表紙
市場調查報告書
商品編碼
1017023

用於DNA/mRNA體內表達的載體化抗體:利益相關者/技術/目標/商業/融資情況分析——從行業角度分析

Vectorized Antibodies for In Vivo Expression by DNA and mRNA: A Landscape Analysis of Stakeholders, Technologies, Targets, Business and Financing From an Industry Perspective

出版日期: | 出版商: La Merie Publishing | 英文 259 Pages | 訂單完成後即時交付

價格
  • 全貌
  • 簡介
  • 目錄
簡介

使用常規重組單克隆抗體進行被動免疫治療已成為非常成功的臨床和商業治療方法。重組抗體技術的突破導致超過 100 種用於治療多種疾病的單克隆抗體 (mAb) 獲得監管部門的批准和商業化。 2020年重組治療性抗體銷售額超過1840億美元(同比增長11%)。

然而,被動免疫療法有許多局限性和挑戰。重組抗體生產需要大量昂貴的生產和複雜的蛋白質表徵。 mAb 生物製劑的體內給藥通常需要高劑量(mAb 克數)才能達到治療效果,而且通常成本高昂,因此還必須克服給藥挑戰。生物過程的製造和純化既費時又費錢。需要高劑量的 MAb 應通過緩慢靜脈內 (IV) 輸注給藥,以限制輸注反應。靜脈注射通常需要數小時的臨床監測,並且可能伴隨過敏或過敏反應的注射後監測,進一步增加了所需的醫護人員和管理成本。皮下 (SC) 遞送具有低劑量抗體遞送的優勢。然而,皮下給藥與註射量和注射部位反應相關的疼痛有關,並且會減慢吸收,因為它依賴於淋巴系統進行生物分佈。

重組抗體的其他限制是它們的持續時間相對較短,在慢性疾病的情況下需要重複給藥,並且可能不方便眼部局部給藥(如玻璃體內)。有性。血腦屏障(BBB)也是重組抗體治療的一個特別關注點。 BBB 可防止抗體侵入中樞神經系統 (CNS)。此外,抗體不會進入細胞內蛋白質組。全身給藥的重組抗體也有可能產生非特異性或有毒的脫靶效應。

抗體載體化旨在克服傳統被動免疫療法的這些局限性。體內表達抗體的三種不同方法(AAV DNA、質粒 DNA 和 mRNA)中的每一種都有其優缺點的特定特徵。

本報告從行業角度分析和處理使用DNA/mRNA平台技術在in vivo(體內)直接遞送核酸編碼抗體(共 3 種)的情況和趨勢(截至2021年7月)。主要利益相關者概述(共 26 家公司),相關技術/疾病概述,主要管道產品的當前臨床試驗趨勢,來自投資者我們將收集和傳遞融資和聯盟等信息科技公司、未來的經營戰略和發展活動方向。

目錄

縮寫

第 1 章執行摘要

第 2 章介紹/概述

第 3 章利益相關者分析

  • 概述
  • 載體化抗體技術公司
  • 隸屬於矢量化抗體技術公司的製藥/生物技術公司

第 4 章載體化抗體技術的利益相關者概況

  • 病毒載體DNA公司
    • 4D Molecular Therapeutics (4DMT)
    • Adverum Biotechnologies
    • Homology Medicines
    • MeiraGTx
    • REGENXBIO
    • University of Pennsylvania (U'Penn), Wilson Gene Therapy Program (GTP)
    • VectorY
    • Voyager Therapeutics
    • Vybion
  • 質粒DNA公司
    • Eyevensys
    • Generation Bio
    • Inovio Pharmaceuticals
    • SmartPharm Therapeutics & Sorrento Therapeutics
  • mRNA 公司
    • BioNTech
    • CureVac
    • Ethris
    • Kernal Biologics
    • Moderna Therapeutics
  • 製藥/生物技術合作夥伴
    • AbbVie
    • AstraZeneca
    • Genmab
    • GlaxoSmithKline
    • Merck
    • Neurimmune
    • Regeneron Pharmaceuticals
    • Vir Biotechnology

