NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

太陽能汽車2021-2041第二版

Solar Vehicles 2021-2041 2nd Edition

出版商 IDTechEx Ltd. 商品編碼 988580
出版日期 內容資訊 英文 271 Slides
商品交期: 最快1-2個工作天內
價格
太陽能汽車2021-2041第二版 Solar Vehicles 2021-2041 2nd Edition
出版日期: 2021年02月12日內容資訊: 英文 271 Slides
簡介

標題
太陽能車2021-2041 2 nd
能源獨立,減少電池,增加範圍,光伏,scSi,CIGS,OPV,III-V,結構電子,太陽能窗戶。

尚未考慮太陽能車身設計的車輛設計師是瘋狂的。引爆點在於我們,主要是因為單晶矽光伏電池即使在車輛側面也能提供每單位面積50%的更高的電氣性能。總共是三倍的電量。現在採用速度如此之快,以至於IDTechEx在一年之內就重寫了其報告。 "太陽能汽車2021-2041第二版" 在260頁中進行了解釋。通常,它涵蓋了最大的潛力-陸地車輛-但它提供了有關水和空氣的最新知識。

看看太陽能公路車輛的購買者現在有多種選擇,從太陽能每年增加幾百公里到數十公里的總能源獨立性。其中包括典型的城市居民,年均行駛12,000公里。永不插入電源?通過愚蠢的付款方式和界面來逃避不可靠,繁忙的充電站的暴政?如果您需要更多的續航里程,則太陽能汽車可以讓您插上電源,但它們通常只用一半的電池,從而也減少了麻煩部件帶來的問題。

突然之間,選擇是巨大的,全球來源。與能源無關的汽車種類繁多,從斯巴達汽車到設計汽車。中國提供太陽能汽車,從高爾夫球車到家庭用車和載人汽車,但巴基斯坦現在只有一個品牌Economia提供所有這些,再加上封閉式太陽能三輪車。所有都是在巴基斯坦製造的。在世界的另一端,新的太陽能轎車包括Aptera solar 3惠勒,聲稱在充滿電的情況下續航里程為1600公里1000英里,創世界紀錄。在全球範圍內,太陽能兩個座位的來源現在多種多樣。

重要的是,太陽能車身現已可用於常規,混合動力和電池汽車。閱讀現代的推廣。特斯拉Cyber□□truk展示了太陽能選項。是的,大牌現在正在堆積,豐田甚至還在努力將太陽射程進一步提高到每年20多公里。已經有許多太陽能船。的確,與能源無關的太陽能船是司空見慣的,這裡的一些多模式收穫對陸地車輛有借鑒意義。 大眾汽車集團旗下的斯堪尼亞(Scania)領導的太陽能輔助混合動力卡車的大型計劃現已成為卡車的焦點。擁有最大太陽能汽車訂單的Sono Motors剛剛展示了一款全太陽能卡車。太陽能卡車的節省將使卡車司機的典型利潤增加一倍。瞭解為何Sono Motors將其全面的太陽能技術許可給領先的機器人穿梭機製造商,而Dethleffs則出售其休閒車的格式。

"太陽能汽車2021-2041第二版" 由全球多語種IDTechEx分析師不斷研究。它甚至解釋了當下一代太陽能汽車技術在陸地上變得負擔得起並且涵蓋了在汽車上引入的CIGS和OPV等中間技術時會發生什麼情況。

該報告以執行摘要和結論開頭,適用於時間有限的人士,包括10年和20年的預測以及20年的路線圖。引言然後解釋了歷史,應用和技術,包括IDTechEx的新概念。在這些帶有預測的關鍵評估中,瞭解下一個選擇,例如將車輛,甚至卡車和輪船上的太陽能作為零排放微電網擴大。

第3章介紹了太陽能汽車,貨車,人力車和三輪車,其中包括開發大型多功能可重構太陽能汽車的澳大利亞重大計劃。電池更少,續航能力更大的汽車就在這裡,包括菲斯克和光年。療法e為許多太陽能高爾夫球車,貨車和其他選項從意大利到印度。第4章介紹了太陽能客車和卡車,從德國的弗勞恩霍夫的最新進展到巴西和烏干達的太陽能版本。從挪威到日本,本章還介紹了自動人行道和休閒車,以及令人驚訝的各種太陽能技術,並說明了原因。

