NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

自動駕駛車和5G科技:市場、標準化、技術

Autonomous Car and 5G Technologies: Markets, Standardization, Technologies

出版商 PracTel, Inc. 商品編碼 979703
出版日期 內容資訊 英文 238 Pages
商品交期: 最快1-2個工作天內
價格
自動駕駛車和5G科技:市場、標準化、技術 Autonomous Car and 5G Technologies: Markets, Standardization, Technologies
出版日期: 2020年12月23日內容資訊: 英文 238 Pages
簡介

本報告提供世界各國的智慧型運輸系統(ITS)技術的開發、引進情形相關分析,ITS的概要和到目前為止的技術開發成果,標準規格的制定的動向,相關市場/技術 (自動駕駛車,5G等)的趨勢預測,主要技術、功能的概要普及預測,今後的市場規模趨勢預測,今後的市場成長、技術進步的可能性,專利的申請、認證趨勢等資訊彙整。

目錄

第1章 簡介

第2章 ITS (智慧型運輸系統):完美的未來

  • 應答
  • 結構
  • ITS的主要技術
  • ITS的主要子系統:自動駕駛車的基礎
  • ITS的標準化:進展中
    • 概要
    • ETSI - 歐洲
    • 美國
    • 國際規格
    • 摘要
  • ITS應用
    • V2v (車輛間通訊)、V2I (車輛、基礎設施間通訊)
    • 智慧型交工具
  • ITS市場統計資料
    • 概算價值
    • 估計值

第3章 聯網汽車

  • 市場概要、定義
    • 促進因素
  • 技術性選擇
    • 聯網汽車:5.9GHz DSRC (專用短程通訊)
      • Arinc (Rockwell Collins)
      • AutoTalks
      • Cohda Wireless
      • Delphi
      • Kapsch
      • NXP
      • Redpine Signals
      • Savari
      • Unex
    • 聯網汽車:蜂巢式通訊技術
  • 聯網汽車:功能
    • 2個技術:2個意見
    • 功能技術
    • 主要用途
    • 政策
    • 選項
    • 網路的必要條件
    • 市場:聯網汽車
    • 產業
      • AT&T
      • Airbiquity Inc.
      • Apple
      • Broadcom
      • Ericsson
      • Ficosa
      • GM
      • MobilEye (Intel Company)
      • Nokia
      • Qualcomm
      • Sierra Wireless
      • Streetline
      • Verizon
      • Visteon
      • Wind River
      • Zubie
    • NR V2X:C-V2X的演進

第4章 聯網汽車:產業團體與標準化

  • 產業團體
    • Open Automotive Alliance
    • 4G Venture Forum for Connected Cars
    • Apple - iOS in the Car
    • GSMA Connected Car Forum
    • Car Connectivity Consortium
  • 與標準法規
    • 國際共同開發
    • EU
    • 美國
    • WWW Consortium
    • SAE

第5章 5G時代

  • 5G的時間表(3GPP-ITU)
  • 參加企業
  • 5G活動分析
    • NGMNLtd:C-V2X的支援者
    • 5G-PPP(5G用公民營協動)
    • 5G Americas
    • GSMA
    • Verizon 5G Technology Forum (TF)
    • 3GPP - New Radio (NR)

第6章 5G技術:主要的功能

  • 未來展望
  • 有前途的方向性
    • 必要條件
    • 共同的見解
    • 從未來:從今天開始
  • 問題點
  • 利用案例
    • 一般的特性
    • 行動寬頻
    • 汽車
    • 智慧社會

第7章 自動駕駛車的演進

  • 一起成長
  • 方向性與問題點
  • ADAS (先進駕駛輔助系統)
  • 目前情形:法律和保險
    • 美國
    • 英國
  • 主要的優點
  • 解決方案
  • 市場預測和價格
  • 階段
    • 必要的特性
  • 產業與研究開發 (R&D)
    • 汽車廠商
    • 研究開發 (R&D) 與其他競爭公司
    • Start-Ups企業
  • 標準化
    • NHTSA
    • SAE International
    • IEEE
    • AECC
    • 摘要
  • 新型冠狀病毒感染疾病 (COVID-19):對自動駕駛車開發的影響
    • 主要變更

第8章 LiDAR

  • 概況
    • 典型性的特徵
  • 結構與機能
    • 與其他感測器的比較
  • 感測器和惡劣天氣
  • 產業
    • AEye
    • Analog Devices
    • ASC
    • Baraja
    • Cepton
    • Ibeo (SICK AG的子公司)
    • Innoviz
    • Lasertel (Leonardo的子公司)
    • Luminar
    • LeddarTech
    • Osram/Phantom Intelligence
    • Quanergy
    • TriLumina
    • Velodyne
    • Waymo (Alphabet)
    • Chinese Lidar Industry
  • LiDAR的優點與規定
  • 市場

第9章 結論

添加資料I:自動駕駛/聯網汽車:專利調查 (2017年∼2020年)

添加資料II:汽車用LiDAR:專利調查 (2017年∼2020年)

目錄

This report updates and extends the Practel "Intelligent Car" project.