第 5 章載體化抗體技術分析

  • 用於體內表達抗體的病毒載體 DNA 技術
  • 用於體內表達抗體的質粒 DNA 技術
  • 用於體內表達抗體的 mRNA 技術

第 6 章載體化抗體技術簡介

  • 用於體內表達抗體的病毒載體 DNA 技術
    • 治療載體的演變 -- 4D Molecular Therapeutics (4DMT)
    • 改良AAV(腺相關病毒)技術-Adverum Biotechnologies
    • GTx-mAb 平台 --Homology Medicines
    • 用於體內表達抗體的AAV技術-MeiraGTx
    • NAV 技術平台 --REGENXBIO
    • 用於發現新基因治療衣殼的 TRACER 系統 --Voyager Therapeutics
  • 用於體內表達抗體的質粒 DNA 技術
    • 纖毛電轉染與DNA質粒-Evensys
    • 非病毒抗體基因治療 (AGT) 平台 --Generation Bio
    • 基於合成 DNA 的單克隆抗體 (dMAb) 技術平台-Inovio Pharmaceuticals
    • 基因編碼抗體(Gene MAb)技術--SmartPharm Therapeutics
  • 用於體內表達抗體的 mRNA 技術
    • RiboMAb 技術 --BioNTech
    • RNA優化技術平台--Curevac
    • SNIM RNA技術-Ethris
    • 用於 mRNA/脂質輸送的納米顆粒 --Moderna Therapeutics

第 7 章抗體體內表達的管道和候選產品分析

  • 用於體內表達抗體的 AAV DNA:管道分析和選定的候選產品
  • 用於體內表達抗體的質粒 DNA:管道分析和選定的候選產品
  • 用於體內表達抗體的 mRNA:分析管道和選定的候選產品

第 8 章產品候選載體化抗體簡介

  • 用於體內表達抗體的病毒載體 DNA 候選產品
    • 4D-150
    • ADVM-022; AAV.7m8 --Aflibercept
    • 抗tau載體化抗體
    • INT41
    • RGX-314
    • 載體化抗激□釋放□抗體
  • 用於體內表達抗體的候選質粒 DNA 產物
    • 抗體基因治療 (AGT) --Generation Bio
    • 抗 VEGF ceDNA-ctLNP
    • 進一步的 dMAb 經驗
    • EYS606
    • INO-A002;dMAb-ZK190;寨卡病毒 dMAb
    • STI-8472:COVI-GeneMAB
  • 用於體內表達抗體的 mRNA 候選產品
    • CureVac mRNA 抗體
    • mRNA-1944
    • ETH46; NI007

第 9 章業務、融資、合作夥伴關係

第 10 章參考文獻

目錄
Product Code: LMFR0033

This report provides you with a landscape description and analysis of direct in vivo delivery of nucleic acid-encoded antibodies employing DNA and mRNA platform technologies from an industry perspective as of July 2021. In vivo gene-encoded antibody delivery is an elegant approach to address many of the limitations of conventional therapeutic antibodies. The three main approaches for antibody vectorization are:

  • Adenoassociated virus (AAV) vector for delivery of DNA: AAV DNA;
  • Synthetic plasmid DNA utilizing an electroporation device to enhance transfection efficiency after IM delivery: plasmid DNA;
  • mRNA formulated in lipid nanoparticles (LNP): LNP mRNA.

The report brings you up-to-date with information about and analysis of

  • Approaches of in vivo expression of therapeutic antibodies;
  • Stakeholders in the field: technology and major pharmaceutical companies and investors;
  • Gene therapy technologies for antibody vectorization: DNA, mRNA;
  • Delivery technologies: adenoassociated virus (AAV) vector; electroporation; lipid nanoparticles (LNPs)
  • Targets and therapeutic indications selected for development of vectorized antibodies;
  • Preclinical and clinical experience with selected vectorized antibodies;
  • Financing situation of technology companies and key investors in the field
  • Partnering deals with financial terms;
  • Business strategy: indications, development path, technology partnering, investment case;
  • Major pharmaceutical companies: in-house technologies, R&D, collaborations.

Passive immunotherapy with conventional recombinant monoclonal antibodies has become a clinically and commercially extremely successful treatment modality. Breakthroughs in recombinant antibody technologies have resulted in the regulatory approval and commercialization of over 100 monoclonal antibodies (mAbs) to treat a variety of diseases. Sales of recombinant therapeutic antibodies in the year 2020 exceeded US$ 184 bln (+11% vs previous year).