第5章和第6章涉及太陽能輔助火車和太陽能農業機器人,其中一些與能量無關。

但是,第7章中的太陽能船比火車要大,而第8章中介紹的農用機器人和太陽能飛機正在迅速變得重要。在平流層和LEO衛星上的飛艇和固定翼無人機上安裝了功能更強大,價格更高的太陽膜,這對於監視以及下一代5G和6G通信都是必不可少的。但是,中國人剛剛表現出日夜在低空無人駕駛飛機上的太陽能獨立性,而在常規的電動輕型飛機上進行試驗,即使在目前正在準備的電池電動支線飛機上,也將導致大規模採用。瞭解什麼技術以及何時使用。然後,該報告以一章很長的篇幅結尾,介紹了光伏技術,其技術以及不斷發展的改進和用途。

從監管機構,投資者到用戶以及系統運營商,進入太陽能汽車土地,水和空氣價值鏈的任何人都必須以土地,水和空氣以及所有技術的形式審視大局,以此作為最佳實踐的基準,獲勝者和失敗者。僅在IDTechEx的新報告 "Solar Vehicles 2021-2041 Second Edition" 中提供了所有這些信息,這些信息由高級技術分析師評估得出的信息圖表,圖表和預測,這些信息簡直是懷舊或學術上難以理解的。從一開始,術語的全面詞彙表就有助於提高清晰度。該報告服務於那些尋求商業成功並為社會帶來利益的人。

此報告回答以下問題:

  • 在接下來的20年中,誰將在哪裡,為什麼在哪裡使太陽能汽車著陸,水和空氣?
  • 相對於常規太陽能汽車2021-2041,保費的數量,單位價值和市場價值的預測?
  • 詳細的技術路線圖和應用2021-2041?
  • 博士級分析師從13個主要結論和30個具體結論中得出什麼?
  • 現在和將來都是贏家和輸家的公司,技術和方法?
  • 現在和將來大多數適用的應用程序,為什麼對供應商以及相對重要性?
  • 現在和將來所有太陽能技術與汽車,供應商的利弊相比?
  • 壞消息不僅僅是好消息嗎?

從IDTechEx進行分析訪問

所有報告購買都包括與專家分析師進行的長達30分鐘的電話時間,專家分析師將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。需要在購買報告的三個月內使用。

目錄

1。執行摘要和結論

  • 1.1。本報告目的
  • 1.2。基本
    • 1.2.1。定義和歷史
    • 1.2.2 。標桿管理
  • 1.3。主要結論
    • 1.3.1。太陽能汽車的重要性
    • 1.3.2。主要結論
    • 1.3.3。太陽能卡車,公共汽車和火車銷售的轉折點
    • 1.3.4。企業和地理定位
    • 1.3.5。化學一般包括保護
    • 1.3.6。格式
    • 1.3.7。比較領先的太陽能汽車:Sono,Lightyear,Toyota
    • 1.3.8。太陽能兩座城市小汽車隊,Zoop
    • 1.3.9。Aptera太陽能車
    • 1。3.10。專利分析:太陽能車
    • 1.3.11。太陽能公共汽車和卡車
    • 1.3.12。火車
    • 1.3.13。太陽能飛機
    • 1.3.14。新方向
    • 1.3.15。專利分析:太陽能車
  • 1.4。市場預測
    • 1.4.1。太陽能獨立車2021-2041
    • 1.4.2。與太陽能無關的汽車2021-2041-車輛數量(千)
    • 1.4.3。與太陽能無關的汽車2021-2041-單位價值(千美元)-工廠
    • 1.4.4。太陽能非gy汽車2021-2041-市場價值(十億美元)
    • 1.4.5。每年2000萬輛48V混合動力汽車的重大太陽能機遇
    • 1.4.6。2041年全球光伏技術份額10億美元
    • 1.4.7。太陽能汽車技術時間表

