NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

綠色氫氣生產:2021-2031年電解槽市場

Green Hydrogen Production: Electrolyzer Markets 2021-2031

出版商 IDTechEx Ltd. 商品編碼 997383
出版日期 內容資訊 英文 166 Slides
商品交期: 最快1-2個工作天內
價格
綠色氫氣生產:2021-2031年電解槽市場 Green Hydrogen Production: Electrolyzer Markets 2021-2031
出版日期: 2021年03月31日內容資訊: 英文 166 Slides
簡介

標題
綠色氫生產:2021-2031年電解器市場
鹼性(AWE),PEM(PEMEL)和固體氧化物(SOEL)電解系統的技術經濟分析,以及主要的市場參與者和未來的綠色氫氣生產趨勢。

氫經濟的發展似乎已經開始。隨著2019年和2020年氫系統安裝量的增加,氫經濟從其發展的最重要技術開始:電解器系統的採用。

從宣佈對氫領域投資數十億美元,以及越來越多地採用國家氫計劃,尤其是在歐洲,IDTechEx認為氫,尤其是電解器市場是快速增長的情況。

從氫技術的必要性開始,IDTechEx在 "綠色氫產品:2021-2031年電解器市場" 報告中開始分析所謂的氫經濟性的實際必要性,並與電池解決方案進行了比較。在對歐洲EU-ETS碳定價方法進行了解釋之後,顯示了其有效性以及與其他現有碳稅的比較。儘管必須由不同行業來實現對CO2排放的限制,但要實現此目標,必須進行綠色技術的採用/集成。

為瞭解電解器市場將如何發展,在報告中對氫的主要最終用戶進行了調查,並根據分析的趨勢進行了分析。

然後提供了對不同電解槽系統的深入瞭解,其中提供了三個主要電解槽系統之間的區別,包括工作機理,所用材料,系統性能以及-IDTechEx的一個關鍵參數-不同的降解過程發生。

採用的材料使讀者能夠瞭解哪些可能的OEM以及最終的技術改進是可能的。結合ID TechEx進行的公司簡介,可以全面瞭解電解槽市場。另一方面,在每個電解槽的不同組件中發生的不同降解過程,向讀者展示了電解槽系統的技術局限性以及未來的應用。

在目前的發展狀態下,市場上有3種電解槽:鹼性水電解槽(AWE),質子交換膜電解槽(PEMEL)和固體氧化物電解槽(SOEL),儘管前兩種電解槽已被積極地商品化。所有這三個設備都使用電將水分子分解為H2和O2,並且這三種技術之間的差異由兩個電極之間交換的離子(分別為AW E,PEMEL和SOEL的OH-,H +和O =給出)給出。其中涉及採用不同的電解質和材料。不同的機理和材料直接影響三個電解槽中每個電解槽的性能和性能。

AWE系統較舊,在工業規模上使用最多,最早的安裝時間是1920年代。PEMEL裝置來自PEM燃料電池的改進。PEMEL系統的首次安裝記錄於2000年代。

最新,最年輕的技術,即SOEL系統正在進入市場。除了設備進行不同的離子交換外,該系統還比PEM或AEL設備(均介於50到90攝氏度之間)在更高的溫度(600-850攝氏度)下運行。該系統的較高工作水平,儘管需要耐久的材料和昂貴的製造工藝,但阻止了昂貴催化劑的利用,促進了水分子的分解,但也允許採用其他燃料,例如CO2和水蒸氣,從而獲得了另一種燃料。重要的工業氣體原料:合成氣(CO + H2)。

目前,電解器市場分為兩種較舊的技術:鹼性和質子交換膜。SOEL技術的早期階段正在慢慢推向市場。

在報告的最後部分,已經對商品化系統進行了效率計算,向讀者展示了PEMEL和AWE系統的比較。通過進行的分析,IDTechEx概述了採用主要電解槽類型的未來趨勢。

總而言之,鑑於IDTechEx為瞭解電解槽市場的當前發展而進行了詳細的調查,因此提供了有關最大的電解槽製造商的最新動態。這些案例研究清楚地說明了電解質製造商如何進入市場。

