concentrates
    • 7.4.2. Outlook for niobium oxide
    • 7.4.3. Outlook for ferroniobium

8. Background

  • 8.1. Properties of niobium
  • 8.2. Occurrence of niobium
  • 8.3. Reserves and resources of niobium
  • 8.4. Mining and processing of niobium
    • 8.4.1. HSLA-grade ferroniobium
    • 8.4.2. High-purity niobium oxide
    • 8.4.3. Vacuum-grade ferroniobium (VG FeNb) and nickel-niobium (NiNb)
    • 8.4.4. Niobium metal, alloys and intermediates
    • 8.4.5. Other niobium compounds

9. Country profiles

  • 9.1. Argentina
  • 9.2. Armenia
  • 9.3. Australia
  • 9.4. Austria
  • 9.5. Belgium
  • 9.6. Bolivia
  • 9.7. Brazil
  • 9.8. Burundi
  • 9.9. Cameroon
  • 9.10. Canada
  • 9.11. China
    • 9.11.1. Niobium operations and projects
    • 9.11.2. Niobium processors
    • 9.11.3. International trade
  • 9.12. Colombia
  • 9.13. Republic of the Congo
  • 9.14. Democratic Republic of Congo (DRC)
  • 9.15. Estonia
  • 9.16. Ethiopia
  • 9.17. France
  • 9.18. Gabon
  • 9.19. Germany
  • 9.20. Guyana
  • 9.21. India
  • 9.22. Japan
  • 9.23. Kazakhstan
  • 9.24. Kenya
  • 9.25. Kyrgyzstan
  • 9.26. Malawi
  • 9.27. Malaysia
  • 9.28. Mozambique
  • 9.29. Nigeria
  • 9.30. Russia
  • 9.31. Rwanda
  • 9.32. Sierra Leone
  • 9.33. Somalia
  • 9.34. South Africa
  • 9.35. Spain
  • 9.36. Tanzania
  • 9.37. Uganda
  • 9.38. United Kingdom
  • 9.39. USA
  • 9.40. Zimbabwe

10. End uses

  • 10.1. Steel
    • 10.1.1. Use of ferroniobium in HSLA steels
      • 10.1.1.1. Structural steels
      • 10.1.1.2. Automotive steels
      • 10.1.1.3. Pipeline steels
    • 10.1.2. Use of ferroniobium in stainless and heat-resisting steel
      • 10.1.2.1. World production of stainless steel
    • 10.1.3. Use of ferroniobium in other HSLA steel applications
    • 10.1.4. Outlook
      • 10.1.4.1. Steel outlook
      • 10.1.4.2. Ferroniobium usage by sector
  • 10.2. Nickel base alloys and non-ferrous alloys
    • 10.2.1. High performance alloys and superalloys
      • 10.2.1.1. Production of HPA
      • 10.2.1.2. Production of superalloys
      • 10.2.1.3. Consumption of HPA and superalloys
      • 10.2.1.4. Industrial Gas Turbines (IGT) and nuclear industry
      • 10.2.1.5. Other sectors
      • 10.2.1.6. Outlook for aerospace
      • 10.2.1.7. Outlook for power generation
    • 10.2.2. Titanium alloys
    • 10.2.3. Zirconium alloys
    • 10.2.4. Other alloys
  • 10.3. Niobium metal and niobium-based alloys
    • 10.3.1. Superconductors
    • 10.3.2. Niobium-aluminium alloys
    • 10.3.3. Niobium-titanium alloys
    • 10.3.4. Niobium-zirconium alloys
    • 10.3.5. Niobium-hafnium alloys
    • 10.3.6. Other niobium alloys
    • 10.3.7. Niobium metal
  • 10.4. Cemented carbides
    • 10.4.1. Outlook
  • 10.5. Niobium chemicals
    • 10.5.1. Optical glass and enamels
    • 10.5.2. Catalysis
    • 10.5.3. SAW filters
  • 10.6. Rechargeable batteries
    • 10.6.1. Lithium-ion batteries
    • 10.6.2. Niobium in rechargeable batteries

