表紙
市場調查報告書
商品編碼
911032

RNA標的低分子 (2019年):來自企業、技術、目標、投資者、合作夥伴的產業展望

RNA-Targeted Small Molecules 2019: A Landscape Analysis of Companies, Technologies, Targets, Investors and Partners from an Industry Perspective

出版日期: | 出版商: La Merie Publishing | 英文 223 Pages | 訂單完成後即時交付

價格
  • 全貌
  • 簡介
  • 目錄
簡介

本報告套組提供對於做為藥物標的的RNA的低分子藥物研發、開發環境的相關分析,使用低分子以RNA為標的的方法,市場上相關利益者,RNA生物學的技術低分子藥物研發,使用了主要RNA標的低分子的前臨床、臨床經驗,融資情形,及主要企業簡介等彙整。

第1章 摘要整理

第2章 簡介 & 概要

第3章 mRNA轉譯的規則:各低分子

  • 概要
    • 企業
    • 技術、標的
    • 前臨床、臨床經驗
    • 聯盟、融資
    • 企業評估
  • 企業簡介
    • Anima Biotech
    • eFFECTOR Therapeutics
    • Eloxx Pharmaceuticals
  • 主要的技術簡介
    • 轉譯調節治療的平台
  • 醫藥品、醫藥品候補藥的簡介
    • BAY 1143269
    • eFT226
    • eIF4E Inhibitors
    • ELX-02
    • Tomivosertib
    • Translarna

第4章 RNA剪接修飾:各低分子

  • 概要
    • 企業
    • 技術、標的
    • 前臨床、臨床經驗
    • 聯盟、融資
    • 企業評估
  • 企業簡介
    • H3 Biomedicine
    • Panorama Medicine
    • PTC Therapeutics
    • Skyhawk Therapeutics
  • 主要技術的簡介
    • RNA剪接的平台
  • 醫藥品候補藥的簡介
    • Branaplam
    • E7107
    • H3B-8800
    • PTC258
    • Risdiplam

第5章 直接RNA標的:各低分子

  • 概要
    • 企業
    • 技術
    • 標的、適應症
    • 聯盟、融資
    • 企業評估
  • 企業
    • Arrakis Therapeutics
    • Expansion Therapeutics
    • Novation Pharmaceuticals
    • Nymirum
    • Ribometrix
    • Saverna Therapeutics
    • Target RNA

第6章 間接RNA標的 (Epitranscriptomic) 低分子

  • 概要
    • 企業
    • 技術
    • 標的、適應症
    • 聯盟、融資
    • 企業評估
  • 企業簡介
    • AC Immune
    • Accent Therapeutics
    • EPICS Therapeutics
    • Gotham Therapeutics
    • ImStar Therapeutics
    • STORM Therapeutics
    • Twentyeight-Seven Therapeutics

第7章 RNA的相關利益者的主要醫藥品企業

  • 概要
  • 企業
    • Biogen
    • Boehringer Ingelheim
    • Bristol-Myers Squibb
    • Celgene
    • Eli Lilly
    • Merck
    • Novartis
    • Pfizer
    • Roche
    • 武田藥品工業
    • UCB

第8章 展望、預測

第9章 參考資料

第10章 附錄1-4

目錄
Product Code: LMFR0030

This report provides you with a landscape description and analysis of discovery and development of small molecules against RNA as a drug target from an industry perspective as of September 2019.

The report brings you up-to-date with information about and analysis of

  • Approaches to target RNA with small molecules: splicing, translation, epitranscriptomics and direct RNA targeting;
  • Stakeholders in the field: technology and major pharmaceutical companies, investors and CROs;
  • Technologies of RNA biology and small molecule drug discovery in a repeatable and scalable way;
  • Preclinical and clinical experience with selected RNA-targeted small molecules;
  • Targets and indications selected for RNA-targeted small molecule drug discovery;
  • Financing situation of technology companies and key investors in the field
  • Partnering deals with financial terms;
  • Comparative assessment of technology companies.