該報告提供的技術經濟調查結果是對兆瓦裝機中電解槽系統數量的市場預測,以及對市場價值的估計。

來自IDTechEx的分析師訪問權限

所有報告購買都包括長達30分鐘的通話時間,該電話與一位專家分析師聯繫,他將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。需要在購買報告後的三個月內使用。

目錄

1。行政SUMMA RY

  • 1.1。新的氫炒作需要經濟支持
  • 1.2。主要氫用戶和未來採用者
  • 1.3。電解系□□統概述
  • 1.4。電解系□□統比較-工作參數
  • 1.5。PEMEL-AWE效率趨勢
  • 1.6。AWE和PEMEL系統的優點和缺點
  • 1.7。SOEL系統:替代AWE?
  • 1.8。電解槽市場概況
  • 1.9。全球氫氣公司
  • 1.10。全球電解槽生產商
  • 1.11。下游電解組件供應商
  • 1.12。2021-2031年電解槽市場預測
  • 1.13。預測假設
  • 1.14。電解槽市場的未來趨勢

2。簡介

  • 2.1.1。介紹的氫和電解SY莖
  • 2.2。氫經濟
    • 2.2.1。什麼是氫經濟?
    • 2.2.2。氫經濟:概述
    • 2.2.3。我們找到了雞和雞蛋嗎?
    • 2.2.4。綠色H2的生產將如何增加RES的分配
    • 2.2.5。氫經濟發展問題
    • 2.2.6。為什麼不採用 "電池經濟" ?
    • 2.2.7。BEV和FCEV呢?
    • 2.2.8。BEV和FCEV效率比較
    • 2.2.9。當我們看到氫經濟時
  • 2.3。碳定價
    • 2.3.1。氫經濟將從何處開始?
    • 2.3.2。碳定價
    • 2.3.3。全球碳定價
    • 2.3.4。碳定價面臨的挑戰
    • 2.3.5。歐盟的碳定價
    • 2.3 .6。歐盟排放交易體係是否有影響?
    • 2.3.7。二氧化碳成本對鋼鐵行業的影響
    • 2.3.8。二氧化碳排放量比較
    • 2.4。氫氣最終用戶
      • 2.4.1。氫氣最終用戶分析
      • 2.4.2。IDTechEx氫消耗量預測:氨
      • 2.4.3。IDTechEx氫氣消耗量預測:煉油廠
      • 2.4.4。IDTechEx氫氣消耗量預測:甲醇
      • 2.4.5。IDTechEx氫氣消耗量預測:鋼鐵
      • 2.4.6。鋼鐵生產中的氫氣採用:概述
      • 2.4.7。鋼鐵生產工藝
      • 2.4.8。煉鋼行業的綠色氫
      • 2.4.9。二氧化碳排放量比較
      • 2.4.10。綠鋼項目:
      • 2.4.11。氫氣生產氨
      • 2.4.12。氨: "氫的陰暗面"
      • 2.4.13。氫氣在煉油工藝中的應用
      • 2.4.14。氣體混合
      • 2.4.15。氫氣應用