11. Company profiles

  • 11.1. Niobium producers
    • 11.1.1. AMG Brazil
    • 11.1.2. China Molybdenum (CMOC)
    • 11.1.3. Companhia Brasileira de Metalurgia e Mineração (CBMM)
    • 11.1.4. Lovozero Mining-Concentrating Combine
    • 11.1.5. Magris Resources
    • 11.1.6. Mineração Taboca
    • 11.1.7. Yichun Huili
  • 11.2. Niobium processors
    • 11.2.1. CNMC Ningxia Orient Group
    • 11.2.2. H.C. Starck Tantalum and Niobium
    • 11.2.3. Neo Performance Metals (NPM) Silmet
    • 11.2.4. Kazatomprom
    • 11.2.5. Solikamsk Magnesium Works (SMW)
  • 11.3. Niobium projects
    • 11.3.1. Alkane Resources
    • 11.3.2. Avalon Advanced Materials
    • 11.3.3. Hastings Technology Metals
    • 11.3.4. Maboumine
    • 11.3.5. Niobay Metals
    • 11.3.6. NioCorp Developments
    • 11.3.7. Panda Hill Tanzania (PHT)
    • 11.3.8. Peak Resources
    • 11.3.9. Strategic Minerals Spain
    • 11.3.10. Taseko Mines
    • 11.3.11. Technoinvest Alliance
    • 11.3.12. TriArk Mining