The goal of this report is to:

  • Analyze current trends in the Intelligent Transportation Systems (ITS) development
  • Address the progress in the ITS standardization
  • Analyze technological and marketing ITS specifics
  • Address the connected car trend
  • Analyze the connected car technologies and marketing specifics; identify major industry players and their portfolios
  • Present the current status of the driverless (autonomous) car development
  • Analyze marketing and technological driverless car specifics
  • Analyze the lidar technologies and market as well as the industry for automotive applications
  • Show how communications industry is preparing for the 5G era, emphasizing the role of 5G mobile communications in supporting the driverless car development. The driverless car is one of important 5G use cases.

Though never managing to successfully predict what each forthcoming generation of mobile technology should deliver to satisfy future users, the industry has nonetheless reached some consensus on the use cases for 5G communications. Machine to machine communications is one. 5G should enable the IoT, the future where all online-enabled objects will quietly pass on data to each other or to a central computer.

Facilitating the use of mobile networks by connected and autonomous cars, remotely controlled industrial robots, telehealth systems, and smart city infrastructure are also all expected to figure large in 5G thinking. There is a common notion the industry is hoping that 5G will solve problems we don't have today, but those that could hold us back years in the future - and one of the best examples to such a statement is a driverless car.

  • This particular report addresses the Intelligent Transportation Systems (ITS) progress in reaching its ultimate goal - to make a car "intelligent" enough to safely drive without a human participation. It also updates the status of a driverless car development in connection with transition to the 5G era: the industry identified driverless cars as most viable form of ITS, dominating the roadways by 2040 and sparking dramatic changes in vehicular travel. The report discusses the specifics of the 5G era as they are seen by the industry at the present time with emphasis on what 5G technologies can bring to the driverless car.
  • Such a car was considered by many as a scientists' dream only 10-15 years ago; now it is a reality and all predictions are that driverless cars will hit the roads in 6-8 years. Fully developed driverless car needs support of communications systems evolving in the transition to 5G; and these two developments are interrelated - a driverless car becomes a 5G use case.

The report provides overview of the current status of the driverless car development, pictures the future steps, which the industry is planning, analyzes roadblocks, and emphasizes the importance of standardization - several organizations are working in this direction. The analysis concentrates on technological and marketing aspects of driverless cars and also on the status of the industry.

The survey of driverless cars projects currently underway is conducted; as well as the survey of related patents (2017-2020). Initial marketing statistics are developed.

  • The detailed analysis of two important parts of a driverless car - lidar (one of the main components of ADAS) and the communications gear - "connected car" - is performed. The survey of recent auto lidar patents is also performed.

A driverless car, for simplicity, may be described as a combination of a connected car and ADAS (Advanced Driver Assistance Systems); and other parts. The ADAS important part is driverless car "eyes" - an instrument that can "see" surroundings and provide the information to the car for the analysis and taking relevant actions. One of most promising technologies that make cars "to see" is lidar, which is composed of laser and other parts. The report provides the detailed analysis of lidar technical and marketing characteristics and the survey of the industry.

The detailed analysis of connected cars specifics, standardization, technical characteristics and economics are presented in this report. The companies - contributors to the connected car market development - are identified and their portfolios are analyzed.

The report also emphasizes the importance of 5G mobile networking as a basis for the driverless car ITS revolution. With "ultimate" ITS, it is expected that safety on the roads will be drastically improved and the society will be free from massive amount of injuries and deaths on the roads as well as from damages to the economy due to accidents and traffic jams.

A preliminary evaluation of the COVID-19 effect on the driverless car industry development is presented.

The report is intended to technical and managerial staff involved in the advanced ITS development; and for specialists in communications technologies who support such a development.

