表紙
市場調查報告書
商品編碼
1028450

汽車智能座艙設計趨勢(2021)

Automotive Smart Cockpit Design Trend Report, 2021

出版日期: | 出版商: ResearchInChina | 英文 255 Pages | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

隨著座艙軟硬件技術的不斷演進,智能座艙設計正在從功能性向 "用戶體驗" 演進。智能駕駛艙正變得更安全、更智能、更舒適。

座艙顯示器還是以多屏和大屏為主。 2020-2021年,新興和傳統車企陸續推出多屏、聯屏車型。

汽車人機界面的UI設計正在根據實際功能而改變。您擁有的功能越多,您的智能汽車就會越智能,它所基於的數據也就越多。未來,界面交互有望更簡潔、3D直觀、更年輕、更透明、數字化、符號化和扁平化。

本報告調查了汽車智能座艙的設計趨勢,提供了智能座艙、HMI、智能表面應用、環境光應用、智能觸覺反饋技術和主要供應商等設計趨勢信息。

目錄

第 1 章汽車智能座艙設計思路與趨勢

  • 智能座艙設計佈局現狀
    • 汽車智能座艙概述
    • 汽車智能座艙發展特點
    • 汽車座艙發展趨勢
    • 2021年新發佈的主要車型座艙配置:概念車型
    • 2020年新發佈的主要車型座艙配置:概念車型
    • 概念模型駕駛艙配置
    • 量產車型駕駛艙配置
  • 汽車智能座艙設計發展趨勢
    • 智能座艙設計趨勢
    • 自動駕駛層面的智能座艙設計趨勢

第 2 章汽車智能座艙顯示器的設計趨勢

  • 駕駛艙顯示設計現狀
    • 駕駛艙顯示佈局
    • 駕駛艙顯示設計現狀
    • 某大公司座艙展示業務佈局
    • 座艙集群顯示發展方向
    • 某大公司集群展示業務佈局
    • 駕駛艙 HUD 的現狀
    • 某大公司AR-HUD業務佈局
    • AID-全息航空智能顯示系統
  • 座艙顯示設計趨勢

第 3 章汽車智能座艙HMI設計趨勢

  • 汽車駕駛艙人機界面設計現狀
    • 汽車人機界面概述
    • 汽車人機界面模式的發展歷程
    • 國內外OEM的主要HMI模式
    • 汽車人機界面設計模式
    • 汽車 HMI 設計流程
    • 汽車人機界面開發流程
    • 汽車人機界面設計框架
    • 汽車用戶體驗設計原則
    • 汽車人機界面設計所需的工具
    • 某大公司人機界面設計集成軟件工具
    • 主要 OEM HMI 設計供應商
    • 主要機型人機界面供應商
    • 主要 OEM IVIUI 界面功能
    • 界面案例
  • 駕駛艙 HMI 設計趨勢
    • 人機界面趨勢
    • 汽車 UI 設計趨勢
    • Cockpit HMI 工具發展趨勢
    • 案例
  • 駕駛艙人機界面設計主要供應商
    • ThunderSoft
    • CANDERA
    • Altia
    • Qt Design
    • Elektrobit (EB)
    • Neusoft HMI Design
    • Valeo
    • Visteon HMI
    • Bosch HMI
    • Faurecia HMI

第 4 章汽車智能表面應用的設計趨勢

  • 智能表面技術概述
    • 智能表面概述
    • Smart Surface 產品功能
    • 智能表面配置
    • 智能表面技術:裝飾膜形成過程
    • 主要供應商的智能表面產品
    • 智能表面產業鏈
  • 智能表面技術設計趨勢
    • 智能表面設計的趨勢
  • 智能表面應用案例
    • 案例
  • 智能表面技術主要解決方案供應商
    • Covestro
    • Canatu
    • TactoTek
    • Yanfeng Automotive Interiors
    • Continental

第 5 章智能座艙環境光應用及設計趨勢

  • 室內環境光開發概述
    • 汽車環境燈概述
    • 汽車環境燈分類
    • 汽車環境光配置
    • 汽車環境光範圍
    • 室內環境光控制技術
    • 室內環境光體網絡架構
    • 室內燈光設計流程
    • 主要OEM車型的環境光配置
    • 室內環境燈的發展演變
    • 全球室內環境燈市場規模
    • 全球室內環境燈分佈
    • 全球分佈和室內環境光光學技術
    • 室內環境燈產業鏈
  • 室內環境光發展趨勢
  • 室內環境光互動案例