12. Macro economic outlook

List of Tables

  • Table 1: World: Summary of the principal niobium mine and ferroniobium producers from pyrochlore, 2019
  • Table 2: World: Summary of the principal niobium mine and ferroniobium producers, from minerals other than pyrochlore, 2019
  • Table 3: Production of ferroniobium, 2012-2019
  • Table 4: World: Estimated apparent consumption of niobium products, 2012-2019
  • Table 5: Summary of applications for niobium
  • Table 6: Average annual growth in niobium consumption, 2012-2019
  • Table 7: World: Estimated share of ferroniobium consumption, 2012 and 2019
  • Table 8: Estimated world imports of niobium-bearing ores and concentrates by country of origin, 2010-2019
  • Table 9: Imports of niobium-bearing ores and concentrates by selected countries, 2010-2019
  • Table 10: China: Imports of niobium-bearing ores and concentrates, 2010-2019
  • Table 11: Thailand: Imports of niobium-bearing ores and concentrates, 2010-2019
  • Table 12: USA: Imports of niobium-bearing ores and concentrates, 2010-2019
  • Table 13: Estonia: Imports of niobium-bearing ores and concentrates, 2010-2019
  • Table 14: Kazakhstan: Imports of niobium-bearing ores and concentrates, 2010-2019
  • Table 15: India: Imports of niobium-bearing ores and concentrates, 2010-2019
  • Table 16: Mexico: Imports of niobium-bearing ores and concentrates, 2010-2019
  • Table 17: Brazil and Canada: Exports of ferroniobium by principal destinations, 2010-2019
  • Table 18: Re-export trade in ferroniobium via the Netherlands, 2010-2019
  • Table 19: Canada: Exports of ferroniobium by destination, 2018 and H1 2019
  • Table 20: Brazil: Exports of ferroniobium by port of export, 2018 and H1 2019
  • Table 21: Imports of ferroniobium by country, 2010-2019
  • Table 22: Imports of ferroniobium by region, 2010-2019
  • Table 23: USA: Imports of niobium oxide, 2010-2019
  • Table 24: USA: Imports of niobium metal, powders and alloys, 2010-2019
  • Table 25: World: Baseline forecast of regional ferroniobium demand, 2019-2029
  • Table 26: World: Forecasts of ferroniobium demand, 2019-2029
  • Table 27: World: Forecast ferroniobium capacity from current producers, 2017-2029
  • Table 28: Overview of projects and expected output
  • Table 29: World: Reported imports of tantalum and niobium ores and concentrates from selected countries, 2011-2018
  • Table 30: World: Ferroniobium capacity outlook, 2019-2029
  • Table 31: Baseline, low and high scenarios for ferroniobium market balance outlook, 2019-2029
  • Table 32: Forecast year-end scenarios for niobium concentrate prices, 2019-2029
  • Table 33: Forecast year-end scenarios for niobium oxide prices, 2019-2029
  • Table 34: Forecast year-end scenarios for ferroniobium China prices, 2019-2029
  • Table 35: Physical properties of niobium
  • Table 36: Oxidation and temperature resistance of niobium
  • Table 37: Principal niobium-bearing minerals
  • Table 38: Resource statements as reported by niobium producers
  • Table 39: Resource statements as reported by companies with niobium projects
  • Table 40: CBMM: Commercial grades of ferroniobium and nickel-niobium
  • Table 41: CBMM: Specifications for commercial niobium oxides
  • Table 42: GAM Technology: Specifications for commercial niobium oxides
  • Table 43: Properties of niobium beryllides, boride and nitride
  • Table 44: Specifications for lithium niobate
  • Table 45: Argentina: Imports of ferroniobium by country of origin, 2011-2018
  • Table 46: Australia: Imports of ferroniobium by country of origin, 2011-2018
  • Table 47: Australia: International trade of niobium, 2011-2018
  • Table 48: Austria: Imports of ferroniobium, 2011-2018
  • Table 49: Belgium: International trade of niobium, 2011-2018
  • Table 50: Bolivia: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 51: Brazil: Niobium production by state, 2017
  • Table 52: Brazil: Ferroniobium production by company, 2012-2019
  • Table 53: Brazil: Exports of niobium-bearing ores and concentrates, 2011-2018
  • Table 54: Brazil: Exports of ferroniobium by principal destination, 2011-2018
  • Table 55: Burundi: Estimated production of niobium minerals concentrates, 2011-2018
  • Table 56: Burundi: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 57: Canada: Production of ferroniobium, 2012-2019
  • Table 58: Canada: Exports of ferroniobium, 2011-2018
  • Table 59: Canada: Imports of ferroniobium, 2011-2018
  • Table 60: Niobium development projects in Canada
  • Table 61: Niobium mining operations in China
  • Table 62: F&X Electro-Materials: Production capacity for tantalum and niobium products
  • Table 63: Imports of niobium-bearing ores and concentrates by selected countries, 2011-2018
  • Table 64: China: Imports of niobium-bearing ores and concentrates, 2011-2018
  • Table 65: China: Unit value of tantalum and niobium minerals imports from selected countries, 2011-2018
  • Table 66: China: imports of ferroniobium, 2011-2018
  • Table 67: Republic of the Congo: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 68: DRC: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 69: Estonia: Imports of Ferroniobium, 2011-2018
  • Table 70: Estonia: Exports of Ferroniobium, 2011-2018
  • Table 71: Ethiopia: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 72: France: International trade in ferroniobium and ores & concentrates, 2011-2018
  • Table 73: Germany: International trade in ferroniobium and ore & concentrates, 2011-2018
  • Table 74: Guyana: reported coltan mineral occurrences, 2011