Since 2017, nearly US$ 1 bln has been raised by start-up companies targeting RNA with small molecules in financing rounds and from partnering deals. This huge amount of money highlights the tremendous interest from investors and major pharmaceutical companies and the opportunities they recognize in these new approaches to target RNA with small molecules.

Nearly all small molecule-based drugs in clinical use target proteins. It is estimated that about 20,000 human proteins are expressed by the human genome and 10-15% are thought to be disease-related. However, many of them are considered as undruggable for various reasons, e.g. because they lack a distinctive motif for small molecule binding.

Originally thought to be merely a conduit for moving information encoded in the nuclear genome to the protein translational machinery in the cytoplasm via the canonical DNA-RNA-protein pathway, RNA is now increasingly known to have multiple roles, both coding and non-coding and to take myriad forms. Besides messenger RNAs (mRNAs) which encode proteins, and the ribosomal RNAs (rRNAs) involved in translating them, understanding continues to grow of the multitude of non-coding RNA (ncRNA) molecules, such as microRNA (miRNA), piwiRNA, long non-coding RNA (lncRNA), antisense RNA, short hairpin RNA and circular RNA. About 75% of the human genome is transcribed into RNA, yet only 1-2% encodes proteins

The recent advancement in the knowledge about diversity, structural and functional information related to RNAs has put them in the lime light as a drug target. RNA has an important role in the transcription regulation, regulation of the translation, catalysis, protein function, protein transport, peptide bond formation and RNA splicing. New findings have identified RNA as a potential target in multitude of diseases including bacterial/viral infections and cancer. Just like proteins, RNAs can form well-defined tertiary structures, such as double helices, hairpins, bulges, and pseudo-knots.

With the ability to target RNA, the potential pool of drug targets would dramatically expand

Strong proof-of-principle for RNA-targeted drugs has been provided by antisense oligonucleotides and synthetic RNAs that e.g. redirect the cellular RNA interference (RNAi) machinery. In addition to antisense and RNAi, which includes short interfering RNA (siRNA) and miRNA, other RNA therapeutics include mRNA, self-amplifying mRNA (samMRNA) and small activating RNA (saRNA).

However, nucleic acid-based therapeutic approaches involve large, often highly charged molecules with the associated delivery challenges, e.g. they do not pass the blood-brain barrier to to reach the brain or spinal cord, and have some toxicity issues (e.g. platelet count).

Another strategy to target RNA involves using small molecules as modulators of RNA. Small molecules are one of the most recent emerging RNA-focused therapeutics. They have several advantages over RNA molecules, including oral administration, easier entry into cells and better stability.

Several approaches are pursued to target RNA with small molecules:

  • mRNA Translation Regulation: Regulation of gene expression at the level of mRNA translation is a fundamental mechanism for moderating cellular events. The translation of single specific mRNAs, subsets, or even a majority of the mRNAs in a cell, is controlled almost exclusively through a multitude of interactions that occur between RNA-binding proteins and regulatory elements embedded throughout the mRNA.
  • RNA Splicing Modification: Post-transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, functional RNA molecule that can then leave the nucleus and perform any of a variety of different functions in the cell. Three major steps significantly modify the chemical structure of the RNA molecule: the addition of a 5' cap, the addition of a 3' polyadenylated tail, and RNA splicing.
  • Direct RNA Targeting: RNA can form complex three-dimensional structures through canonical Watson-Crick base pairing and complex tertiary interactions that are mediated by non-canonical bonds. Such structures can be as intricate and stable as those formed by proteins and can recognize small-molecule ligands, other nucleic acids, or proteins with high affinity and specificity. Modern molecular techniques provide in-depth insides to the RNA structure and function. X-ray crystallography, nuclear magnetic resonance, and cryo-electron microscopy yielded a solid foundation for understanding the chemical and structural basis of RNA functions at atomic resolution. The development of RNA-centric deep-sequencing probing techniques opened up the possibility for the global assessment of RNA structures at a single nucleotide resolution, and in various biological contexts.
  • Indirect RNA Targeting - Epitranscriptomics: The epitranscriptome includes all the biochemical modifications of the RNA (= the transcriptome) within a cell. Epitranscriptomics involves all functionally relevant changes to the transcriptome that do not involve a change in the ribonucleotide sequence. Thus, RNAs are indirectly targeted via the proteins they interact with.