第 6 章汽車智能觸覺反饋技術應用趨勢

  • 汽車觸摸反饋開發概述
    • 觸摸反饋技術概述
    • 對觸摸反饋技術的需求
    • 觸控反饋技術模式
    • 主要觸控反饋技術產業鏈
    • 觸摸反饋技術及產品主要供應商
    • 觸摸反饋技術和產品的主要一級供應商
    • OEM 觸摸反饋技術應用
    • 車載顯示觸控系統技術路線圖
    • 案例
  • 主要汽車微型反饋供應商
    • Tanvas
    • Boreas
    • TDK PowerHap (TM) Piezo Actuator with Haptic Feedback
    • Continental
    • 其他

第 7 章其他新的駕駛艙交互技術

  • 多樣化的交互式方向盤設計
  • 最大限度地利用空間
  • 汽車音效
  • 智能健康的座艙佈局
目錄
Product Code: CYH100

Smart Cockpit Design Trend Research: Moving to the third living space

With the continuous development of cockpit hardware and software technology, intelligent cockpit design is evolving, pivoting from functionality to "user experience". Intelligent cockpits are becoming more and more secure, smart and comfortable.

In terms of perception, the cockpit display is not limited to multi screens and large screens, 3D screens and high-definition screens are also emerging.

For cockpit display, multi screens and large screens still prevail. From 2020 to 2021, emerging automakers and traditional automakers have successively launched a number of models equipped with multiple screens and joint screens. For example, Hongqi E-HS9 was equipped with 8 screens at the end of 2020. In 2021, Human Horizons mass-produced and delivered HiPhi X equipped with 9 screens. At the same time, the screen size in the car is getting larger and larger. The center console of Xingyue L, launched in July 2021, has a 1-meter IMAX screen. The center console of Ford EVOS that is planned to be launched in October 2021 will feature a 27-inch 4K display. Cadillac Lyriq to be launched in 2022 will have a 33-inch all-in-one display.

In addition, the screen layout has become more novel and unique. In early 2021, Mercedes-Benz revealed the MBUX Hyperscreen, whose three displays merge almost seamlessly into one another to create an impressive screen band over 141 centimeters wide: Driver display (screen diagonal: 12.3 inch), central display (17.7 inch) and front passenger display (12.3 inch) appear as one visual unit. Three screens sit under a common bonded irregular curved cover glass. For particularly brilliant display quality OLED technology is used for the central and front passenger displays. The MBUX Hyperscreen embodies a strong sense of technology.

The IM L7, which is planned to be mass-produced in 2022, is equipped with a 39-inch smart scenario screen and a 12.8-inch AMOLED center console screen. The 39-inch screen is composed of two joint screens, which can be raised and lowered separately with multiple display modes and allow the content to be switched without boundaries.

Driven by high-definition mobile phone displays, consumers have more views on the resolution of automotive displays. Low-resolution displays can no longer meet the needs of the current users. Automotive displays tend to feature higher resolution, higher contrast, wider field of view, more optical indicators, and faster response. In the BMW iX scheduled to be launched at the end of 2021, the new iDrive 8 will come with horizontal curved dual screens: a 12.3-inch LCD cluster screen and 14.9-inch IVI screen (the angle is slightly inclined towards the driver). BMW says screens used in the new system will have a pixel density of 206 pixels per inch (PPI).

HMI capabilities develop from functional perception interaction to cognitive and active interaction

The HMI UI interface design for automobiles is changing on the basis of practical functions. With more and more functions, smart cars are getting cleverer, and the underlying data is more and more abundant. In the future, interface interactions will be more concise, 3D intuitive, younger, transparent, digitized, and symbolized, flattened and the like. In June 2020, Banma SmartDrive released the Venus Intelligent System whose UI interface adopts the design concept of A-B parallel worlds. World A takes a "map as a desktop", while World B uses a waterfall layout. Users can intuitively find commonly used functions on the interface, and even set the display interface as what they want.

MBUX Hyperscreen can display the desired personalized functions for users on the main interface of the central screen at an appropriate time, enabling "zero-layer" operation without scrolling or turning pages, bringing relaxed and intimate HMI experience.

Innovation and breakthroughs in UI interface design are inseparable from the development of HMI design tools. In terms of HMI design and development tools, many companies have released the latest products. Lately, HMI design and development tools feature multiple platforms, multiple algorithms, reusable software framework, 3D interface design, etc. In addition, with the creation of the third space of the smart cockpit and the continuous improvement of entertainment, technology HMI design companies such as web game companies like Eptic Games have dabbled in the automotive market.

