表紙
市場調查報告書
商品編碼
1071446

寬能帶隙功率半導體:市場預測(2022年∼2027年)

Wide-Bandgap Power Semiconductor Market - Forecasts from 2022 to 2027

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 124 Pages | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

全球寬能帶隙功率半導體的市場規模在2020年估算為10億2,532萬6,000美金,在預測期間內預計將以24.95%的年複合成長率擴大,2027年成為48億7,546萬3,000美元。

本報告提供寬能帶隙功率半導體的世界市場調查,提供市場規模和預測,市場促進因素及課題,市場趨勢,各市場區隔的市場分析,競爭情形,主要企業的簡介等系統性資訊。

目錄

第1章 簡介

  • 市場定義
  • 市場區隔

第2章 調查手法

  • 調查資料
  • 假設

第3章 摘要整理

  • 調查的重點

第4章 市場動態

  • 推動市場要素
  • 阻礙市場要素
  • 波特的五力分析
    • 供給企業談判力
    • 買方議價能力
    • 新加入廠商者的威脅
    • 替代品的威脅
    • 競爭企業間的敵對關係
  • 產業的價值鏈分析

第5章 寬能帶隙功率半導體市場:各材料

  • 簡介
  • 碳化矽(SiC)
  • 氮化鎵(GaN)
  • 鑽石
  • 氧化鎵
  • 氮化鋁(AIN)

第6章 寬能帶隙功率半導體市場:各用途

  • 簡介
  • 資料中心
  • 可再生能源發電
  • 混合動力汽車和電動車
  • 馬達驅動器

第7章 寬能帶隙功率半導體市場:各地區

  • 簡介
  • 北美
    • 美國
    • 加拿大
    • 墨西哥
  • 南美
    • 巴西
    • 阿根廷
    • 其他
  • 歐洲
    • 德國
    • 法國
    • 英國
    • 義大利
    • 西班牙
    • 其他
  • 中東和非洲
    • 沙烏地阿拉伯
    • 阿拉伯聯合大公國
    • 以色列
    • 其他
  • 亞太地區
    • 中國
    • 澳洲
    • 日本
    • 韓國
    • 印度
    • 泰國
    • 台灣
    • 印尼
    • 其他

第8章 競爭資訊

  • 主要企業策略分析
  • 新興企業和市場收益性
  • 合併,收購,協定,及合作
  • 供應商競爭力矩陣

第9章 企業簡介

  • ROHM SEMICONDUCTOR
  • Cree, Inc.
  • STMicroelectronics
  • Infineon Technologies AG
  • Mitsubishi Electric Corporation
  • SEMIKRON
  • Texas Instruments
  • Maxim Integrated
  • Analog Devices, Inc.
目錄
Product Code: KSI061611371

The wide-bandgap power semiconductor market is projected to witness a CAGR of 24.95% during the forecast period to reach a total market size of US$4,875.463 million by 2027, increasing from US$1,025.326 million in 2020.

Introduction

Wide-bandgap (WBG) semiconductors modified with molecular species are materials with unique optical and electronic properties. They are smaller, faster, more reliable power electronic components and have higher efficiency than their silicon-based counterparts.

Market Drivers

Due to their scientific and technological properties, WBG power semiconductors have gained popularity in the field of high-performance optoelectronic and electronic devices. As the demand for consumer electronics continues to surge during this timeframe, the demand for WBG semiconductors is presumed to grow far and wide. The physical characteristics of the devices are transformed at t- high frequencies. While its chemical and mechanical features seeped their way into optoelectronic applications. Thus, the high-performance uses coupled with the novel properties are paving the way for the market and carving new opportunities for the years to come.

By material, silicon carbide (SiC) and gallium nitride (GaN) capture a significant share of the market due to their high efficiencies. Geographically, the Asia-Pacific region is expected to grow at a faster rate during the period owing to the development of semiconductor technology in the region. Data centres are avid users of WBG power semiconductors because of the requirements for high-efficiency, reliable electricity at the lowest possible cost.

Growth Factors

  • Application in power electronics

The physical and electrical properties of wide-bandgap materials make them a well-suited option to power electronics. WBG materials' like silicon, gallium arsenide, gallium nitride, etc., have a vast bandgap that translates to a higher breakdown electric field, higher operating-temperature capability, and lower susceptibility to radiation. They are often considered superior to regular semiconductors. Apart from the existing uses of WBG power semiconductors, the market is filled with potential for commercially viable and efficient power semiconductors.

