表紙
市場調查報告書

IoT (物聯網) 的大數據:IoT數據管理、分析及決策 (2018-2023年)

Big Data in Internet of Things: IoT Data Management, Analytics, and Decision Making 2019 - 2024

出版商 Mind Commerce 商品編碼 328425
出版日期 內容資訊 英文 234 Pages
商品交期: 最快1-2個工作天內
價格
Back to Top
IoT (物聯網) 的大數據:IoT數據管理、分析及決策 (2018-2023年) Big Data in Internet of Things: IoT Data Management, Analytics, and Decision Making 2019 - 2024
出版日期: 2019年09月09日內容資訊: 英文 234 Pages
簡介

IoT的大數據需要比傳統大數據基礎設施更具耐用性、機動性、擴張性的平台、分析工具、以及數據儲存系統。IoT數據本身就是產品開發、供給差異化定位、未滿足需求的對應上非常重要的媒介,IoT所用的大數據及分析法即是IoT生態系統及IoT產業整體的實現因子。

本報告提供IoT (物聯網)中大數據所扮演的角色和相關產品與服務市場調查,提供IoT大數據的重要性,新協定、平台、軟體、分析工具之必要性,廠商的生態系統,IoT大數據解決方案、硬體、軟體、服務等市場規模的轉移與預測,產品服務區隔及各產業內情,主要企業檔案等內容彙整如後。

第1章 簡介

第2章 IoT的大數據

  • IoT用大數據之框架
  • 新協定、平台、串流及解析功能、軟體、分析工具的必要性
    • 統一日誌數據(Unified Logging Layer)
      • Fluentd
    • IoT數據格式與大數據
      • JavaScript Object Notation
    • IoT協定與大數據
      • 訊息佇列、其他
    • 為了網路的互相通用性,IoT協定與大數據
      • 數據分配服務
    • IoT的數據處理擴張性及大數據
  • IoT的大數據問題

第3章 IoT的大數據:事業動向及預測

  • 大規模企業領導新興企業的M&A及合作
  • IoT的Big-data-as-a-Service (BDaaS) 主流化
  • M2M分析及雲端服務的現有企業是初期的受益者
  • 大數據服務的彈性&可擴張收益模式
  • 大數據運用上的節約與商機

第4章 供應商的生態系統

  • 提供雲端基礎的IoT用分析平台
  • 雲端基礎的IoT用資料儲存&管理工具套組
  • 分析大量數據的大數據處理
  • 網路邊緣( Edge of Networks)的數據演算、儲存、分析
  • 預測平台與解決方案
  • 雲端基礎的IoTm用分析系統
  • 數據系統的升級與進化
  • 分析平台的升級與進化
  • 即時DDS與綜合訊息平台

第5章 IoT的大數據:市場分析與預測

  • 市場成長促進因素
  • 全球市場預測
  • IoT大數據解決方案
  • IoT大數據硬體、軟體、服務
  • IoT大數據產品與服務
    • 大數據回收
    • 大數據儲存
    • 大數據分析與應用
    • Big-data-as-a-Service (BDaaS)
  • IoT的大數據:各產業
    • 大樓自動化
    • CE產品
    • 金融服務
    • 政府
    • 健康照護
    • 製造
    • 石油瓦斯
    • 零售
    • 通訊 (ICT)
    • 運輸、貨物
    • 公共設施

第6章 主要企業

本網頁內容可能與最新版本有所差異。詳細情況請與我們聯繫。

目錄

Overview:

Data that is uncorrelated and does not have a pre-defined data model and is not organized in a pre-defined manner requires special handling and analytics techniques. The common industry term, big data, represents unstructured data sets that are large, complex, and prohibitively difficult to process using traditional management tools. As the Internet of Things (IoT) progresses, there will an increasingly large amount of unstructured machine data. The growing amount of human-oriented and machine generated data will drive substantial opportunities for AI support of unstructured data analytics solutions.