However, there exist a number of limitations and challenges for passive immunotherapy. Manufacturing of recombinant antibodies requires large volumes, costly production and complex protein characterization. Delivery challenges must also be overcome as in vivo administration of mAb biologics often requires high doses (grams of mAb) to achieve therapeutic efficacy, frequently at a high cost. Bioprocess manufacturing and purification can be lengthy and costly. mAbs requiring higher doses need to be administered through slow intravenous (IV) infusions to limit infusion reactions. IV delivery frequently requires hours of clinical monitoring and may involve post-infusion monitoring for allergic or anaphylactic reactions, further increasing the medical personnel required and costs of administration. Subcutaneous (SC) delivery has advantages for lower dose antibody delivery. However, SC delivery is associated with pain related to injection volume and injection site reactions, and absorption is slow due to reliance on the lymphatic system for biodistribution.

Another limitation of recombinant antibodies is their relatively short half leading to the need for repeated administration in case of chronic therapy which can be inconvenient for local administration into the eye (e.g. intravitreal). The blood-brain barrier (BBB) is a special concern for recombinant antibody therapy. The BBB prevents antibody entry to the central nervous system (CNS). Furthermore, antibodies do not enter the intracellular proteome. Systemically administered recombinant antibodies also have a potentialll for unspecific or toxic off-target effects.

Antibody vectorization intends to overcome such limitations of conventional passive immunotherapy. Each of the three different approaches (AAV DNA, plasmid DNA and mRNA) for in vivo expression of antibodies has its specific profile of advantages and disadvantages.

This report evaluates the industry landscape of antibody vectorization with optimized technologies for direct in vivo delivery of synthetic nucleic acid-encoded antibodies. The report is based on the identification and description of 26 companies with activities in the field of in vivo expressed therapeutic antibodies

For each vectorized antibody technology company, a profile has been elaborated providing information about the company background/history, the financial situation, relevant technology, partnering deals and target & pipeline overview. Short profiles of the major pharmaceutical and antibody technology companies are combined in a separate paragraph. The company profiles are preceded by a chapter of stakeholder analysis.

The analysis of the three major technologies for antibody vectorization (AAV DNA, plasmid DNA and mRNA) is followed by profiles of 14 technologies in more detail (Chapter "Profiles of Vectorized Antibody Technologies").

Eventually, this report has profiled 15 product candidates for in vivo expression of antibodies in preclinical and clinical stages of R&D. The descriptions can be found in the chapter "Profiles of Vectorized Antibody Product Candidates" in alphabetical order by the drug code or generic name, separately for each of the three main technologies.

All information in the three chapters of Company Profiles, Technology Profiles and Drug Candidate Profiles are fully referenced with 46 scientific references, in many cases with hyperlinks leading to the source of information (abstracts, Posters, papers). Non-scientific references, such as press releases, annual reports or company presentations, are disclosed within the text with an embedded hyperlink leading to the online source of information.

Details about R&D strategy, collaboration and licensing agreements, financing rounds & sources are described in the company profiles.

What will you find in the report?

  • Profiles of antibody vectorization technology companies active in the field;
  • Description of major pharma's/biotech's role in the field (in-house R&D, partnering and investing);
  • Comprehensive description and analysis of emerging vectorized antibodies;
  • Pharmacologic profiles of selected vectorized antibodies;
  • Characterization, profiling and state of antibody vectorization technologies;
  • Target and indication selection for each antibody vectorization technology;
  • Description and analysis of financing rounds (capital raised, investors);
  • Economic terms of collaboration and licensing deals;
  • Sources of financing.

Who will benefit from the report?

  • Venture capital, private equity and investment managers;
  • Managers of Big Pharma venture capital firms;
  • Financial analysts;
  • Business development and licensing (BDL) specialists;
  • CEO, COO and managing directors;
  • Corporate strategy analysts and managers;
  • Chief Technology Officer;
  • R&D Portfolio, Technology and Strategy Management;
  • Clinical and preclinical development specialists.