Through the fusion applications of AI, smart atmosphere lights, smart surface materials, fragrance systems, smart seats and other products and technologies, voice, AI assistants, face recognition, gestures, face, fingerprint, vital signs detection and other HMI technologies and models have been available in cars. The smart cockpit has certain HMI experience and scenario-based capabilities, and the cockpit scenario interaction is more intelligent, emotional, and humane. HiPhi X, which was mass-produced and delivered in 2021, can recognize the driver's expression, voice, heart rate, blood oxygen, blood pressure, breathing rate, etc. through 52 biosensors, and then adjust music and temperature, or take over the vehicle in dangerous situations.

At CES 2021, Samsung exhibited a digital cockpit equipped with Automotive Samsung Health, which analyzes passengers' health status before boarding by utilizing a combination of cameras and wearable and mobile devices installed in the vehicle. In the car, it also regularly monitors passengers' stress levels and will adjust the vehicle's lighting, scent, or music in an effort to help them relax.

With the HMI design concept focusing on "user experience", HMI is developing from basic functional perception interaction to cognitive and active interaction through AI, in-car and out-of-car perception technologies.

Smart cockpits realize custom programming through SOA software

Since smart cockpits are designed as per human-oriented user experience, personalization will become a major development trend of smart cockpits in the future. In addition to the basic personalized custom settings such as the initial IVI system and buttons, the software architecture can help realize the personalized custom settings of multiple scenarios in the car. For example, the WM W6, which was launched at the Shanghai Auto Show in 2021, WM W6 realizes personalized combinations and settings of scenarios based on SOA software and through APP custom programming.

Table of Contents

1 Ideas and Trends of Automotive Smart Cockpit Design

  • 1.1 Status Quo of Smart Cockpit Design Layout
    • 1.1.1 Overview of Automotive Smart Cockpits
    • 1.1.2 Development Characteristics of Automotive Smart Cockpits
    • 1.1.3 Development Trends of Automotive Cockpits
    • 1.1.4 Cockpit Configuration of Main Newly Released Models in 2021: Concept Models
    • 1.1.5 Cockpit Configuration of Main Newly Released Models in 2020: Concept Models
    • 1.1.6 Cockpit Configuration of Concept Models (1)
    • 1.1.7 Cockpit Configuration of Concept Models (2)
    • 1.1.8 Cockpit Configuration of Concept Models (3)
    • 1.1.9 Cockpit Configuration of Production Models (1)
    • 1.1.10 Cockpit Configuration of Production Models (2)
    • 1.1.11 Cockpit Configuration of Production Models (3)
    • 1.1.12 Cockpit Configuration of Production Models (4)
    • 1.1.13 Cockpit Configuration of Production Models (5)
    • 1.1.14 Cockpit Configuration of Production Models (6)
    • 1.1.15 Cockpit Configuration of Production Models (7)
    • 1.1.16 Cockpit Configuration of Production Models (8)
    • 1.1.17 Cockpit Configuration of Production Models (9)
    • 1.1.18 Cockpit Configuration of Production Models (10)
    • 1.1.19 Cockpit Configuration of Production Models (11)
    • 1.1.20 Cockpit Configuration of Production Models (12)
  • 1.2 Development Trends of Automotive Smart Cockpit Design
    • 1.2.1 Smart Cockpit Design Trends (1)
    • 1.2.2 Smart Cockpit Design Trends (2)
    • 1.2.3 Smart Cockpit Design Trends (3)
    • 1.2.4 Smart Cockpit Design Trends (4)
    • 1.2.5 Smart Cockpit Design Trends (5)
    • 1.2.6 Smart Cockpit Design Trends (6)
    • 1.2.7 Smart Cockpit Design Trends under Autonomous Driving Levels