Big data in IoT is different than conventional IoT and thus will requires more robust, agile and scalable platforms, analytical tools and data storage systems than conventional big data infrastructure. Looking beyond data management processes, IoT data itself will become extremely valuable as an agent of change for product development as well as identification of supply gaps and realization of unmet demands. Big data and analytics will increase in importance as IoT evolves to become more commonplace. Data generated through sensors embedded in various things/objects will generate massive amounts of unstructured (big) data on real-time basis that holds the promise for intelligence and insights for dramatically improved decision processes.

Big data in IoT is also dissimilar than non-machine related analytics and thus will require more robust, agile and scalable platforms, analytics tools, and data storage systems than conventional infrastructure. Due to this new architecture approach, the need to handle data differently, and the sheer volume of unstructured data, there will be great opportunities for big Data in IoT. Analytics used in IoT will become an enabler for the entire IoT ecosystem as enterprise begins to take advantage of new business opportunities such as syndicating their own data.

This report evaluates the technologies, companies, and solutions for leveraging Big Data tools and advanced analytics for IoT data processing. Emphasis is placed on leveraging IoT data for process improvement, new and improved products, and ultimately enterprise IoT data syndication. The report includes detailed forecasts for 2019 through 2024.

Report Benefits:

  • Forecasts (global, regional, and by industry) to 2024
  • Understand the role and importance of Big Data in IoT
  • Identify key market issues and drivers for Big Data in IoT
  • Identify leading companies for Big Data and Analytics in IoT
  • Understand the emerging vendor ecosystem for Big Data in IoT
  • Identify areas for infrastructure, platform, and software investment

Target Audience:

  • ICT infrastructure suppliers
  • Big Data and analytics companies
  • Data as a Service (DaaS) companies
  • Application developers and aggregators
  • Cloud-based service providers of all types
  • Managed service and middleware companies
  • Data processing and management companies

Companies in Report:

  • 1010Data (Advance Communication Corp.)
  • Accenture
  • Actian Corporation
  • Alteryx
  • Amazon
  • Anova Data
  • Apache Software Foundation
  • Aptean (Formerly CDC Software)
  • Booz Allen Hamilton
  • Bosch Software Innovations
  • Capgemini
  • Cisco Systems
  • Cloudera
  • Computer Science Corporation (CSC)
  • Cray Inc.
  • Datadirect Network
  • Dell EMC
  • Deloitte
  • Facebook
  • Fujitsu
  • General Electric
  • Gooddata Corporation
  • Google
  • Guavus
  • Hitachi Data Systems
  • Hortonworks
  • HP Enterprise
  • IBM
  • Informatica
  • Intel
  • Jasper (Cisco Jasper)
  • Juniper Networks
  • Longview
  • Marklogic
  • Microsoft
  • Microstrategy
  • Mongodb (Formerly 10Gen)
  • Mu Sigma
  • Netapp
  • NTT Data
  • Open Text (Actuate Corporation)
  • Opera Solutions
  • Oracle
  • Pentaho (Hitachi)
  • Qlik Tech
  • Quantum
  • Rackspace
  • Revolution Analytics
  • Salesforce
  • Sap
  • Sisense
  • Software Ag/Terracotta
  • Splunk
  • Sqrrl
  • Supermicro
  • Tableau Software
  • Tata Consultancy Services
  • Teradata
  • Think Big Analytics
  • Tibco
  • Verint Systems
  • Vmware (Part Of EMC)
  • Workday (Platfora)
  • SAS Institute
  • Wipro

Table of Contents

1. Executive Summary

2. Big Data in Internet of Things

  • 2.1. Big Data Framework for IoT
  • 2.2. Need for New Protocols, Platforms, Streaming and Parsing, Software and Analytical Tools
    • 2.2.1. Big Data in IoT will need Unified Logging Layer
    • 2.2.2. Big Data in IoT Data Formats
    • 2.2.3. Big Data in IoT Protocols
    • 2.2.4. Big Data in IoT Protocols for Network Interoperability
    • 2.2.5. Big Data in IoT Data Processing Scalability
  • 2.3. Big Data in IoT Challenges
    • 2.3.2. Data Security and Personal Information Privacy Challenges