    3。電解技術

    • 3.1.1。電解槽介紹
    • 3.1.2。AWE和PEMEL系統的PROS和COONS
    • 3.1.3。SOEL系統:替代AWE?
    • 3.1.4。氫的顏色
    • 3.1.5。制氫方法
    • 3.1.6。制氫方法:蒸汽重整(SMR)
    • 3.1.7。制氫方法:部分氧化(POX)
    • 3.1.8。制氫方法:自熱重整(ATR)
    • 3.2。鹼性電解水機(AWE)
      • 3.2.1。鹼性電解槽:概述
      • 3.2.2。AWE電解系統:材料,特性
      • 3.2.3。鹼性電解槽:陰極反應
      • 3.2.4。鹼性電解槽:陰極材料(HER)
      • 3.2.5。鹼性電解槽:陽極反應(OER)
      • 3.2.6。AWE陽極-陰極摘要
      • 3.2.7。鹼性和陰離子交換膜電解槽
      • 3.2.8。AWE系統- "零間隙" 配置優勢
      • 3.2.9。AWE膜片特性
      • 3.2.10。AWE:墊片和電解質
      • 3.2.11。AWE:膜電極組件(MEA)
      • 3.2.12。AEMWE概述
      • 3.2 .13。商業AEM電解質和電池性能
      • 3.2.14。大型AWE系統
      • 3.2.15。AEL供應鏈
      • 3.2.16。質子交換膜電解器(PEMEL)
      • 3.2.17。概述
      • 3.2.18。PEM電解槽系統:材料,規格ifics
      • 3.2.19。質子交換膜電解槽
      • 3.2.20。三相邊界和質子交換膜
      • 3.2.21。PEMEL工作機制
      • 3.2.22。PEMEL堆棧和組件
      • 3.2.23。電解系□□統:防噴器和煙囪
      • 3.2.24 。OER電催化劑
      • 3.2.25。HER電催化劑
      • 3.2.26。電催化劑降解方面
      • 3.2.27。PEMEL膜:概述
      • 3.2.28。膜降解問題
      • 3.2.29。膜降解過程
      • 3.2.30。當前的收集者(CC)
      • 3.2.31。雙極板(BPs)
      • 3.2.32。雙極板材料
      • 3.2.33。鈦BP的缺點
      • 3.2.34。PEMEL技術概述
      • 3.2.35。PEMEL成本明細
      • 3.2.36。PEMEL供應鏈
      • 3.3。固體氧化物電解槽(SOEL)
      • 3.3.1。固體氧化物電解槽(SOEL)
      • 3.3.2。概述
      • 3.3.3。固體氧化物電解槽:概述
      • 3.3.4。可逆-SOFC
      • 3.3.5。固體氧化物電解器:固體電解質
      • 3.3.6。固體氧化物電解器:電極
      • 3.3.7。SOEL電解系統:材料,規格
      • 3.3.8。SOEL市場
      • 3.3.9。SOEL供應鏈

    4。電解市場分析

    • 4.1。電解槽製造商:概述
    • 4.2。市場Overvi EW
    • 4.3。動態運行特性
    • 4.4。歐洲引領著氫氣市場
    • 4.5。歐洲的氫氣項目
    • 4.6。氫相關項目
    • 4.7。電解槽系統比較-材料
    • 4.8。電解器系統比較-操作參數
    • 4.9。下游電解器組件供應商
    • 4.10。全球電解槽生產商
    • 4.11。EL製造商的市場定位
    • 4.12。IDTechEx採訪的公司
    • 4.13。商業化電解效率比較
    • 4.14。電解效率圖
    • 4.15。PEMEL效率趨勢
    • 4.16。PEMEL-AWE效率趨勢

    5。案例研究

    • 5.1。Nel ASA
    • 5.2。Nel概述
    • 5.3。Nel 2020分析
    • 5.4。PL UG電源
    • 5.5。插頭電源:概述
    • 5.6。PlugPower-收購與合作夥伴關係
    • 5.7。Plug Power開發自己的供應鏈
    • 5.8。ITM電源
    • 5.9。ITM Power: "變革性的2020"
    • 5.10。英國謝菲爾德的1GW PEM電解工廠
    • 5.11。ITM大力參與HRS部署
    • 5.12。ITM Power:天然氣發電和燃氣電網項目
    • 5.13。工業應用的ITM Power電解槽
    • 5.14。ITM Power-林德合資企業
    • 5.15。ITM電力工程中的TS
    • 5.16。麥比
    • 5.17。McPhy概述
    • 5.18。從18m到198m增資
    • 5.19。McPhy的戰略合作夥伴
  • 目錄
    Product Code: ISBN 9781913899400

    Title:
    Green Hydrogen Production: Electrolyzer Markets 2021-2031
    Techno-economic analysis of Alkaline (AWE), PEM (PEMEL), and Solid Oxide (SOEL) electrolyzer systems, with major market players and future green hydrogen production trends.

