全球數位孿生市場:按技術/孿生類型,網絡到物理解決方案,用例,行業/應用分列 (2023-2028)
市場調查報告書
商品編碼
1237178

全球數位孿生市場:按技術/孿生類型,網絡到物理解決方案,用例,行業/應用分列 (2023-2028)

Digital Twins Market by Technology, Twinning Type, Cyber-to-Physical Solutions, Use Cases and Applications in Industry Verticals 2023 - 2028

出版日期: | 出版商: Mind Commerce | 英文 154 Pages | 商品交期: 最快1-2個工作天內

價格

概覽

  • 最近的一項調查發現,47% 的企業 IT 決策者不知道數位孿生。
  • 到 2028 年,智慧城市數位孿生解決方案市場預計將達到 52 億美元。
  • 到 2028 年,超過 94% 的物聯網平台將具備某種形式的數位孿生功能,使數位孿生成為物聯網應用支持的標準功能/特性。
  • 超過 96% 的供應商認識到需要將平台與工業 IIoT API 和數位孿生功能集成。
  • 各行各業超過 42% 的高管了解數位孿生的好處,其中 59% 的高管計劃到 2028 年將其納入其運營中。
  • 典型的數位孿生解決方案包括資產孿生,組件孿生,系統孿生,流程孿生和工作流孿生。

本報告分析了全球數位孿生市場的最新情況和未來前景,概述了數位孿生及其與相關技術的關係,評估了產品和服務的生態系統(包括應用開發和運營),傳播和利用每個行業的狀況,主要公司的舉措狀況,未來市場規模趨勢(2023-2028 年)的展望,以及按地區和國家分列的詳細趨勢。

內容

第 1 章執行摘要

第二章介紹

  • 概覽
    • 了解數位孿生
    • 認知數位孿生
    • 數位主線
    • 傳感器與模擬的融合
    • 物聯網 API
    • 軟件模塊和元素
    • 數位孿生的類型
    • 數位孿生業務流程
    • 數位孿生的作用和重要性
  • 相關技術及其對數位孿生的影響
    • 工業互聯網與工業 4.0
    • 配對技術
    • 網絡到物理系統
    • AR(增強現實),VR(虛擬現實),XR(混合現實)
    • 人工智能 (AI) 和機器學習 (ML)
    • 增材製造 (AM) 和 3D 打印
  • 潛在用途和結果分析
    • MRO(維護,修理,大修)工作
    • 消費者資產的數位化身
    • 性能/服務監控
    • 檢查和維修
    • 預測性維護
    • 產品設計和開發
    • 複合材料組裝和製造
    • 潛在的業務成果
  • 數位孿生服務生態系統
    • 工業物聯網 (IIoT)
    • 消費者物聯網
    • 行業趨勢
    • DTaaS(數位孿生即服務)

第3章數位孿生公司評估

  • ABB
  • Allerin Tech Pvt.
  • 牽牛星工程公司
  • 亞馬遜網絡服務
  • ANSYS
  • 奧科泰克股份公司
  • 歐特克公司
  • Bentley 系統公司
  • CADFEM 有限公司
  • 思科系統
  • 城頂
  • 科斯莫科技
  • 達索系統
  • 數位孿生聯盟
  • 數位孿生技術
  • 挪威船級社
  • DXC 技術
  • Eclipse 基金會
  • 愛默生
  • 出現
  • 快流科技
  • FEINGUSS BLANK GmbH
  • 福斯
  • 前向網絡
  • 通用電氣
  • 谷歌
  • 日立有限公司
  • 霍尼韋爾
  • 惠普
  • IBM
  • 工業互聯網聯盟
  • 智能
  • 因維卡拉
  • 知識分子
  • 賽跑者電子
  • 微軟
  • 美國國家儀器公司
  • 導航系統
  • 甲骨文
  • PETRA 數據科學
  • 物理網絡
  • Pratiti 技術
  • Prodea 系統公司
  • PTC
  • QiO 技術
  • 羅伯特博世
  • SAP
  • 施耐德
  • 參議院
  • 西門子
  • Sight Machine Inc.
  • Simplifa 有限公司
  • Softweb Solutions Inc.
  • Sogeti 集團
  • 游泳人工智能
  • Synavision
  • 希森美康公司
  • TIBCO 軟件
  • 東芝公司
  • 大熊座獅子座
  • Virtalis 有限公司
  • 可視化
  • 維普羅有限公司
  • 氙氣堆
  • 熱情實驗室