3. Big Data in IoT Business Trends and Predictions

  • 3.1. Large Companies Partnerships and M&A
  • 3.2. Big Data as a Service for IoT Becomes Mainstream
  • 3.3. M2M Analytics and Cloud Services will be Early Beneficiaries
  • 3.4. Cybersecurity for Big Data Analytics in IoT
  • 3.5. Flexible and Scalable Revenue Models for Big Data Services
  • 3.6. Big Data Operational Savings and New Business Models

4. Big Data in IoT Vendor Ecosystem

  • 4.1. Cloud based Analytics Platforms for IoT
  • 4.2. Cloud-based Data Storage Service and Management Toolsets
  • 4.3. Big Data Processing for Massive Data Analysis
  • 4.4. Compute, Store, and Analyze Data at the Edge of Networks
  • 4.5. Predictive Platforms and Solutions
  • 4.6. Cloud based Analytics Systems for IoT
  • 4.7. Database System Upgrades and Evolution
  • 4.8. Analytics Platform Upgrades and Evolution
  • 4.9. Real Time DDS and Comprehensive Messaging Platforms

5. Big Data in IoT Market Analysis and Forecasts

  • 5.1. Driving Factors for Big Data in IoT
    • 5.1.1. Consumer IoT
    • 5.1.2. Industrial IoT
    • 5.1.3. Enterprise IoT
    • 5.1.4. Government IoT
  • 5.2. Overall Global Market for Big Data in IoT 2019 - 2025
  • 5.3. Global Big Data Solutions in IoT Market 2019 - 2025
  • 5.4. Global Big Data in IoT Hardware, Software, and Services 2019 - 2025
  • 5.5. Global Big Data in IoT Products and Services 2019 - 2025
    • 5.5.1. Market for Big Data Collection in IoT 2019 - 2025
    • 5.5.2. Market for Big Data Storage in IoT 2019 - 2025
    • 5.5.3. Market for Big Data Analytics and Applications in IoT 2018 - 2025
    • 5.5.4. Markets for Big Data as a Service in IoT 2018 to 2025
  • 5.6. Big Data in IoT by Industry 2019 - 2025
    • 5.6.1. Big Data in IoT for Building Automation 2019 - 2025
    • 5.6.2. Big Data in IoT for Consumer Electronics 2019 - 2025
    • 5.6.3. Big Data in IoT for Financial Services 2019 - 2025
    • 5.6.4. Big Data in IoT for Government 2019 - 2025
    • 5.6.5. Big Data in IoT for Healthcare 2019 - 2025
    • 5.6.6. Big Data in IoT for Manufacturing 2019 - 2025
    • 5.6.7. Big Data in IoT for Oil and Gas 2018 to 2025
    • 5.6.8. Big Data in IoT for Retail Industry 2019 - 2025
    • 5.6.9. Big Data in IoT for ICT Industry 2019 - 2025
    • 5.6.10. Big Data in IoT for Transport and Cargo 2019 - 2025
    • 5.6.11. Big Data in IoT for Utilities Industry 2019 - 2025