    The development of the hydrogen economy seems to have started. With increasing installations of hydrogen systems in 2019 and 2020, the hydrogen economy began with the most essential technology for its development: the adoption of electrolyzer systems.

    From the announcement of multi billion investment in the hydrogen sector, and the growing adoption of national hydrogen plans, particularly in Europe, IDTechEx identify hydrogen and particularly the electrolyzers market as a fast-growing scenario.

    Beginning with the necessity of hydrogen technologies, in the 'Green Hydrogen Production: Electrolyzer Markets 2021-2031' report, IDTechEx started to analyse the actual necessity of the so-called hydrogen economy, providing a comparison with battery solutions. Following with an explanation of the European EU-ETS carbon pricing method, its effectiveness and comparison with other existing carbon taxes is shown. Although restrictions to CO2 emissions must be fulfilled by different industries, to achieve this target the adoption/integration of green technologies has to be performed.

    To understand how the electrolyzer market will evolve, in the report the main end-users of hydrogen have been investigated, and following the trends analysed.

    A deep dive into the different electrolyzer systems is then provided, where differences between the three main electrolyzer systems are provided, in terms of working mechanism, employed materials, system performance, and - a key parameter IDTechEx's view - the different degradation processes taking place.

    The adopted materials allow the reader to understand which possible OEMs and eventual technical improvements are possible. Coupled with the company profiles performed by IDTechEx, a complete vision of the electrolyzer market is obtained. On the other end, the different degradation processes taking place in the different components of each electrolyzer, show the reader the technical limits and hence future application of the electrolyzer systems.

    With the current state of development, the market is populated with three electrolyzers: alkaline water electrolyzer (AWE), proton exchange membrane electrolyzer (PEMEL), and solid oxide electrolyzers (SOEL), although only the first two are actively commercialised. All three devices employ electricity to split the water molecules into H2 and O2, and differences among the three technologies are given by the ions exchanged between the two electrodes (OH-, H+, and O= for AWE, PEMEL, and SOEL respectively) which involve the adoption of different electrolytes and materials. Different mechanisms and materials directly impact the performance and properties of each of the three electrolyzers.

    The AWE systems are the older and most adopted at industrial scale, with first installations occurring in the 1920s. PEMEL devices come from the improvement of PEM fuel cells. The first installations of PEMEL systems were recorded in the 2000s.

    The latest and youngest technology, SOEL systems are currently approaching the market. Besides the different ion exchange by the device, this system operates at higher temperature (600-850 Celsius) than PEM or AEL device (both ranging between 50 and 90 Celsius). The higher working operation of this system, although requiring resistant materials and expensive fabrication processes, prevent the utilisation of expensive catalysts, facilitating the decomposition of water molecules, but also allowing the adoption of other fuels, such as CO2 and water vapour, obtaining another important industrial gas feedstock: syngas (CO + H2).

    The electrolyzer market is currently split between the two older technologies: alkaline and proton exchange membrane. The early stage of the SOEL technology is slowly approaching the market.

    In the final part of the report, the efficiency calculation of commercialised systems has been performed, showing the reader a comparison of PEMEL and AWE systems. From the analysis performed, IDTechEx outlined the future trends of adoption of the main electrolyzer types.

    In conclusion, given the detailed investigation IDTechEx performed to understand the current evolution of the electrolyzer market, the latest developments regarding the largest electrolyzer manufacturers are provided. These case studies are clear examples of how the electrolyte manufacturers are approaching the market.

    The outcome of the techno-economic investigation provided by the report is a market forecast regarding the amount of electrolyzer systems in MW installed, together with an estimation of the market value.