Related Companies:

  • 4D Molecular Therapeutics
  • AbbVie
  • Adverum Biotechnologies
  • AstraZeneca
  • BioNTech
  • Curevac
  • Eli Lilly
  • Ethris
  • Eyevensys
  • Generation Bio
  • Genmab
  • GlaxoSmithKline
  • Homology Medicines
  • Inovio Pharmaceuticals
  • Kernal Bio
  • MeiraGTx
  • Moderna Therapeutics
  • Neurimmune
  • Regeneron Pharmaceuticals
  • Regenxbio
  • SmartPharm / Sorrento Therapeutics
  • U'Penn
  • VectorY
  • Vir Biotechnology
  • Voyager Therapeutics
  • Vybion

Table of Contents

Abbreviations

1. Executive Summary

2. Introduction & Overview

3. Stakeholder Analysis

  • 3.1. Overview
  • 3.2. Vectorized Antibody Technology Companies
  • 3.3. Pharma/Biotech Companies Partnered with Vectorized Antibody Technology Companies

4. Profiles of Stakeholders in Vectorized Antibody Technologies

  • 4.1. Viral Vector DNA Companies
    • 4.1.1. 4D Molecular Therapeutics (4DMT)
    • 4.1.2. Adverum Biotechnologies
    • 4.1.3. Homology Medicines
    • 4.1.4. MeiraGTx
    • 4.1.5. REGENXBIO
    • 4.1.6. University of Pennsylvania (U'Penn), Wilson Gene Therapy Program (GTP)
    • 4.1.7. VectorY
    • 4.1.8. Voyager Therapeutics
    • 4.1.9. Vybion
  • 4.2. Plasmid DNA Companies
    • 4.2.1. Eyevensys
    • 4.2.2. Generation Bio
    • 4.2.3. Inovio Pharmaceuticals
    • 4.2.4. SmartPharm Therapeutics & Sorrento Therapeutics
  • 4.3. mRNA Companies
    • 4.3.1. BioNTech
    • 4.3.2. CureVac
    • 4.3.3. Ethris
    • 4.3.4. Kernal Biologics
    • 4.3.5. Moderna Therapeutics
  • 4.4. Pharma / Biotech Partner Companies
    • 4.4.1. AbbVie
    • 4.4.2. AstraZeneca
    • 4.4.3. Genmab
    • 4.4.4. GlaxoSmithKline
    • 4.4.5. Merck
    • 4.4.6. Neurimmune
    • 4.4.7. Regeneron Pharmaceuticals
    • 4.4.8. Vir Biotechnology

5. Analysis of Vectorized Antibody Technologies

  • 5.1. Viral Vector DNA Technologies for In Vivo Expression of Antibodies
  • 5.2. Plasmid DNA Technologies for In Vivo Expression of Antibodies
  • 5.3. mRNA Technologies for In Vivo Expression of Antibodies

6. Profiles of Vectorized Antibody Technologies

  • 6.1. Viral Vector DNA Technologies for In Vivo Expression of Antibodies
    • 6.1.1. Therapeutic Vector Evolution by 4D Molecular Therapeutics (4DMT)
    • 6.1.2. Engineered AAV Technology by Adverum Biotechnologies
    • 6.1.3. GTx-mAbs Platform by Homology Medicines
    • 6.1.4. AAV Technology for Antibody Expression in Vivo by MeiraGTx
    • 6.1.5. NAV Technology Platform by REGENXBIO
    • 6.1.6. TRACER System for Discovering Novel Gene Therapy Capsids by Voyager Therapeutics
  • 6.2. Plasmid DNA Technologies for In Vivo Expression of Antibodies
    • 6.2.1. Ciliary Electrotransfection & DNA Plasmids by Evensys
    • 6.2.2. Non-viral Antibody Gene Therapy (AGT) Platform by Generation Bio
    • 6.2.3. Synthetic DNA-based Monoclonal Antibody (dMAb) Tecnology Platform by Inovio Pharmaceuticals
    • 6.2.4. Gene-Encoded Antibody (Gene MAb) Technology by SmartPharm Therapeutics
  • 6.3. mRNA Technologies for In Vivo Expression of Antibodies
    • 6.3.1. RiboMAb Technology by BioNTech
    • 6.3.2. RNAoptimizer Technology Platform by Curevac
    • 6.3.3. SNIM RNA Technology by Ethris
    • 6.3.4. mRNA Antibodies & Lipid Nanoparticles for Delivery by Moderna Therapeutics