2 Automotive Smart Cockpit Display Design Trends

  • 2.1 Status Quo of Cockpit Display Design
    • 2.1.1 Cockpit Display Layout
    • 2.1.2 Status Quo of Cockpit Display Design
    • 2.1.3 Cockpit Display Business Layout of Major Companies
    • 2.1.4 Development Direction of Cockpit cluster Display
    • 2.1.5 Cluster Display Business Layout of Major Companies
    • 2.1.6 Status Quo of Cockpit HUD
    • 2.1.7 AR-HUD Business Layout of Major Companies
    • 2.1.8 AID - Holographic Aerial Intelligent Display System
  • 2.2 Cockpit Display Design Trends
    • 2.2.1 Cockpit Display Design Trends (1)
    • 2.2.2 Cockpit Display Design Trends (2)
    • 2.2.3 Cockpit Display Design Trends (3)
    • 2.2.4 Cockpit Display Design Trends (4)
    • 2.2.5 Cockpit Display Design Trends (5)
    • 2.2.6 Cockpit Display Design Trends (6)
    • 2.2.7 Cockpit Display Design Trends (7)
    • 2.2.8 Cockpit Display Design Trends (8)
    • 2.2.9 Cockpit Display Design Trends (9)
    • 2.2.10 Cockpit Display Design Trends (10)
    • 2.2.11 Cockpit Display Design Trends (11)
    • 2.2.12 Cockpit Display Design Trends (12)
    • 2.2.13 Cockpit Display Design Trends (13)
    • 2.2.14 Cockpit Display Design Trends (14)
    • 2.2.15 Cockpit Display Design Trends (15)
    • 2.2.16 Cockpit Display Design Trends (16)

3 Automotive Smart Cockpit HMI Design Trends

  • 3.1 Status Quo of Automotive Cockpit HMI Design
    • 3.1.1 Overview of Automotive HMI
    • 3.1.2 Development History of Automotive HMI modes
    • 3.1.3 Main HMI Modes of domestic and foreign OEMs
    • 3.1.4 Design Modes of Automotive HMI
    • 3.1.5 Design Process of Automotive HMI
    • 3.1.6 Development Process of Automotive HMI
    • 3.1.7 Design Framework of Automotive HMI
    • 3.1.8 Design Principles of Automotive UX
    • 3.1.9 Tools Required for Automotive HMI Design
    • 3.1.10 HMI Design Integrated Software Tools of Major Companies
    • 3.1.11 HMI Design Suppliers of Main OEMs
    • 3.1.12 HMI Suppliers of Main Models
    • 3.1.13 IVI UI interface features of Main OEMs (1)
    • 3.1.14 IVI UI interface features of Main OEMs (2)
    • 3.1.15 UI Cases (1)
    • 3.1.16 UI Cases (2)
    • 3.1.17 UI Cases (3)
  • 3.2 Cockpit HMI Design Trends
    • 3.2.1 HMI Trends (1)
    • 3.2.2 HMI Trends (2)
    • 3.2.3 HMI Trends (3)
    • 3.2.4 HMI Trends (4)
    • 3.2.5 HMI Trends (5)
    • 3.2.6 Automotive UI Design Trends
    • 3.2.7 Development Trends of Cockpit HMI Tools
    • 3.2.8 Cases (1)
    • 3.2.9 Cases (2)
    • 3.2.10 Cases (3)
  • 3.3 Cockpit HMI Design of Main Suppliers
    • 3.3.1 ThunderSoft
      • 3.3.1.1 Development of KANZI
      • 3.3.1.2 Introduction to KANZI HMI
      • 3.3.1.3 KANZI HMI Products
      • 3.3.1.4 Architecture of KANZI HMI
      • 3.3.1.5 Design Process to KANZI HMI
      • 3.3.1.6 Platforms Supported by KANZI
      • 3.3.1.7 KANZI® HYBRID
      • 3.3.1.8 KANZI's Latest News
    • 3.3.2 CANDERA
      • 3.3.2.1 CGI: HMI Interface Design based on CGI Studio
      • 3.3.2.2 CGI Studio: 3.10
      • 3.3.2.3 Main Software, Hardware and Ecosystem Supported by CGI
      • 3.3.2.4 Cases (1)
      • 3.3.2.5 Cases (2)
      • 3.3.2.6 Dynamic
    • 3.3.3 Altia
      • 3.3.3.1 Altia - Model-based HMI Design and Development Software (1)
      • 3.3.3.2 Altia - Model-based HMI Design and Development Software (2)
      • 3.3.3.3 Altia-3D Design
    • 3.3.4 Qt Design
      • 3.3.4.1 Qt Products
      • 3.3.4.2 QtAutomotive Suite: Qt Automotive Suite
      • 3.3.4.3 Components and Tools of Qt Automotive Suite
      • 3.3.4.4 Components of Qt Automotive Suite (1)
      • 3.3.4.5 Components of Qt Automotive Suite (2)
      • 3.3.4.6 Functional Safety Qt Architecture
      • 3.3.4.7 Qt Design Tools (1)
      • 3.3.4.8 Qt Design Tools (2)
      • 3.3.4.9 Qt Development Tools
      • 3.3.4.10 Qt for MCU
      • 3.3.4.11 Qt Quick 3D
      • 3.3.4.12 Qt for Android Automotive
      • 3.3.4.13 Qt Digital Cockpit Solutions (1)
      • 3.3.4.14 Qt Digital Cockpit Solutions (2)
      • 3.3.4.15 Main Automotive Customers of Qt
    • 3.3.5 Elektrobit (EB)
      • 3.3.5.1 EB GUIDE
      • 3.3.5.2 EB GUIDE Frame
      • 3.3.5.3 EB GUIDE arware
      • 3.3.5.4 Cases (1)
      • 3.3.5.5 Cases (2)
      • 3.3.5.6 Cases (3)
    • 3.3.6 Neusoft HMI Design
      • 3.3.6.1 HMI Design Solution
      • 3.3.6.2 Smart Connected Ecological Platform Based on AI and Voice Interaction
      • 3.3.6.3 Full LCD Cluster Design Solution
    • 3.3.7 Valeo
      • 3.3.7.1 HMI Business (1)
      • 3.3.7.2 HMI Business (2)
      • 3.3.7.3 HMI Business (3)
    • 3.3.8 Visteon HMI
      • 3.3.8.1 HMI Business (1)
      • 3.3.8.2 HMI Business (2)
    • 3.3.9 Bosch HMI
      • 3.3.9.1 HMI Products: HMI Solution
      • 3.3.9.2 HMI Products: Business Mode (1)
      • 3.3.9.3 HMI Products: Business Mode (2)
    • 3.3.10 Faurecia HMI
      • 3.3.10.1 HMI Business (1)
      • 3.3.10.2 HMI Business (2)
      • 3.3.10.3 HMI Business (3)
      • 3.3.10.4 HMI Business (4)
      • 3.3.10.5 Zhi*Zhen Cockpit