    Analyst access from IDTechEx

    All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY

    • 1.1. The new hydrogen hype needs economic support
    • 1.2. Main hydrogen users and future adopters
    • 1.3. Electrolyzer Systems Overview
    • 1.4. Electrolyzer systems comparison - Operating parameters
    • 1.5. PEMEL-AWE Efficiency trend
    • 1.6. PROS and CONS of AWE and PEMEL systems
    • 1.7. SOEL systems: a substitute for AWE?
    • 1.8. Electrolyzer Market Overview
    • 1.9. Hydrogen companies in the world
    • 1.10. Global electrolyzer players
    • 1.11. Downstream electrolyzer component vendors
    • 1.12. Electrolyzer Market Forecast 2021-2031
    • 1.13. Forecast Assumption
    • 1.14. Future trend of the electrolyzer market

    2. INTRODUCTION

    • 2.1.1. Introduction to hydrogen and electrolyzer systems
    • 2.2. The Hydrogen Economy
      • 2.2.1. What is a Hydrogen Economy?
      • 2.2.2. The Hydrogen Economy: Overview
      • 2.2.3. Have we found the Chicken and the Egg?
      • 2.2.4. How Green H2 production will increase RES installations
      • 2.2.5. Hydrogen Economy Development Issues
      • 2.2.6. Why not a "Battery Economy"?
      • 2.2.7. What about BEV and FCEV?
      • 2.2.8. BEV and FCEV Efficiency Comparison
      • 2.2.9. When we will see the hydrogen economy
    • 2.3. Carbon Pricing
      • 2.3.1. Where will the hydrogen economy begin?
      • 2.3.2. Carbon pricing
      • 2.3.3. Carbon pricing across the world
      • 2.3.4. Challenges with carbon pricing
      • 2.3.5. Carbon pricing in the European Union
      • 2.3.6. Has the EU ETS had an impact?
      • 2.3.7. CO2 cost impact on Steel industry
      • 2.3.8. CO2 emissions comparison
    • 2.4. Hydrogen End Users
      • 2.4.1. Hydrogen End Users Analysis
      • 2.4.2. IDTechEx Hydrogen consumption forecast: Ammonia
      • 2.4.3. IDTechEx Hydrogen consumption forecast: Refinery
      • 2.4.4. IDTechEx Hydrogen consumption forecast: Methanol
      • 2.4.5. IDTechEx Hydrogen consumption forecast: Steel
      • 2.4.6. Hydrogen adoption in steel production: Overview
      • 2.4.7. Steel production processes
      • 2.4.8. Green hydrogen for steel making industry
      • 2.4.9. CO2 emissions comparison
      • 2.4.10. Green Steel Projects:
      • 2.4.11. Hydrogen for ammonia production
      • 2.4.12. Ammonia: 'The dark side of Hydrogen'
      • 2.4.13. Hydrogen application in refinery process
      • 2.4.14. Gas Blending
      • 2.4.15. Hydrogen Applications