7. Analysis of Pipeline and Product Candidates for In Vivo Expression of Antibodies

  • 7.1. AAV DNA for In Vivo Expression of Antibodies: Analysis of Pipeline and Selected Product Candidates
  • 7.2. Plasmid DNA for In Vivo Expression of Antibodies: Analysis of Pipeline and Selected Product Candidates
  • 7.3. mRNA for In Vivo Expression of Antibodies: Analysis of Pipeline and Selected Product Candidates

8. Profiles of Vectorized Antibody Product Candidates

  • 8.1. Viral Vector DNA Product Candidates for In Vivo Expression of Antibodies
    • 8.1.1. 4D-150
    • 8.1.2. ADVM-022; AAV.7m8-aflibercept
    • 8.1.3. Anti-Tau Vectorized Antibodies
    • 8.1.4. INT41
    • 8.1.5. RGX-314
    • 8.1.6. Vectorized Anti-Kallikrein Antibody
  • 8.2. Plasmid DNA Product Candidates for In Vivo Expression of Antibodies
    • 8.2.1. Antibody Gene Therapy (AGT) - Generation Bio
    • 8.2.2. Anti-VEGF ceDNA-ctLNP
    • 8.2.3. Further dMAb Experience
    • 8.2.4. EYS606
    • 8.2.5. INO-A002; dMAb-ZK190; Zika dMAb
    • 8.2.6. STI-8472: COVI-GeneMAB
  • 8.3. mRNA Product Candidates for In Vivo Expression of Antibodies
    • 8.3.1. CureVac mRNA Antibodies
    • 8.3.2. mRNA-1944
    • 8.3.3. ETH46; NI007

9. Business, Financing & Partnering

  • 9.1. Business
  • 9.2. Financing
  • 9.3. Partnering

10. References

Figures & Tables

  • Table 1: Corporate Stakeholders in Vectorized Antibody R&D
  • Table 2: Range of Product Categories Leveraged by Companies from Use of In Vivo Expression Technologies
  • Table 3: Profiles of Stakeholders with Vectorized Antibody Technologies
  • Table 4: Pharma/Biotech Partnerships with Vectorized Antibody Technology Companies
  • Table 5: REGENXBIO's Pipeline of Vectorized Antibodies
  • Table 6: Generation Bio's Pipeline of Antibody Gene Therapies
  • Table 7: Advantages of Viral Vector DNA for In vivo Expression of Antibodies
  • Tables 8: Profiles of Viral Vectors for In Vivo Expression of Antibodies
  • Table 9: Advantages of Plasmid DNA for In Vivo Expression of Antibodies
  • Table 10: Profiles of Plasmid DNA for In Vivo Expression of Antibodies
  • Table 11: Advantages of mRNA for In Vivo Expression of Antibodies
  • Table 12: Profiles of mRNA for In Vivo Expression of Antibodies
  • Table 13: Pipeline of Vectorized Antibodies Encoded by AAV DNA
  • Table 14: Overview of Profiled AAV DNA Product Candidates for In Vivo Expression of Antibodies
  • Table 15: Pipeline of Vectorized Antibodies Encoded by Plasmid DNA
  • Table 16: Overview of Profiled Plasmid DNA Product Candidates for In Vivo Expression of Antibodies
  • Table 17: Pipeline of Vectorized Antibodies Encoded by mRNA
  • Table 18: Overview of Profiled mRNA Product Candidates for In Vivo Expression of Antibodies
  • Table 19: Funding of Vectorized Antibody Programs
  • Table 20: Financial Terms of Partnering Deals Based on Antibody Vector Technology
  • Table 21: Technology Contributions in Partnering Deals

ADDENDUM

  • Add 1: Competitor Analysis of AAV DNA Vectorized Antibodies
  • Add 2: Competitor Analysis of plasmid DNA Vectorized Antibodies
  • Add 3: Competitor Analysis of mRNA Vectorized Antibodies