Superior characteristics

WBG power semiconductors have some exceptional qualities like high-switching speed, high voltage, and high temperature. Exploring these capabilities can lead to massive energy savings in industrial processing and consumer appliances, accelerate the widespread use of electric vehicles and fuel cells, and help integrate renewable energy onto the electric grid. Moreover, devices can operate at much higher temperatures, voltages, and frequencies, which makes the devices more efficient and last longer. Since these semiconductors are superior to conventional technologies, the market will garner more share in the years to come.

Restraints

The full potential of the WBG power semiconductor is being challenged by the high cost of investment and the rising price of raw materials. These factors are making it difficult for emerging players to operate and also raise strong barriers to entry for new firms.

COVID-19's Impact on the Wide-Bandgap Power Semiconductor Market:

The WBG power semiconductor is highly reliant on its end-user industries. Some industries, like consumer electronics, flourished during the pandemic owing to the digital boom, remote work culture, and distance learning, among others. Other sectors, like automotives, witnessed a downturn as demand fell due to the imposing lockdowns. Overall, the market has foreseen a mixed response during the pandemic. However, investments in R&D and innovation increased as a result of the prospect of newer product launches and applications to combat the pandemic's effects.

Market Segmentation:

  • By Material

Silicon Carbide (SiC)

Gallium Nitride (GaN)

Diamond

Gallium Oxide

Aluminum Nitride (AIN)

  • By Application

Data Centers

Renewable Energy Generation

Hybrid and Electric Vehicles

Motor Drives

  • By Geography

North America

  • USA
  • Canada
  • Mexico

South America

  • Brazil
  • Argentina
  • Others

Europe

  • Germany
  • France
  • United Kingdom
  • Italy
  • Spain
  • Others

Middle East and Africa

  • Saudi Arabia
  • UAE
  • Israel
  • Others

Asia Pacific

  • China
  • Australia
  • Japan
  • South Korea
  • India
  • Thailand
  • Taiwan
  • Indonesia
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Definition
  • 1.2. Market Segmentation

2. RESEARCH METHODOLOGY  

  • 2.1. Research Data
  • 2.2. Assumptions

3. EXECUTIVE SUMMARY

  • 3.1. Research Highlights

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Force Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis

5. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET, BY MATERIAL 

  • 5.1. Introduction 
  • 5.2. Silicon Carbide (SiC)
  • 5.3. Gallium Nitride (GaN)
  • 5.4. Diamond
  • 5.5. Gallium Oxide
  • 5.6. Aluminum Nitride (AIN)

6. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET, BY APPLICATION 

  • 6.1. Introduction
  • 6.2. Data Centers
  • 6.3. Renewable Energy Generation
  • 6.4. Hybrid and Electric Vehicles
  • 6.5. Motor Drives

7. WIDE-BANDGAP POWER SEMICONDUCTOR MARKET, BY GEOGRAPHY

  • 7.1. Introduction
  • 7.2. North America
    • 7.2.1. United States
    • 7.2.2. Canada
    • 7.2.3. Mexico
  • 7.3. South America
    • 7.3.1. Brazil
    • 7.3.2. Argentina
    • 7.3.3. Others
  • 7.4. Europe
    • 7.4.1. Germany
    • 7.4.2. France
    • 7.4.3. United Kingdom 
    • 7.4.4. Italy
    • 7.4.5. Spain 
    • 7.4.6. Others
  • 7.5. Middle East and Africa
    • 7.5.1. Saudi Arabia
    • 7.5.2. UAE
    • 7.5.3. Israel
    • 7.5.4. Others
  • 7.6. Asia Pacific
    • 7.6.1. China
    • 7.6.2. Australia
    • 7.6.3. Japan
    • 7.6.4. South Korea
    • 7.6.5. India
    • 7.6.6. Thailand
    • 7.6.7. Taiwan
    • 7.6.8. Indonesia
    • 7.6.9. Others

8. COMPETITIVE INTELLIGENCE

  • 8.1. Major Players and Strategy Analysis
  • 8.2. Emerging Players and Market Lucrativeness
  • 8.3. Mergers, Acquisition, Agreements, and Collaborations
  • 8.4. Vendor Competitiveness Matrix

9. COMPANY PROFILES

  • 9.1. ROHM SEMICONDUCTOR
  • 9.2. Cree, Inc.
  • 9.3. STMicroelectronics
  • 9.4. Infineon Technologies AG
  • 9.5. Mitsubishi Electric Corporation
  • 9.6. SEMIKRON
  • 9.7. Texas Instruments
  • 9.8. Maxim Integrated
  • 9.9. Analog Devices, Inc.