    3. ELECTROLYZER TECHNOLOGIES

    • 3.1.1. Electrolyzers Introduction
    • 3.1.2. PROS and CONS of AWE and PEMEL systems
    • 3.1.3. SOEL systems: a substitute to AWE?
    • 3.1.4. The colours of Hydrogen
    • 3.1.5. Hydrogen Production Methods
    • 3.1.6. Hydrogen Production Methods: Steam Reforming (SMR)
    • 3.1.7. Hydrogen Production Methods: Partial Oxidation (POX)
    • 3.1.8. Hydrogen Production Methods: Autothermal Reforming (ATR)
    • 3.2. Alkaline Water Electrolyzer (AWE)
      • 3.2.1. Alkaline Electrolyzer: Overview
      • 3.2.2. AWE electrolyzers systems: Materials, Specifics
      • 3.2.3. Alkaline Electrolyzer: Cathode Reaction
      • 3.2.4. Alkaline Electrolyzer: Cathode Materials (HER)
      • 3.2.5. Alkaline Electrolyzer: Anode Reaction (OER)
      • 3.2.6. AWE Anode-Cathode summary
      • 3.2.7. Alkaline and Anion Exchange Membrane Electrolyzers
      • 3.2.8. AWE system - 'Zero-Gap' configuration advantages
      • 3.2.9. AWE Diaphragm Characteristics
      • 3.2.10. AWE: Spacer and Electrolyte
      • 3.2.11. AWE: Membrane Electrode Assembly (MEA)
      • 3.2.12. AEMWE Overview
      • 3.2.13. Commercial AEM electrolyte and cell performances
      • 3.2.14. Large scale AWE system
      • 3.2.15. AEL Supply chain
      • 3.2.16. Proton Exchange Membrane Electrolyzer (PEMEL)
      • 3.2.17. Overview
      • 3.2.18. PEM electrolyzers systems: Materials, Specifics
      • 3.2.19. Proton Exchange Membrane Electrolyzer
      • 3.2.20. Three Phase Boundary and Proton Exchange Membrane
      • 3.2.21. PEMEL Working Mechanism
      • 3.2.22. PEMEL stack and components
      • 3.2.23. Electrolyzer system: BOP and Stack
      • 3.2.24. OER Electrocatalyst
      • 3.2.25. HER Electrocatalyst
      • 3.2.26. Electrocatalyst Degradation Aspects
      • 3.2.27. PEMEL Membrane: Overview
      • 3.2.28. Membrane degradation problems
      • 3.2.29. Membrane degradation processes
      • 3.2.30. Current Collectors (CCs)
      • 3.2.31. Bipolar Plates (BPs)
      • 3.2.32. Bipolar Plates Materials
      • 3.2.33. Titanium BP drawbacks
      • 3.2.34. PEMEL Technical overview
      • 3.2.35. PEMEL cost breakdown
      • 3.2.36. PEMEL Supply chain
      • 3.3. Solid Oxide Electrolyzer (SOEL)
      • 3.3.1. Solid Oxide Electrolyzer (SOEL)
      • 3.3.2. Overview
      • 3.3.3. Solid Oxide Electrolyzer: Overview
      • 3.3.4. Reversible - SOFC
      • 3.3.5. Solid Oxide Electrolyzer: Solid Electrolyte
      • 3.3.6. Solid Oxide Electrolyzer: Electrodes
      • 3.3.7. SOEL Electrolyzers systems: Materials, Specifics
      • 3.3.8. SOEL Market
      • 3.3.9. SOEL Supply Chain

    4. ELECTROLYZER MARKET ANALYSIS

    • 4.1. Electrolyzer Manufacturers: Overview
    • 4.2. Market Overview
    • 4.3. Dynamic Operation Property
    • 4.4. Europe is leading the hydrogen market
    • 4.5. Hydrogen projects in Europe
    • 4.6. Hydrogen related projects
    • 4.7. Comparison of electrolyzer systems - Materials
    • 4.8. Electrolyzer systems comparison - Operating parameters
    • 4.9. Downstream electrolyzers component vendors
    • 4.10. Global electrolyzer players
    • 4.11. Market Addressed by EL manufacturer
    • 4.12. Companies Interviewed by IDTechEx
    • 4.13. Commercialised electrolyzer efficiency comparison
    • 4.14. Electrolyzers efficiency charts
    • 4.15. PEMEL Efficiency trend
    • 4.16. PEMEL-AWE efficiency trend

    5. CASE STUDIES

    • 5.1. Nel ASA
    • 5.2. Nel Overview
    • 5.3. Nel 2020 analysis
    • 5.4. Plug Power
    • 5.5. Plug Power: Overview
    • 5.6. PlugPower - Acquisitions and Partnerships
    • 5.7. Plug Power developing its own supply chain
    • 5.8. ITM Power
    • 5.9. ITM Power: 'A transformational 2020'
    • 5.10. 1GW PEM electrolyzer factory in Sheffield (UK)
    • 5.11. ITM strong involvement in HRS deployment
    • 5.12. ITM Power: Power-to-Gas and Gas-Grid projects
    • 5.13. ITM Power electrolyzers for industrial applications
    • 5.14. ITM Power - Linde joint venture
    • 5.15. ITM Power Projects
    • 5.16. McPhy
    • 5.17. McPhy Overview
    • 5.18. From €18m to €198m Capital Increase
    • 5.19. McPhy's strategic Partners