6. Key Companies

  • 6.1. 1010Data (Advance Communication Corp.)
  • 6.2. Accenture
  • 6.3. Actian Corporation
  • 6.4. AdvancedMD
  • 6.5. Alation
  • 6.6. Allscripts Healthcare Solutions
  • 6.7. Alpine Data Labs
  • 6.8. Alteryx
  • 6.9. Amazon
  • 6.10. Anova Data
  • 6.11. Apache Software Foundation
  • 6.12. Apple Inc.
  • 6.13. APTEAN (Formerly CDC Software)
  • 6.14. Athena Health Inc.
  • 6.15. Attunity
  • 6.16. Booz Allen Hamilton
  • 6.17. Bosch Software Innovations: Bosch IoT Suite
  • 6.18. BGI
  • 6.19. Big Panda
  • 6.20. Bina Technologies Inc.
  • 6.21. Capgemini
  • 6.22. Cerner Corporation
  • 6.23. Cisco Systems
  • 6.24. CLC Bio
  • 6.25. Cloudera
  • 6.26. Cogito Ltd.
  • 6.27. Compuverde
  • 6.28. CRAY Inc.
  • 6.29. Computer Science Corporation (CSC)
  • 6.30. Crux Informatics
  • 6.31. Ctrl Shift
  • 6.32. Cvidya
  • 6.33. Cybatar
  • 6.34. DataDirect Network
  • 6.35. Data Inc.
  • 6.36. Databricks
  • 6.37. Dataiku
  • 6.38. Datameer
  • 6.39. Data Stax
  • 6.40. Definiens
  • 6.41. Dell EMC
  • 6.42. Deloitte
  • 6.43. Domo
  • 6.44. eClinicalWorks
  • 6.45. Epic Systems Corporation
  • 6.46. Facebook
  • 6.47. Fluentd
  • 6.48. Flytxt
  • 6.49. Fujitsu
  • 6.50. Genalice
  • 6.51. General Electric
  • 6.52. GenomOncology
  • 6.53. GoodData Corporation
  • 6.54. Google
  • 6.55. Greenplum
  • 6.56. Grid Gain Systems
  • 6.57. Groundhog Technologies
  • 6.58. Guavus
  • 6.59. Hack/reduce
  • 6.60. HPCC Systems
  • 6.61. HP Enterprise
  • 6.62. Hitachi Data Systems
  • 6.63. Hortonworks
  • 6.64. IBM
  • 6.65. Illumina Inc
  • 6.66. Imply Corporation
  • 6.67. Informatica
  • 6.68. Inter Systems Corporation
  • 6.69. Intel
  • 6.70. IVD Industry Connectivity Consortium-IICC
  • 6.71. Jasper (Cisco Jasper)
  • 6.72. Juniper Networks
  • 6.73. Knome,Inc.
  • 6.74. Leica Biosystems (Danaher)
  • 6.75. Longview
  • 6.76. MapR
  • 6.77. Marklogic
  • 6.78. Mayo Medical Laboratories
  • 6.79. McKesson Corporation
  • 6.80. Medical Information Technology Inc. (MEDITECH)
  • 6.81. Medio
  • 6.82. Medopad
  • 6.83. Microsoft
  • 6.84. Microstrategy
  • 6.85. MongoDB (Formerly 10Gen)
  • 6.86. MU Sigma
  • 6.87. N-of-One
  • 6.88. Netapp
  • 6.89. NTT Data
  • 6.90. Open Text (Actuate Corporation)
  • 6.91. Opera Solutions
  • 6.92. Oracle
  • 6.93. Palantir Technologies Inc.
  • 6.94. Pathway Genomics Corporation
  • 6.95. Perkin Elmer
  • 6.96. Pentaho (Hitachi)
  • 6.97. Platfora
  • 6.98. Qlik Tech
  • 6.99. Quality Systems Inc (QSI)
  • 6.100. Quantum
  • 6.101. Quertle
  • 6.102. Quest Diagnostics Inc.
  • 6.103. Rackspace
  • 6.104. Red Hat
  • 6.105. Revolution Analytics
  • 6.106. Roche Diagnostics
  • 6.107. Rocket Fuel Inc.
  • 6.108. Salesforce
  • 6.109. SAP
  • 6.110. SAS Institute
  • 6.111. Selventa Inc.
  • 6.112. Sense Networks
  • 6.113. Shanghai Data Exchange
  • 6.114. Sisense
  • 6.115. Social Cops
  • 6.116. Software AG/Terracotta
  • 6.117. Sojern
  • 6.118. Splice Machine
  • 6.119. Splunk
  • 6.120. Sqrrl
  • 6.121. Sumo Logic
  • 6.122. Sunquest Information Systems
  • 6.123. Supermicro
  • 6.124. Tableau Software
  • 6.125. Tableau
  • 6.126. Tata Consultancy Services
  • 6.127. Teradata
  • 6.128. ThetaRay
  • 6.129. Thoughtworks
  • 6.130. Think Big Analytics
  • 6.131. TIBCO
  • 6.132. Tube Mogul
  • 6.133. Verint Systems
  • 6.134. VolMetrix
  • 6.135. VMware (Part of EMC)
  • 6.136. Wipro
  • 6.137. Workday (Platfora)
  • 6.138. WuXi NextCode Genomics
  • 6.139. Zoomdata