  • Table 75: India: imports of niobium, 2011--2018
  • Table 76: Japan: imports of ferroniobium by country of origin, 2011-2018
  • Table 77: Kazakhstan: Imports of tantalum-niobium ores and concentrates, 2011-2018
  • Table 78: Niobium-tantalum deposits in Kyrgyzstan
  • Table 79: Malaysia: Reported exports of ores and concentrates, 2011-2018
  • Table 80: Mozambique: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 81: Summary of tantalum and niobium mineral resources in Namibia
  • Table 82: Nigeria: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 83: Russia: Principal deposits of tantalum and niobium bearing ores
  • Table 84: Russia: International trade in ferroniobium and niobium ores and concentrates, 2011-2018
  • Table 85: Rwanda: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 86: Sierra Leone: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 87: Somalia: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 88: Spain: International trade data for niobium-tantalum ores and concentrates, 2011-2018
  • Table 89: Spain: International trade data for ferroniobium, 2011-2018
  • Table 90: Tanzania: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 91: Uganda: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 92: UK T.I.C members
  • Table 93: UK: International trade in niobium products, 2011-2018
  • Table 94: USA: Ferroniobium imports, 2011-2018
  • Table 95: USA: Ferroniobium exports, 2011-2018
  • Table 96: USA: Imports of niobium-tantalum concentrates by country of origin, 2011-2018
  • Table 97: Zimbabwe: Reported imports of niobium-tantalum ores and concentrates, 2011-2018
  • Table 98: Summary of applications for steels containing niobium
  • Table 99: Estimated world niobium-containing HSLA steel market by industry, 2012-2019
  • Table 100: Estimated China niobium-containing HSLA steel market by industry, 2012-2019
  • Table 101: Properties influenced by microstructure and strengthening processes for steel
  • Table 102: Principal precipitation-hardening mechanisms for steel
  • Table 103: Effects of niobium and vanadium additions on yield strength
  • Table 104: Summary of major purchasers of ferroniobium for HSLA steel production
  • Table 105: Effects of alloying additions in HSLA steels
  • Table 106: Alloying additions and properties of ASTM grades of HSLA steels
  • Table 107: Niobium-containing hot-rolled and cold-rolled HSLA steels
  • Table 108: Niobium-containing full-alloy structural steels
  • Table 109: Applications for HSLA steels in automobiles
  • Table 110: Development of pipeline steels
  • Table 111: Composition of electric-resistance welded pipeline steels
  • Table 112: World: Gas pipeline construction by region, 2012-2019
  • Table 113: Composition of niobium-bearing heat-resisting steels
  • Table 114: Summary of major purchasers of ferroniobium for stainless steel production
  • Table 115: World production of stainless steel, 2012-2019
  • Table 116: Composition of Nippon Steel interstitial-free steel
  • Table 117: Composition of niobium-containing rail steels
  • Table 118: Historical crude steel production, 2012-2019
  • Table 119: Crude steel production forecast, 2019-2029
  • Table 120: Stainless steel production forecast, 2019-2029
  • Table 121: Forecast gas pipeline construction
  • Table 122: Elements and their function in HPA
  • Table 123: Producers of HPA, 2019
  • Table 124: Number of nuclear reactors under construction, 2019
  • Table 125: Niobium-containing titanium alloys
  • Table 126: Producers and fabricators of zirconium/Zircaloy for nuclear applications
  • Table 127: Nuclear power reactors under construction
  • Table 128: World: Major superconducting wire producers, 2018
  • Table 129: Suppliers and fabricators of selected carbides
  • Table 130: World: Output of cemented carbides by main producers, 2011-2019
  • Table 131: Outlook for cemented carbides, 2020-2029
  • Table 132: Producers and suppliers of niobium compounds and carbides
  • Table 133: Catalytic applications of niobium compounds and complexes
  • Table 134: Applications for surface niobium oxide phases in catalysis
  • Table 135: Applications for SAW components
  • Table 136: Characteristics of the main Li-ion battery types
  • Table 137: Total resources at the MIBRA mine
  • Table 138: Catalao: Niobium reserves and resources
  • Table 139: Catalao -- Niobium reserves and resources
  • Table 140: Catalao: Production of niobium, 2013-2019
  • Table 141: CBMM: Reserves and resources
  • Table 142: CBMM: Production of ferroniobium, 2013-2019
  • Table 143: Production of loparite concentrate at Lovozero, 2013-2019
  • Table 144: Niobec: Niobium reserves and resources
  • Table 145: Niobec: Production of niobium, 2013-2019
  • Table 146: NPM Silmet: Specifications for niobium and tantalum raw materials
  • Table 147: Shipments of Nb2O5 from SMW, 2013-2019
  • Table 148: Dubbo Project: Resources and reserves
  • Table 149: Resources at the Mabounie project
  • Table 150: James Bay Project Resources
  • Table 151: Elk Creek Resource Statement (2019)
  • Table 152: Forecast GDP for top-30 economies and regions, 2018-2030
  • Table 153: Forecast GDP growth rates for top-30 economies and regions, 2018-2030
  • Table 154: Forecast GDP per capita for top-30 economies and regions, 2018-2030
  • Table 155: Forecast population for top-30 economies and regions, 2018-2030
  • Table 156: Forecast urbanisation rate, 2018-2030
  • Table 157: Forecast median age, 2018-2030
  • Table 158: Forecast exchange rates and energy prices, 2018-2030