第 4 章數位孿生市場分析與預測(2023-2028)

  • 全球數位孿生市場 (2023-2028)
  • 全球數位孿生市場:按孿生類型 (2023-2028)
  • 全球數位孿生市場:按應用分類 (2023-2028)
  • 全球數位孿生市場:按行業分類 (2023-2028)
    • 按類型劃分的製造數位孿生市場 (2023-2028)
    • 智慧城市的數位孿生市場:按類型分類 (2023-2028)
    • 按類型劃分的汽車數位孿生市場(2023 年至 2028 年)
    • 按類型劃分的醫療數位孿生市場(2023 年至 2028 年)
    • 交通數位孿生市場:按類型分類 (2023-2028)
  • 數位孿生市場:按地區劃分 (2023-2028)
    • 北美數位孿生市場(2023 年至 2028 年)
    • 南美洲的數位孿生市場 (2023-2028)
    • 歐洲數位孿生市場 (2023-2028)
    • 亞太地區數位孿生市場 (2023-2028)
    • 中東和非洲的數位孿生市場(2023 年至 2028 年)

第 5 章結論和建議

Overview:

This report evaluates digital twinning technology, solutions, use cases, and leading company efforts in terms of R&D and early deployments. The report assesses the digital twin product and service ecosystem including application development and operations. This includes consideration of use cases by industry vertical.

The report also analyzes technologies supporting and benefiting from digital twinning. The report also provides detailed forecasts covering digital twinning solutions in many market segments and use cases including manufacturing simulations, predictive analytics, and more from 2023 to 2028 with global, regional, and major country forecasts.

Select Report Findings:

  • We found 47% of IT decision makers have never heard of digital twins
  • Digital twin supported solutions in smart cities will reach $5.2 billion by 2028
  • Over 94% of all IoT Platforms will contain some form of digital twinning capability by 2028
  • Digital twinning will become standard feature/functionality for IoT Application Enablement by 2028
  • Leading digital twin solutions involve Asset Twinning, Component Twinning, System Twinning, Process and Workflow Twinning
  • Over 96% of vendors recognize the need for IIoT APIs and platform integration with digital twinning functionality for industrial verticals
  • Over 42% of executives across a broad spectrum of industry verticals understand the benefits of digital twinning and 59% of them plan to incorporate within their operations by 2028

A digital twin is a virtual object representation of a real-world item in which the virtual is mapped to physical things in the real world such as equipment, robots, or virtually any connected business asset. This mapping in the digital world is facilitated by IoT platforms and software that is leveraged to create a digital representation of the physical asset.

The digital twin of a physical asset can provide data about its status such as its physical state and disposition. Conversely, a digital object may be used to manipulate and control a real-world asset by way of teleoperation. The publisher of this report sees this form of cyber-physical connectivity, signaling, and control as a key capability to realize the vision for Industry 4.0 to fully digitize production, servitization, and the `as a service` model for products.

There are many potential use cases for digital twinning including monitoring, simulation, and remote control of physical assets with virtual objects. Solutions focus on Part, Product, Process, and System twinning. Leading digital twin solutions involve Asset Twinning, Component Twinning, System Twinning, Process and Workflow Twinning. We see digital twinning playing a key role in many related IoT operations processes including IoT application development, testing, and control.

The implementation of digital twins will also enable distributed remote control of assets, which will place an increasingly heavy burden on IoT Identity management, authentication, and authorization. IoT authentication market solutions are also important in support of the "things" involved in IoT, which vary from devices used to detect, actuate, signal, engage, and more. This will become particularly important with respect to digital twin solution integration.

As reflected by the Digital Twin Consortium, we see some of the key industries to lead cyber-to-physical integration and solutions include aerospace, healthcare, manufacturing, military, natural resources, and public safety sectors. In terms of integrating digital twin technology and solutions with telecommunications and enterprise infrastructure, we see a need for careful planning from a systems integration, testing, and implementation perspective. This will be especially important in the case of mission-critical applications.