2。簡介

  • 2.1。極限太陽能汽車和未來發展
    • 2.1.1。南極到平流層
    • 2.1.2。太陽飛船向地球發射能量?
    • 2.1.3。接送卡車:特斯拉太陽能Cyber□□truck和替代品
    • 2.1.4。Renovagen:像地毯一樣展開
    • 2.1.5。在卡車上雙翻太陽能?
    • 2.1.6。太陽能可減少PHEV卡車的油耗5-20%
  • 2.2。電動汽車電動車的工作原理
  • 2.3。光伏技術選擇車
    • 2.3.1。定義,背景
    • 2.3.2。化學選擇
    • 2.3.3。III-V材料
    • 2.3.4。遷移到多結點:OxfordPV,Swift Solar
    • 2.3.5。負擔得起的薄膜比剛性矽膠2031-2041更有效?
    • 2.3.6。格式選擇
  • 2.4。太陽能賽車展現了未來-三重結III-V,側面有太陽能
  • 2.5。太陽能飛機和船隻展示未來
  • 2.6。大圖:能源獨立的電動汽車
  • 2.6.1。定義和派生
  • 2.6.2。能源獨立型電動汽車EIEV的類型
  • 2.6.3。EIEV操作選擇
  • 2.6.4。關鍵EIEV技術
  • 2.6.5。過去,現在和概念上的EIEV技術示例
  • 2.6.6。海上EIEV的過去,現在和概念技術
  • 2.6.7。機載EIEV的過去,現在和概念技術
  • 2.6.8。EIEV必不可少的大功率能量收集特性
3。太陽能車,貨車,人力車,自行車
  • 3.1。多用途
    • 3.1.1。澳大利亞AEV
  • 3.2。汽車
    • 3.2.1。巴基斯坦經濟
    • 3.2.2。美國菲斯克
    • 3.2.3。德國Fraunhofer ISE
    • 3.2。4.韓國現代起亞
    • 3.2.5。美國業力
    • 3.2.6。荷蘭光年
    • 3.2.7。Manipal IT印度
    • 3.2.8。索諾汽車德國
    • 3.2.9。日本豐田
  • 3.3。類汽車
    • 3.3.1。安美中國 < li> 3.3.2。英國劍橋大學
    • 3.3.3。中國大連森谷
    • 3.3.4。Deeraj中國
    • 3.3.5。Evovelo西班牙
    • 3.3.6。伊巴茲盧旺達
    • 3.3.7。I-FEVS意大利
    • 3.3.8。仲夏瑞典
    • 3.3.9。Neeraj和其他太陽能大堆山楂印度
    • 3.3.10。Sunnyclist希臘
    • 3.3.11。天空王牌Tiga日本
    • 3.3.12。Stella Lux,Stella Era,Stella Vie荷蘭
    • 3.3.13。Vikram Solar和IESA印度
  • 3.4。貨運三輪車
    • 3.4.1。貨運三輪車u □
    • 3.4.2。英國皇家郵政
  • 3.5。高爾夫球車

4。太陽能卡車,卡車

  • 4.1。巴士
    • 4.1.1。日本秋田縣
    • 4.1.2。比亞迪等中國
    • 4.1.3。挪威綠色能源
    • 4.1.4 。奧地利K-Bus
    • 4.1.5。Kiira Motors烏干達
    • 4.1.6。納米科技中國
    • 4.1.7。朝鮮研究部
    • 4.1.8。日本Solarve
    • 4.1.9。譚斯洛文尼亞
  • 4.2。貨車
    • 4.2.1。E-FORCE瑞士
    • 4.2.2。羅伯特·加拿大集團
    • 4.2.3。德國Fraunhofer ISE
    • 4.2.4。前往美國的Greentrucks
    • 4.2.5。美國墨西拉谷運輸公司和K&J貨運公司
    • 4.2.6。Sunew巴西
    • 4.2.7。英國南瑟姆大學
    • 4.2.8。沃爾沃瑞典
  • 4.3。休閒車
    • 4.3.1。美國Detleffs

5。太陽能輔助服務

  • 5.1。概述
  • 5.2。印度鐵路
  • 5.3。美國拜倫灣
  • 5.4。美國太陽能子彈

6。太陽能農作物

  • 6.1。澳大利亞悉尼大學
  • 6.2。印度哈里亞納邦友好大學
  • 6.3。Vinerobot歐洲

7。太陽能船

  • 7.1。結構光伏:Sol ar Boat pSi或scSi
  • 7.2。法國能源觀察員
  • 7.3。綠線遊艇斯洛文尼亞
  • 7.4。意大利拉扎裡尼設計
  • 7.5。Soel Yachts荷蘭
  • 7.6。Sunreef波蘭

8。太陽能飛機

  • 8.1。高空太陽能無人機
    • 8.1.1。固定翼
    • 8.1.2。空客西風
    • 8.1.3。中航工業財虹(彩虹)CH-T4和晨星
    • 8.1.4。CASIC太陽能
    • 8.1.5。BAE Systems,英國和澳大利亞國防部PHASA-35
    • 8.1.6。波音極光奧德修斯
    • 8.1.7。NASA快速太陽能無人機
    • 8.1.8。膨脹的HAPS
    • 8.1.9。Thales-Alenia的Stratobus飛艇
    • 8.1.10。為什麼盧恩(Loon)於2021年去世
  • 8.2。低空太陽能無人機
  • 8.3。太陽能載人飛機
    • 8.3.1。概述
    • 8.3.2。太陽脈衝
    • 8.3.3。再見航空載人飛機
    • 8.3.4。美國宇航局在火星上的太陽能直升機