7. Summary and Conclusions

  • 7.1. Emerging Opportunity Areas within Big Data in IoT
    • 7.1.1. IoT Data Management and Analytics Marketplace
    • 7.1.2. Decisions as a Service
  • 7.2. Evolution of Structured and Unstructured Data Exchange
    • 7.2.1. Phase One: Limited Data Exchange
    • 7.2.2. Phase Two: Selective Data Exchange between Industries
    • 7.2.3. Phase Three: Expanded Data Exchange across Industries and Between Competitors

Figures

  • Figure 1: Framework for Big Data in IoT
  • Figure 2: Big Data in IoT Care of Custody.
  • Figure 3: Big Data in IoT Direct vs. Indirect Monetization
  • Figure 4: Big Data in IoT Internal vs. External Monetization
  • Figure 5: Big Data in IoT Hybrid Data from Merged Sources
  • Figure 6: New Revenue and Operational Benefits of Big Data in IoT
  • Figure 7: Big Data in Internet of Things 2019 - 2024
  • Figure 8: Big Data in IoT by Solution 2019 - 2024
  • Figure 9: Big Data in IoT Products and Services 2019 - 2024
  • Figure 10: Market for Big Data Collection in IoT 2019 - 2024
  • Figure 11: Regional Markets for Big Data Collection in IoT 2019 - 2024
  • Figure 12: Big Data Storage in IoT Market 2019 - 2024
  • Figure 13: Regional Market for Big Data Storage in IoT 2019 - 2024
  • Figure 14: Big Data Analytics and Applications in IoT Market 2019 - 2024
  • Figure 15: Regional Markets for Big Data Analytics and Applications in IoT 2019 - 2024
  • Figure 16: Big Data as a Service in IoT Market 2019 - 2024.
  • Figure 17: Regional Markets for Big Data as a Service in IoT 2019 - 2024
  • Figure 18: Big Data in IoT by Industry Vertical 2019 - 2024.
  • Figure 19: Big Data in IoT for Building Automation 2019 - 2024
  • Figure 20: Big Data in IoT for Consumer Electronics 2019 - 2024
  • Figure 21: Big Data in IoT for Financial Services 2019 - 2024
  • Figure 22: Big Data in IoT for Government 2019 - 2024
  • Figure 23: Big Data in IoT for Healthcare 2019 - 2024
  • Figure 24: Big Data in IoT for Manufacturing 2019 - 2024
  • Figure 25: Big Data in IoT for Oil &Gas 2019 - 2024
  • Figure 26: Big Data in IoT for Retail Industry 2019 - 2024
  • Figure 27: Big Data in IoT for ICT Industry 2019 - 2024
  • Figure 28: Big Data in IoT for Transport and Cargo 2019 - 2024
  • Figure 29: Big Data in IoT for Utilities 2019 - 2024.
  • Figure 30: IoT Data Exchange Marketplace
  • Figure 31: Phase 1: Limited IoT Data Sharing with no Formalized Mediation
  • Figure 32: Phase 2: IoT Data Sharing between Limited Industries.
  • Figure 33: Phase 3: IoT Data across Industries and between Competitors.

Tables

  • Table 1: Big Data in Internet of Things 2019 - 2024
  • Table 2: Market for Big Data in IoT by Solution Type 2019 - 2024
  • Table 3: Market for Big Data in IoT by Hardware, Software, and Services 2019 - 2024
  • Table 4: Big Data in IoT Products and Services 2019 - 2024
  • Table 5: Market for Big Data Collection in IoT 2019 - 2024.
  • Table 6: Regional Markets for Big Data Collection in IoT 2019 - 2024
  • Table 7: Big Data Storage in IoT Market 2019 - 2024
  • Table 8: Regional Markets for Big Data Storage Infrastructure in IoT 2019 - 2024
  • Table 9: Big Data Analytics and Applications in IoT Market 2019 - 2024
  • Table 10: Regional Markets for Big Data Analytics and Applications in IoT 2019 - 2024
  • Table 11: Big Data as a Service in IoT Market 2019 - 2024.
  • Table 12: Regional Markets for Big Data as a Service in IoT 2019 - 2024
  • Table 13: Big Data in IoT by Industry Vertical 2019 - 2024.
  • Table 14: IoT Data Analytics Revenue by Solution and Services 2019 - 2024
Back to Top