Table of Contents

1.0 Introduction

  • 1.1 Overview
  • 1.2 Report Goal
  • 1.3 Report Scope
  • 1.4 Research Methodology
  • 1.5 Target Audience

2.0 ITS: Roads to Perfection

  • 2.1 Response
  • 2.2 Structure
  • 2.3 ITS Key Technologies
  • 2.4 ITS Main Subsystems - Driverless Car Basis
  • 2.5 ITS Standardization: In Progress
    • 2.5.1 Overview
    • 2.5.2 ETSI - Europe
    • 2.5.3 U.S.
      • 2.5.3.1 General
      • 2.5.3.2 National Transportation Communications for ITS Protocol (NTCIP)
    • 2.5.4 International
      • 2.5.4.1 General
      • 2.5.4.2 ITU
    • 2.5.5 Summary
  • 2.6 ITS Applications
    • 2.6.1 V2V and V2I
    • 2.6.2 Intelligent Vehicles
  • 2.7 ITS Market Statistics
    • 2.7.1 General
    • 2.7.2 Estimate

3.0 Connected Car

  • 3.1 General - Definition
    • 3.1.1 Driving Forces
  • 3.2 Alternatives: Technologies
    • 3.2.1 Connected Car - 5.9 GHz DSRC
      • 3.2.1.1 Background
        • 3.2.1.1.1 Recent Developments
      • 3.2.1.2 Efforts - History
      • 3.2.1.3 Place
      • 3.2.1.4 Structure and Protocols
      • 3.2.1.5 Requirements
      • 3.2.1.6 Milestones
      • 3.2.1.7 IEEE 802.11p
        • 3.2.1.7.1 General
        • 3.2.1.7.2 Objectives and Status
        • 3.2.1.7.3 ASTM Contributions
        • 3.2.1.7.4 Characteristics
      • 3.2.1.8 IEEE 1609
        • 3.2.1.8.1 General
        • 3.2.1.8.2 Overview
        • 3.2.1.8.3 IEEE 1609 in Use
      • 3.2.1.9 ETSI ITS-G5 - Major Features
      • 3.2.1.10 ISO and DSRC
      • 3.2.1.11 5.9 GHz DSRC Components and Procedures
        • 3.2.1.11.1 Components
        • 3.2.1.11.2 Procedures
      • 3.2.1.12 Major Applications
        • 3.2.1.12.1 EPS
      • 3.2.1.13 Spectrum - DSRC
        • 3.2.1.13.1 Channels Designation
      • 3.2.1.14 Services
        • 3.2.1.14.1 Major Services
        • 3.2.1.14.2 Service Categories/QoS
        • 3.2.1.14.3 Service Requirements
      • 3.2.1.15 Summary: 5.9 GHz DSRC Characteristics
      • 3.2.1.16 Market Segment and Industry
        • 3.2.1.16.1 Market Drivers
        • 3.2.1.16.2 Market Requirements
        • 3.2.1.16.3 Market Estimate - 5.9 GHz DSRC
      • 3.2.1.17 Industry
        • 3.2.1.17.1 Industry Coalition
        • 3.2.1.17.2 Recent Progress
        • 3.2.1.17.3 Vendors
          • Arinc (Rockwell Collins)
          • AutoTalks
          • Cohda Wireless
          • Delphi
          • Kapsch
          • NXP
          • Redpine Signals
          • Savari
          • Unex
      • 3.2.1.18 Enhancing 802.11p - 802.11bd
    • 3.2.2 Connected Car - Cellular Technologies
      • 3.2.2.1 General
      • 3.2.2.2 3GPP Activities
        • 3.2.2.2.1 D2D Communications
        • 3.2.2.2.2 C-V2X Broadcast
        • 3.2.2.2.3 Performance Comparison
  • 3.3 Connected Car - Features
    • 3.3.3 Two Technologies - Two Opinions
      • 3.3.3.1 Governments
      • 3.3.3.2 Comparison
    • 3.3.4 Functional Technologies
      • 3.3.4.1 Over the Air Updates
    • 3.3.5 Major Applications
    • 3.3.6 Policies
    • 3.3.7 Choices
    • 3.3.8 Network Requirements
    • 3.3.9 Market: Connected Car
    • 3.3.10 Industry
      • AT&T
      • Airbiquity Inc.
      • Apple
      • Broadcom
      • Ericsson
      • Ficosa
      • GM
      • MobilEye (Intel Company)
      • Nokia
      • Qualcomm
      • Sierra Wireless
      • Streetline
      • Verizon
      • Visteon
      • Wind River
      • Zubie
    • 3.3.11 NR V2X - Evolution of C-V2X