What will you find in the report?

  • Profiles of technology companies active in the field;
  • Description of Big Pharma's role in the field (in-house R&D, partnering and investing);
  • Comprehensive description and analysis of emerging technologies with a directed, intentional approach to drug-RNA structure;
  • Preclinical and clinical profiles of RNA-targeted small molecules in all phases of development;
  • Technology selection and preferences of major pharma;
  • Key characteristics of technologies;
  • Target selection and competition of drug candidates;
  • Description and analysis of financing rounds (capital raised, investors);
  • Economic terms of collaboration and licensing deals;
  • Sources of financing.

Who will benefit from the report?

  • Venture capital, private equity and investment managers;
  • Managers of Big Pharma venture capital firms;
  • Financial analysts;
  • Business development and licensing (BDL) specialists;
  • CEO, COO and managing directors;
  • Corporate strategy analysts and managers;
  • Chief Technology Officer;
  • R&D Portfolio, Technology and Strategy Management;
  • Clinical and preclinical development specialists.

Table of Contents

1. Executive Summary

2. Introduction & Overview

3. mRNA Translation Regulation by Small Molecules

  • 3.1. Overview
    • 3.1.1. Companies
    • 3.1.2. Technologies and Targets
    • 3.1.3. Preclinical and Clinical Experience
    • 3.1.4. Partnering and Financing
    • 3.1.5. Comparative Assessment
  • 3.2. Company Profiles
    • 3.2.1. Anima Biotech
    • 3.2.2. eFFECTOR Therapeutics
    • 3.2.3. Eloxx Pharmaceuticals
  • 3.3. Selected Technology Profile
    • 3.3.1. Translation Control Therapeutics Platform
  • 3.4. Drug and Drug Candidate Profiles
    • 3.4.1. BAY 1143269
    • 3.4.2. eFT226
    • 3.4.3. eIF4E Inhibitors
    • 3.4.4. ELX-02
    • 3.4.5. Tomivosertib
    • 3.4.6. Translarna

4. RNA Splicing Modification by Small Molecules

  • 4.1. Overview
    • 4.1.1. Companies
    • 4.1.2. Technologies and Targets
    • 4.1.3. Preclinical and Clinical Experience
    • 4.1.4. Partnering and Financing
    • 4.1.5. Comparative Assessment
  • 4.2. Company Profiles
    • 4.2.1. H3 Biomedicine
    • 4.2.2. Panorama Medicine
    • 4.2.3. PTC Therapeutics
    • 4.2.4. Skyhawk Therapeutics
  • 4.3. Selected Technology Profile
    • 4.3.1. RNA Splicing Platform
  • 4.4. Drug Candidate Profiles
    • 4.4.1. Branaplam
    • 4.4.2. E7107
    • 4.4.3. H3B-8800
    • 4.4.4. PTC258
    • 4.4.5. Risdiplam

5. Direct RNA Targeting by Small Molecules

  • 5.1. Overview
    • 5.1.1. Companies
    • 5.1.2. Technologies
    • 5.1.3. Targets and Indications
    • 5.1.4. Partnering and Financing
    • 5.1.5. Comparative Assessment
  • 5.2. Companies
    • 5.2.1. Arrakis Therapeutics
    • 5.2.2. Expansion Therapeutics
    • 5.2.3. Novation Pharmaceuticals
    • 5.2.4. Nymirum
    • 5.2.5. Ribometrix
    • 5.2.6. Saverna Therapeutics
    • 5.2.7. Target RNA