4 Automotive Smart Surface Application Design Trends

  • 4.1 Overview of Smart Surface Technology
    • 4.1.1 Overview of Smart Surface
    • 4.1.2 Features of Smart Surface Products
    • 4.1.3 Composition of Smart Surface
    • 4.1.4 Smart Surface Technology: Decorative Film Forming Process
    • 4.1.5 Smart Surface Products of Main Suppliers
    • 4.1.6 Smart Surface Industry Chain
  • 4.2 Design Trends of Smart Surface Technology
    • 4.2.1 Smart Surface Design Trends (1)
    • 4.2.2 Smart Surface Design Trends (2)
    • 4.2.3 Smart Surface Design Trends (3)
    • 4.2.4 Smart Surface Design Trends (4)
    • 4.2.5 Smart Surface Design Trends (5)
  • 4.3 Smart Surface Application Cases
    • 4.3.1 Cases (1)
    • 4.3.2 Cases (2)
    • 4.3.3 Cases (3)
    • 4.3.4 Cases (4)
    • 4.3.5 Cases (5)
  • 4.4 Main Solution Suppliers of Smart Surface Technology
    • 4.4.1 Covestro
      • 4.4.1.1 Smart Surface Solution
      • 4.4.1.2 Cases (1)
      • 4.4.1.3 Cases (2)
    • 4.4.2 Canatu
      • 4.4.2.1 Profile
      • 4.4.2.2 Smart Surface Solution
      • 4.4.2.3 CANATU 3D Touch with Translucent Fabric
      • 4.4.2.4 CANATU 3D Touch Transparent Control Switch
      • 4.4.2.5 3D Touch Sensor
      • 4.4.2.6 Origo Concept Steering Wheel
      • 4.4.2.7 Cases (1)
      • 4.4.2.8 Cases (2)
    • 4.4.3 TactoTek
      • 4.4.3.1 Smart Surface Products
      • 4.4.3.2 Smart Surface Technology
      • 4.4.3.3 Main Partners and Customers in the Automotive Field
    • 4.4.4 Yanfeng Automotive Interiors
      • 4.4.4.1 Smart Surface Technology (1)
      • 4.4.4.2 Smart Surface Technology (2)
      • 4.4.4.3 Smart Surface Technology (3)
      • 4.4.4.4 Smart Surface Application of XiM21 Smart Cockpit
    • 4.4.5 Continental
      • 4.4.5.1 Smart Surface
      • 4.4.5.2 Smart Surface Materials
      • 4.4.5.3 R & D Direction of Smart Surface Materials
      • 4.4.5.4 Cooperation with CU-BX in Automotive Non-contact Occupant Health and Safety Detection System