List of Figures

  • Figure 1: World: Estimated consumption of niobium-bearing HSLA steels by application, 2019
  • Figure 2: Estimated apparent consumption of niobium, by form, 2010-2019
  • Figure 3: Production of ferroniobium, by producer, 2012-2019
  • Figure 4: Products shipments of other niobium products, 2010-2019
  • Figure 5: Imports of ferroniobium by country, 2010-2019
  • Figure 6: Ferroniobium prices, 2015-2019
  • Figure 7: Forecast ferroniobium demand vs capacity, 2019-2029
  • Figure 8: Niobium flowchart
  • Figure 9: World: Estimated niobium production, 2010-2019
  • Figure 10: World: Estimated share of niobium mine production by country, 2019
  • Figure 11: FeNb estimated production by leading producers, 2012-2019
  • Figure 12: Ferroniobium estimated capacity utilisation by producer and world total, 2012-2019
  • Figure 13: Products shipments of other niobium products, 2012-2019
  • Figure 14: Estimated ferroniobium cost curve, 2019
  • Figure 15: Estimated consumption of niobium by form, 2019
  • Figure 16: Estimated consumption of contained niobium HSLA steels by application, 2019
  • Figure 17: World: Estimated consumption by country/region, 2019
  • Figure 18: World: Estimated intensity of use of ferroniobium in crude steel, 2012-2019
  • Figure 19: Estimated intensity of ferroniobium use by region or country, 2019
  • Figure 20: Estimated intensity of use of ferroniobium, 2012 vs 2018
  • Figure 21: Comparison of ferroniobium and ferrovanadium prices, 2012-2019
  • Figure 22: Brazilian exports of ferroniobium, by port, 2018-2019
  • Figure 23: Chinese FeNb imports compared with FeV prices, 2007-2019
  • Figure 24: Reported world imports and exports of niobium, tantalum and vanadium ores and concentrates, 2010-2018
  • Figure 25: Reported world imports and exports of niobium, tantalum and vanadium ores and concentrates, 2010-2018
  • Figure 26: Adjusted world imports and exports of niobium, tantalum and vanadium ores and concentrates, 2010-2017
  • Figure 27: Adjusted world imports and exports of niobium, tantalum and vanadium ores and concentrates, 2010-2018
  • Figure 28: Reported world imports and exports and adjusted world imports of niobium, tantalum and vanadium ores and concentrates, 2010-2018
  • Figure 29: Reported world imports of HS 261590 sub-codes, 2010-2019
  • Figure 30: Reported world imports by sub-code and adjusted world imports of niobium, tantalum and vanadium ores and concentrates, 2010-2019
  • Figure 31: Reported world imports by sub-code and adjusted world imports of niobium, tantalum and vanadium ores and concentrates, 2010-2018
  • Figure 32: Estimated world imports of niobium-bearing ores and concentrates by region of origin, 2010-2019
  • Figure 33: Estimated market value of world imports of contained Nb2O5, 2010-2019
  • Figure 34: Reported world exports and modified world imports of ferroniobium, 2010-2019
  • Figure 35: Ferroniobium market value, 2010-2019
  • Figure 36: Imports of ferroniobium by region, 2010-2019
  • Figure 37: USA: Imports of niobium oxide, 2010-2019
  • Figure 38: Imports of niobium metal, powders and alloys, 2010-2019
  • Figure 39: Quarterly average niobium and tantalum concentrate prices, 2010-2019
  • Figure 40: China: Average annual unit value of ferroniobium imports from Brazil, 2002-2019
  • Figure 41: Ferroniobium prices, 2015-2019
  • Figure 42: Prices of niobium oxide, 2015-2019
  • Figure 43: Ferroniobium demand by region, 2019-2029
  • Figure 44: Ferroniobium capacity forecast 2019-2029 (base-case scenario)
  • Figure 45: Baseline outlook for ferroniobium market balance, 2019-2029
  • Figure 46: World: Share of reported niobium resources, 2019
  • Figure 47: Most likely resource base for tantalum minerals
  • Figure 48: Aluminothermic production of ferroniobium
  • Figure 49: Niobium production by the aluminothermic reduction process
  • Figure 50: Brazil: Mine production of niobium, 1995-2018
  • Figure 51: Nigeria: Estimated production of Nb2O5, 2011-2018
  • Figure 52: Use of ferroniobium in high-strength steel
  • Figure 53: World: Production of motor vehicles by region, 2005-2018
  • Figure 54: World production of stainless steel by series, 2008-2018
  • Figure 55: Intensity of use of steel, 2000-2019
  • Figure 56: World: Forecast production of passenger and commercial vehicles, 2019-2029
  • Figure 57: Elemental effects of metals in HPA
  • Figure 58: Historical deliveries of civilian jet aircraft: 2010-2018
  • Figure 59: Historical deliveries of civilian jet engine deliveries: 2010-2018
  • Figure 60: Forecast deliveries of civilian jet aircraft, by supplier 2019-2029
  • Figure 61: Forecast deliveries of jet engines, by supplier 2019-2029
  • Figure 62: Forecast power generation by source, 2019-2029
  • Figure 63: Gas turbine orders, 1979-2029
  • Figure 64: Number of MRI units per million inhabitants in selected countries, 2017
  • Figure 65: Comparison of volumetric and gravimetric energy densities by technology
  • Figure 66: A cylindrical Li-ion battery cell
  • Figure 67: Capacity and voltage potential of cathode materials
  • Figure 68: Comparison of gravimetric energy density by battery chemistry
  • Figure 69: Comparison of gravimetric energy density by battery chemistry
  • Figure 70: Capacity of anode active materials in Li-ion batteries
  • Figure 71: Relative thickness of solid-electrolyte battery (right) and existing commercial Li-ion batteries.
  • Figure 72: Electric vehicle sales by type, 2013-2029