4.0 Connected Car - Industry Groups and Standardization

  • 4.1 Industry Groups
    • 4.1.1 Open Automotive Alliance
    • 4.1.2 4G Venture Forum for Connected Cars
    • 4.1.3 Apple - iOS in the Car
    • 4.1.4 GSMA Connected Car Forum
    • 4.1.5 Car Connectivity Consortium
  • 4.2 Standards and Regulations
    • 4.2.1 Joint Efforts
    • 4.2.2 EU
    • 4.2.3 U.S.
    • 4.2.4 WWW Consortium
    • 4.2.5 SAE

5.0 5G Era

  • 5.1 5G Timetable (3GPP-ITU)
  • 5.2 Contributors
  • 5.3 5G Activity Survey
    • 5.3.1 NGMN Ltd - Supporter of C-V2X
      • 5.3.1.1 5G White Papers
    • 5.3.2 5G-PPP (5G Public Private Partnership)
    • 5.3.3 5G Americas
    • 5.3.4 GSMA
      • 5.3.4.1 GSMA Report on 5G
        • 5.3.4.1.1 Vision
        • 5.3.4.1.2 The Evolution: From 4G to 5G
        • 5.3.4.1.3 5G Use Cases
    • 5.3.5 Verizon 5G Technology Forum (TF)
    • 5.3.6 3GPP - New Radio (NR)

6.0 5G Technologies - Main Features

  • 6.1 Look into Future
  • 6.2 Promising Directions
    • 6.2.1 Requirements
    • 6.2.2 Common Views
      • 6.2.2.1 5G Spectrum
    • 6.2.3 Future - Starts Today
  • 6.3 Issues
  • 6.4 Use Cases
    • 6.4.1 General -Characteristics
    • 6.4.2 Mobile Broadband
    • 6.4.3 Automotive
    • 6.4.4 Smart Society

7.0 Evolving of Driverless Car

  • 7.1 Growing Together
  • 7.2 Directions and Issues
  • 7.3 ADAS
  • 7.4 Current Status - Legislation and Insurance
    • 7.4.1 The U.S.
    • 7.4.2 The GB
  • 7.5 Major Benefits
  • 7.6 Solutions
  • 7.7 Market Projections and Price
  • 7.8 Phases
    • 7.8.1 Required Characteristics
  • 7.9 Industry and R&D
    • 7.9.1 Automakers
      • 7.9.1.1 Audi
        • 7.9.1.1.1 First Level 3 Car
        • 7.9.1.1.2 Progress
      • 7.9.1.2 Ford
      • 7.9.1.3 GM
      • 7.9.1.4 Nissan
      • 7.9.1.5 Daimler/Mercedes
      • 7.9.1.6 VW and AdaptIVe Consortium
      • 7.9.1.7 Volvo Cars
      • 7.9.1.8 Tesla Motors
      • 7.9.1.9 SAIC
      • 7.9.1.10 Other
    • 7.9.2 R&D and Competitors
      • 7.9.2.1 Alphabet/Google - ProjectX -Waymo
      • 7.9.2.2 Baidu
      • 7.9.2.3 DOTs
      • 7.9.2.4 Telecom Readiness: Driverless Car - 5G Communications
        • 7.9.2.4.1 Huawei
        • 7.9.2.4.2 Swisscom
      • 7.9.2.5 QNX
      • 7.9.2.6 Continental Automotive
      • 7.9.2.7 Nvidia
    • 7.9.3 Start-ups
      • 7.9.3.1 Uber
      • 7.9.3.2 Lyft
      • 7.9.3.3 Nuro
  • 7.10 Standardization
    • 7.10.1 NHTSA
      • 7.10.1.1 Levels
    • 7.10.2 SAE International
      • 7.10.2.1 USA Preparedness
    • 7.10.3 IEEE
    • 7.10.4 AECC
    • 7.10.5 Summary
  • 7.11 COVID-19: Impact on Driverless Car Development
    • 7.11.1 Major Changes

8.0 Lidar

  • 8.1 General
    • 8.1.1 Typical Characteristics
  • 8.2 Structure and Functionalities
    • 8.2.1 Comparison with other Sensors
  • 8.3 Sensors and Bad Weather
  • 8.4 Industry
    • AEye
    • Analog Devices
    • ASC
    • Baraja
    • Cepton
    • Ibeo (subsidiary of SICK AG)
    • Innoviz
    • Lasertel (a Leonardo Company)
    • Luminar
    • LeddarTech
    • Osram/Phantom Intelligence
    • Quanergy
    • TriLumina
    • Velodyne
    • Waymo (Alphabet)
    • Chinese Lidar Industry
  • 8.5 Lidars Benefits and Limitations
  • 8.6 Market