6. Indirect RNA-Targeted (Epitranscriptomic) Small Molecules

  • 6.1. Overview
    • 6.1.1. Companies
    • 6.1.2. Technologies
    • 6.1.3. Targets and Indications
    • 6.1.4. Partnering and Financing
    • 6.1.5. Comparative Assessment
  • 6.2. Company Profiles
    • 6.2.1. AC Immune
    • 6.2.2. Accent Therapeutics
    • 6.2.3. EPICS Therapeutics
    • 6.2.4. Gotham Therapeutics
    • 6.2.5. ImStar Therapeutics
    • 6.2.6. STORM Therapeutics
    • 6.2.7. Twentyeight-Seven Therapeutics

7. Major Pharmaceutical Companies as Stakeholders in RNA-Targeted Small Molecule R&D

  • 7.1. Overview
  • 7.2. Companies
    • 7.2.1. Biogen
    • 7.2.2. Boehringer Ingelheim
    • 7.2.3. Bristol-Myers Squibb
    • 7.2.4. Celgene
    • 7.2.5. Eli Lilly
    • 7.2.6. Merck
    • 7.2.7. Novartis
    • 7.2.8. Pfizer
    • 7.2.9. Roche
    • 7.2.10 Takeda Pharmaceutical Co
    • 7.2.11 UCB

8. Outlook and Perspectives

9. References

10. Addendda

Addendum 1: Small Molecule mRNA Translation Regulators

Addendum 2: Small Molecule RNA Splicing Modifiers

Addendum 3: Direct RNA-Targeted Small Molecules

Addendum 4: Indirect RNA-Targeted Small Molecules (Epitranscriptomics)

Tables

  • Table 1: Overview of Small Molecule Translation Regulator Companies
  • Table 2: Key Features of Technologies to Discover Small Molecule mRNA Translation Regulators
  • Table 3: Targets of Small Molecule mRNA Translation Regulator R&D Programs
  • Table 4: Profiles for Selected Small Molecule mRNA Translation Regulators
  • Table 5: Financing of Small Molecule RNA Translation Regulator Companies by Investors and Collaboration Partners
  • Table 6: Comparative Assessment of Small Molecule mRNA Translation Regulator Companies
  • Table 7: Overview of Companies with Small Molecule RNA Splicing Modifiers
  • Table 8: Key Features of Technologies to Discover Small Molecule RNA Splicing Modifiers
  • Table 9: Targets/Indications of Small Molecule RNA Splicing Modifier R&D Programs
  • Table 10: Profiles for Selected Small Molecule mRNA Translation Regulators
  • Table 11: Financing of RNA Splicing Modifier Companies by Investors and Collaboration Partners
  • Table 12: Comparative Assessment of Small Molecule RNA Splicing Modifier Companies
  • Table 13: Skyhawk Therapeutics' Strategic Collaborations with Major Biopharmaceutical Companies for mRNA Splicing Modifiers Discovered by SkySTAR Technology
  • Table 14: Overview of Companies with Direct RNA-Targeted Small Molecules
  • Table 15: Key Features of Technologies to Discover Direct RNA-Targeted Small Molecules
  • Table 16: Targets/Indications of Direct RNA-Targeted Small Molecule R&D Programs
  • Table 17: Financing of Direct RNA-Targeted Small Molecule Companies by Investors and Collaboration Partners
  • Table 18: Comparative Assessment of Direct RNA-Targeted Small Molecule Companies
  • Table 19: Overview of Companies with Epitranscriptomic Small Molecule Modulators
  • Table 20: Key Features of Technologies to Discover Epitranscriptomic Small Molecule Modulators
  • Table 21: Targets/Indications of Epitranscriptomic Small Molecule Modulator R&D Programs
  • Table 22: Financing of Epitranscriptomic Small Molecule Modulators Companies by Investors and Collaboration Partners
  • Table 23: Comparative Assessment of Epitranscriptomic Small Molecule Modulator Companies
  • Table 24: Major Pharmaceutical Companies as Stakeholders in RNA-Targeted Small Molecule R&D
  • Table 25: Comparison of Four Approaches in RNA-Targeted Small Molecule R&D