Companies in Report:

  • ABB
  • Allerin Tech Pvt. Ltd.
  • Altair Engineering, Inc.
  • Amazon Web Services
  • ANSYS
  • Aucotec AG
  • Autodesk Inc.
  • Bentley Systems, Incorporated
  • CADFEM GmbH
  • Cisco Systems
  • Cityzenith
  • Cosmo Tech
  • Dassault Systems
  • Digital Twin Consortium
  • Digital Twin Technologies
  • DNV GL
  • DXC Technology
  • Eclipse Foundation
  • Emerson
  • Emesent
  • Faststream Technologies
  • FEINGUSS BLANK GmbH
  • Flowserve
  • Forward Networks
  • General Electric
  • Google
  • Hitachi Ltd.
  • Honeywell
  • HP
  • IBM
  • Industrial Internet Consortium
  • Intellias
  • Invicara
  • KBMax
  • Lanner Electronics
  • Microsoft
  • National Instruments
  • NavVis
  • Oracle
  • PETRA Data Science
  • Physical Web
  • Pratiti Technologies
  • Prodea System Inc.,
  • PTC
  • QiO Technologies
  • Robert Bosch
  • SAP
  • Schneider
  • SenSat
  • Siemens
  • Sight Machine Inc.
  • Simplifa GmbH
  • Softweb Solutions Inc.
  • Sogeti Group
  • SWIM.AI
  • Synavision
  • Sysmex Corporation
  • TIBCO Software
  • Toshiba Corporation
  • UrsaLeo
  • Virtalis Limited
  • Visualiz
  • Wipro Limited
  • XenonStack
  • Zest Labs

Table of Contents

1.0. Executive Summary

2.0. Introduction

  • 2.1. Overview
    • 2.1.1. Understanding Digital Twinning
    • 2.1.2. Cognitive Digital Twining
    • 2.1.3. Digital Thread
    • 2.1.4. Convergence of Sensors and Simulations
    • 2.1.5. IoT APIs
    • 2.1.6. Software Modules and Elements
    • 2.1.7. Types of Digital Twinning
    • 2.1.8. Digital Twinning Work Processes
    • 2.1.9. Role and Importance of Digital Twinning
  • 2.2. Related Technologies and Impact on Digital Twinning
    • 2.2.1. Industrial Internet and Industry 4.0
    • 2.2.2. Pairing Technology
    • 2.2.3. Cyber-to-Physical Systems
    • 2.2.4. AR, VR, and Mixed Reality
    • 2.2.5. Artificial Intelligence and Machine Learning
    • 2.2.6. Additive Manufacturing and 3D Printing
  • 2.3. Potential Application and Outcome Analysis
    • 2.3.1. Maintenance, Repair and Overhaul Operation
    • 2.3.2. Digital Avatar of Consumer Assets
    • 2.3.3. Performance/Service Monitoring
    • 2.3.4. Inspection and Repairs
    • 2.3.5. Predictive Maintenance
    • 2.3.6. Product Design & Development
    • 2.3.7. Composite Assembling/Manufacturing
    • 2.3.8. Potential Business Outcomes
  • 2.4. Digital Twinning Service Ecosystem
    • 2.4.1. Industrial IoT
    • 2.4.2. Consumer IoT
    • 2.4.3. Industry Development
    • 2.4.4. Digital Twinning as a Service