9.0 Conclusions

Attachment I: Driverless/Connected Car Patents Survey (2017-2020)

Attachment II: Automotive Lidar-Patents Survey (2017-2020)

List of Figures

  • Figure 1: Wireless Communications: ITS Environment
  • Figure 2: Europe - Standardization Organizations
  • Figure 3: U.S. - ITS Standardizations Bodies
  • Figure 4: NTCIP Structure
  • Figure 5: International -Standardization Bodies - ITS
  • Figure 6: Estimate: Global Market - ITS ($B)
  • Figure 7: Estimate: ITS WICT- Global Market ($B)
  • Figure 8: ITS Equipment Sales by Regions ($B)
  • Figure 9: Connected Car - Sensors
  • Figure 10: 5.9 GHz DSRC - Frequencies Allocation and Channelization
  • Figure 11: 5.9 GHz DSRC - Modified Spectrum Proposal
  • Figure 12: Industry Cooperation
  • Figure 13: ITS-5.9 GHz DSRC - Illustration
  • Figure 14: Communications Model: WAVE
  • Figure 15: 802.11p - Communications
  • Figure 16: Signals Flow
  • Figure 17: Collision Detection/Avoidance System
  • Figure 18: Work Zone Warning
  • Figure 19: "Smart" Car
  • Figure 20: DSRC Worldwide - Spectrum Allocation
  • Figure 21: DSRC: Spectrum Allocation Details
  • Figure 22: Channel Assignment - 5.9 GHz DSRC
  • Figure 23: 5.9 GHz DSRC Transmission Characteristics and Channelization
  • Figure 24: Spectrum Details - Overlapping Wi-Fi
  • Figure 25: Major Categories-DSRC Services
  • Figure 26: 5.9 GHz DSRC Rate vs. Distance
  • Figure 27: 5.9 GHz DSRC Protocols - Summary
  • Figure 28: Estimate: 5.9 GHz DSRC U.S. Market Size ($B)
  • Figure 29: C-V2X Modes of Communications
  • Figure 30: 3GPP Schedule - Evolution of LTE-based Communications
  • Figure 31: D2D Communications - Evolution
  • Figure 32: LTE ProSe Functions - Discovery and Communications
  • Figure 33: 3GPP - C-V2X Technology Development
  • Figure 34: Connected Car Functionalities
  • Figure 35: Network Requirements - Connected Car Connectivity
  • Figure 36: Estimate - Global Market - CC Sales (Mil. Units))
  • Figure 37: Estimate: Global Automotive Wireless Market - Equipment Sales ($B)
  • Figure 38: Estimate - Global - Service Providers Revenue - Connected Car ($B)
  • Figure 39: Connected Car Penetration - U.S. (%)
  • Figure 40: ITU-R Schedule and Process for IMT-2020
  • Figure 41: 3GPP - Tentative Time Line - 5G Standardization
  • Figure 42: Time Line - NR Development
  • Figure 43: Transition - Current View
  • Figure 44: 5G Spectrum
  • Figure 45: 5G Technologies Directions
  • Figure 46: 5G - related Characteristics
  • Figure 47: 5G Use Cases - Rate of Transmission and Latency
  • Figure 48: U.S. - Driverless Car Legislative Status (as of 2019)
  • Figure 49: Estimate: Driverless Cars Sold - Global (%)
  • Figure 50: Evolution Path - Driverless Car
  • Figure 51: NHTSA - Car Automation Levels
  • Figure 52: Lidar and Radar Properties
  • Figure 53: Estimate: Lidar Market Size - Global ($B)
  • Figure 54: Estimate: Automotive Lidar Market Size - Global ($B)

List of Tables

  • Table 1: ETSI G5 Characteristics
  • Table 2: Service Categories
  • Table 3: Service Requirements
  • Table 4: 5.9 GHz DSRC Characteristics
  • Table 5: 802.11p and 802.11bd
  • Table 6: LTE - D2D and Broadcast Modes - Performance Comparison
  • Table 7: Major Parameters - 5.9 GHz DSRC and C-V2X
  • Table 8: NR V2X vs 802.11bd
  • Table 9: 5G Network Major Characteristics
  • Table 10: 5G Use Cases
  • Table 11: Driverless Car Development - Covid-19 Impact
  • Table 12: Projections
  • Table 13: Lidar Characteristics - Automotive Applications
  • Table 14: Lidar and Video Camera Properties