5 Application and Design Trends of Ambient Lights in Smart Cockpits

  • 5.1 Development Overview of Interior Ambient Lights
    • 5.1.1 Overview of Automotive Ambient Lights
    • 5.1.2 Classification of Automotive Ambient Lights
    • 5.1.3 Composition of Automotive Ambient Lights
    • 5.1.4 Application Scope of Automotive Ambient Lights
    • 5.1.5 Control Technology of Interior Ambient Lights
    • 5.1.6 Main Body Network Architecture of Interior Ambient Lights (1)
    • 5.1.7 Main Body Network Architecture of Interior Ambient Lights (2)
    • 5.1.8 Main Body Network Architecture of Interior Ambient Lights (3)
    • 5.1.9 Design Process of Interior Lighting
    • 5.1.10 Ambient Light Configuration of Main OEM Models
    • 5.1.11 Development and Evolution of Interior Ambient Lights (1)
    • 5.1.12 Development and Evolution of Interior Ambient Lights (2)
    • 5.1.13 Global Market Scale of Interior Ambient Lights
    • 5.1.14 Global Distribution of Interior Ambient Lights
    • 5.1.15 Global Distribution and Optics Technology of Interior Ambient Lights
    • 5.1.16 Industry Chain of Interior Ambient Lights
  • 5.2 Development Trends of Interior Ambient Lights
    • 5.2.1 Development Trends of Interior Ambient Lights (1)
    • 5.2.2 Development Trends of Interior Ambient Lights (2)
    • 5.2.3 Development Trends of Interior Ambient Lights (3)
    • 5.2.4 Development Trends of Interior Ambient Lights (4)
    • 5.2.5 Development Trends of Interior Ambient Lights (5)
  • 5.3 Interactive Cases of Interior Ambient Lights
    • 5.3.1 Cases (1)
    • 5.3.2 Cases (2)
    • 5.3.3 Cases (3)
    • 5.3.4 Cases (4)

6 Application Trends of Automotive Smart Haptic Feedback Technology

  • 6.1 Overview of Automotive Touch Feedback Development
    • 6.1.1 Overview of Touch Feedback Technology
    • 6.1.2 Demand for Touch Feedback Technology
    • 6.1.3 Touch Feedback Technology Mode (1)
    • 6.1.4 Touch Feedback Technology Mode (2)
    • 6.1.5 Touch Feedback Technology Mode (3)
    • 6.1.6 Industry Chain of Main Touch Feedback Technology
    • 6.1.7 Main Suppliers of Touch Feedback Technology and Products
    • 6.1.8 Main Tier1 Suppliers of Touch Feedback Technology and Products
    • 6.1.9 Touch Feedback Technology Application of OEMs
    • 6.1.10 Automotive Display Touch System Technology Roadmap
    • 6.1.11 Cases (1)
    • 6.1.12 Cases (2)
    • 6.1.13 Cases (3)
  • 6.2 Main Automotive Haptic Feedback Suppliers
    • 6.2.1 Tanvas
      • 6.2.1.1 Multifunctional Surface Haptics Technology
      • 6.2.1.2 Automotive Solutions
    • 6.2.2 Boreas
      • 6.2.2.1 Piezo-Capdrive Technology
      • 6.2.2.2 BOS1211
    • 6.2.3 TDK PowerHap™ Piezo Actuator with Haptic Feedback
      • 6.2.3.1 PowerHap™ Piezo Actuator (Square Type) with Haptic Feedback
      • 6.2.3.2 PowerHap™ Products
      • 6.2.3.3 PowerHap™ Product Planning
    • 6.2.4 Continental
  • 6.2.4.1Haptic Feedback Technology
      • 6.2.4.2 Tactile Interactive Display
      • 6.2.4.3 HMI Business
    • 6.2.5 Others
      • 6.2.5.1 Haptic Feedback Technology of Bosch
      • 6.2.5.2 Haptic Feedback Technology of Joyson Electronics

7 Other Emerging Cockpit Interaction Technology

  • 7.1 Diversified and Interactive Steering Wheel Design
  • 7.2 Maximization of Space Utilization
  • 7.3 Automotive Sound Effects
  • 7.4 Smart Healthy Cockpit Layout