3.0. Digital Twins Company Assessment

  • 3.1. ABB
  • 3.2. Allerin Tech Pvt. Ltd.
  • 3.3. Altair Engineering, Inc.
  • 3.4. Amazon Web Services
  • 3.5. ANSYS
  • 3.6. Aucotec AG
  • 3.7. Autodesk Inc.
  • 3.8. Bentley Systems, Incorporated
  • 3.9. CADFEM GmbH
  • 3.10. Cisco Systems
  • 3.11. Cityzenith
  • 3.12. Cosmo Tech
  • 3.13. Dassault Systems
  • 3.14. Digital Twin Consortium
  • 3.15. Digital Twin Technologies
  • 3.16. DNV GL
  • 3.17. DXC Technology
  • 3.18. Eclipse Foundation
  • 3.19. Emerson
  • 3.20. Emesent
  • 3.21. Faststream Technologies
  • 3.22. FEINGUSS BLANK GmbH
  • 3.23. Flowserve
  • 3.24. Forward Networks
  • 3.25. General Electric
  • 3.26. Google
  • 3.27. Hitachi Ltd.
  • 3.28. Honeywell
  • 3.29. HP
  • 3.30. IBM
  • 3.31. Industrial Internet Consortium
  • 3.32. Intellias
  • 3.33. Invicara
  • 3.34. KBMax
  • 3.35. Lanner Electronics
  • 3.36. Microsoft
  • 3.37. National Instruments
  • 3.38. NavVis
  • 3.39. Oracle
  • 3.40. PETRA Data Science
  • 3.41. Physical Web
  • 3.42. Pratiti Technologies
  • 3.43. Prodea System Inc.
  • 3.44. PTC
  • 3.45. QiO Technologies
  • 3.46. Robert Bosch
  • 3.47. SAP
  • 3.48. Schneider
  • 3.49. SenSat
  • 3.50. Siemens
  • 3.51. Sight Machine Inc.
  • 3.52. Simplifa GmbH
  • 3.53. Softweb Solutions Inc.
  • 3.54. Sogeti Group
  • 3.55. SWIM.AI
  • 3.56. Synavision
  • 3.57. Sysmex Corporation
  • 3.58. TIBCO Software
  • 3.59. Toshiba Corporation
  • 3.60. UrsaLeo
  • 3.61. Virtalis Limited
  • 3.62. Visualiz
  • 3.63. Wipro Limited
  • 3.64. XenonStack
  • 3.65. Zest Labs

4.0. Digital Twins Market Analysis and Forecasts 2023 to 2028

  • 4.1. Global Digital Twins 2023-2028
  • 4.2. Digital Twins Market by Type of Twinning 2023-2028
  • 4.3. Digital Twins Applications 2023-2028
  • 4.4. Digital Twins by Industry 2023-2028
    • 4.4.1. Digital Twins in Manufacturing by Type 2023-2028
    • 4.4.2. Digital Twins in Smart City by Type 2023-2028
    • 4.4.3. Digital Twins in Automotive by Type 2023-2028
    • 4.4.4. Digital Twins in Healthcare by Type 2023-2028
    • 4.4.5. Digital Twins in Transport by Type 2023-2028
  • 4.5. Digital Twins by Region 2023-2028
    • 4.5.1. North America Digital Twins 2023-2028
    • 4.5.2. South America Digital Twins 2023-2028
    • 4.5.3. Europe Digital Twins 2023-2028
    • 4.5.4. APAC Digital Twins 2023-2028
    • 4.5.5. MEA Digital Twins 2023-2028

5.0. Conclusions and Recommendations

Figures

  • Figure 1: Digital Twinning Model
  • Figure 2: Building Blocks of Cognitive Digital Twinning
  • Figure 3: Digital Thread Model in Digital Manufacturing Transformation Processes
  • Figure 4: Example of Types of Digital Twinning
  • Figure 5: Industrial Internet Building Block and Digital Twinning
  • Figure 6: Additive Manufacturing Path and Goals
  • Figure 7: Digital Thread for Additive Manufacturing in AM Process
  • Figure 8: Data Fusion for MRO Operation
  • Figure 9: Composite Manufacturing Model
  • Figure 10: Digital Twinning Application and Outcomes
  • Figure 11: Global Digital Twins 2023 - 2028
  • Figure 12: Digital Twins Types 2023 - 2028
  • Figure 13: Digital Twins Applications 2023 - 2028
  • Figure 14: Digital Twins by Industry 2023 - 2028
  • Figure 15: Digital Twins in Manufacturing by Type 2023 - 2028
  • Figure 16: Digital Twins in Manufacturing by Application 2023 - 2028
  • Figure 17: Digital Twins in Smart City by Type 2023 - 2028
  • Figure 18: Digital Twins in Smart City by Application 2023 - 2028
  • Figure 19: Digital Twins in Automotive by Type 2023 - 2028
  • Figure 20: Digital Twins in Automotive by Application 2023 - 2028
  • Figure 21: Digital Twins in Healthcare by Type 2023 - 2028
  • Figure 22: Digital Twins in Healthcare by Application 2023 - 2028
  • Figure 23: Digital Twins in Transport by Type 2023 - 2028
  • Figure 24: Digital Twins in Transport by Application 2023 - 2028
  • Figure 25: Digital Twins by Region 2023 - 2028
  • Figure 26: North America Digital Twins by Country 2023 - 2028
  • Figure 27: North America Digital Twins by Industry 2023 - 2028
  • Figure 28: United States Digital Twins 2023 - 2028
  • Figure 29: Canada Digital Twins 2023 - 2028
  • Figure 30: Mexico Digital Twins 2023 - 2028
  • Figure 31: South America Digital Twins by Country 2023 - 2028
  • Figure 32: South America Digital Twins by Industry 2023 - 2028
  • Figure 33: Argentina Digital Twins 2023 - 2028
  • Figure 34: Brazil Digital Twins 2023 - 2028
  • Figure 35: Chile Digital Twins 2023 - 2028
  • Figure 36: Europe Digital Twins by Country 2023 - 2028
  • Figure 37: Europe Digital Twins by Industry 2023 - 2028
  • Figure 28: U.K. Digital Twins 2023 - 2028
  • Figure 39: Germany Digital Twins 2023 - 2028
  • Figure 40: France Digital Twins 2023 - 2028
  • Figure 41: Spain Digital Twins 2023 - 2028
  • Figure 42: Italy Digital Twins 2023 - 2028
  • Figure 43: Poland Digital Twins 2023 - 2028
  • Figure 44: Russia Digital Twins 2023 - 2028
  • Figure 45: APAC Digital Twins by Country 2023 - 2028
  • Figure 46: APAC Digital Twins by Industry 2023 - 2028
  • Figure 47: China Digital Twins 2023 - 2028
  • Figure 48: Japan Digital Twins 2023 - 2028
  • Figure 49: South Korea Digital Twins 2023 - 2028
  • Figure 50: Australia Digital Twins 2023 - 2028
  • Figure 51: India Digital Twins 2023 - 2028
  • Figure 52: MEA Digital Twins by Country 2023 - 2028
  • Figure 53: MEA Digital Twins by Industry 2023 - 2028
  • Figure 54: Qatar Digital Twins 2023 - 2028
  • Figure 55: Kuwait Digital Twins 2023 - 2028
  • Figure 56: Saudi Arabia Digital Twins 2023 - 2028
  • Figure 57: South Africa Digital Twins 2023 - 2028

Tables

  • Table 1: Global Digital Twins 2023 - 2028
  • Table 2: Digital Twins Market by Type of Twinning 2023 - 2028
  • Table 3: Digital Twins Applications 2023 - 2028
  • Table 4: Digital Twins by Industry 2023 - 2028
  • Table 5: Digital Twins in Manufacturing by Type 2023 - 2028
  • Table 6: Digital Twins in Manufacturing by Application 2023 - 2028
  • Table 7: Digital Twins in Smart City by Type 2023 - 2028
  • Table 8: Digital Twins in Smart City by Application 2023 - 2028
  • Table 9: Digital Twins in Automotive by Type 2023 - 2028
  • Table 10: Digital Twins in Automotive by Application 2023 - 2028
  • Table 11: Digital Twins in Healthcare by Type 2023 - 2028
  • Table 12: Digital Twins in Healthcare by Application 2023 - 2028
  • Table 13: Digital Twins in Transport by Type 2023 - 2028
  • Table 14: Digital Twins in Transport by Application 2023 - 2028
  • Table 15: Digital Twins by Region 2023 - 2028
  • Table 16: North America Digital Twins by Country 2023 - 2028
  • Table 17: North America Digital Twins by Industry 2023 - 2028
  • Table 18: South America Digital Twins by Country 2023 - 2028
  • Table 19: South America Digital Twins by Industry 2023 - 2028
  • Table 20: Europe Digital Twins by Country 2023 - 2028
  • Table 21: Europe Digital Twins by Industry 2023 - 2028
  • Table 22: APAC Digital Twins by Country 2023 - 2028
  • Table 23: APAC Digital Twins by Industry 2023 - 2028
  • Table 24: MEA Digital Twins by Country 2023 - 2028
  • Table 25: MEA Digital Twins by Industry 2023 - 2028