9。光伏:大圖片

  • 9.1。本章目的
  • 9.2。光伏業務的Ana tomy 2021-2041
  • 9.3。按應用的價格量敏感性
  • 9.4。兩個世界
  • 9.5。化學十大光伏製造商
  • 9.6。1976-2040年Si和CdTe成本進展
  • 9.7。矽光伏成本下跌戰d 2021-2050
  • 9.8。主要結論:薄膜光伏市場
  • 9.9。碲化鎘
  • 9.10。CIGS PV
    • 9.10.1。薄膜CIGS光伏產品的全球產量$ M和MWp 2000-2018
    • 9.10.2。CIGS成本降低
    • 9.10.3。薄膜CIGS光伏全球產值和2020-2040年將達到10億美元的全球市場
  • 9.11。十億美元和2020-2040年GWp的III-V化合物半導體光伏的全球市場
  • 9.12。鈣鈦礦PV $ M的全球市場
  • 9.13。有機光伏O PV
    • 9.13.1。2020-2040年百萬美元的OPV全球市場
    • 9.13.2。相對於其他光伏技術的OPV
    • 9.13.3。技術背景
    • 9.13.4。OPV材料的類型
    • 9.13.5。半透明和混合電池的OPV
    • 9.13.6。SWOT分析:OPV材料
  • 9.14。地理光伏材料需求

10。附錄:光伏經驗曲線和為什麼CIGS價格將以正常,陡峭的速度開始改善

目錄
Product Code: ISBN 9781913899325

Title:
Solar Vehicles 2021-2041 2nd Edition
Energy independence, battery reduction, range increase, photovoltaics, scSi, CIGS, OPV, III-V, structural electronics, solar windows.

Vehicle designers not yet considering solar bodywork are crazy. The tipping point is with us mainly because single-crystal silicon photovoltaics providing 50% more electricity per unit area is now viable even on the sides of vehicles. In all, three times as much electricity. Adoption is now so rapid that IDTechEx has rewritten its report within a year. "Solar Vehicles 2021-2041 2nd Edition" explains in 260 pages. Mostly, it covers the biggest potential - land vehicles - but it gives latest learnings on water and in the air.

See how purchasers of solar on-road vehicles now have a wide choice from solar adding a few hundred kilometers yearly to total energy independence for tens of kilometers. That includes the typical city dweller doing 12,000 km yearly. Never plug in? Escape the tyranny of unreliable, over-busy charging stations with their stupidly different payment means and interfaces? Solar vehicles let you plug in if you need more range but they typically get by on half the battery, reducing problems from that troublesome component too.

Suddenly the choice is huge, the sources global. The energy-independent cars range from spartan to designer cars. China offers solar vehicles ranging from golf cars to family cars and people movers but just one brand Economia in Pakistan now offers all those plus an enclosed solar trike. All are made in Pakistan. On the other side of the world, new solar cars include Aptera solar 3 wheeler claiming world record 1600km 1000 miles range on full battery. Globally, solar two seaters are now multiply-sourced.

Importantly, solar bodywork is now viable for conventional, hybrid and battery vehicles. Read Hyundai's roll-out. Tesla Cybertruk has solar option demonstrated. Yes, the big names are piling in now, Toyota even working on a further leap in solar range to over 20 km yearly. Many solar boats are there already. Indeed, energy-independent solar electric boats are commonplace and some multi-mode harvesting here has lessons for land vehicles. Trucks now come centre stage with a major program on solar-assisted hybrid trucks headed by Scania, part of VW Group. Sono Motors, with the largest solar car orderbook, has just demonstrated an all-over-solar truck. Solar truck savings will double the typical profit of a trucker. Learn why Sono Motors has licensed its all-over solar technology to a leading robot shuttle maker and Dethleffs sells the format on its recreational vehicle.

"Solar Vehicles 2021-2041 2nd Edition" is continuously researched by multi-lingual IDTechEx analysts worldwide. It even explains what happens when the next solar vehicle technologies become affordable on land and it scopes intermediate technologies such as CIGS and OPV being introduced on vehicles.

The report starts with an Executive Summary and Conclusions, sufficient for those with limited time and including 10 and 20 year forecasts and a 20 year roadmap. The Introduction then explains the history, applications and technologies including a new concept by IDTechEx. Learn next options such as expanding solar on vehicles, even trucks and boats as zero-emission minigrids in these critical appraisals with predictions.

Chapter 3 covers solar cars, vans, rickshaws, trikes including the major Australian program developing a multi-purpose, reconfigurable solar vehicle. Cars with less battery, more range are here, including Fisker and Lightyear. There are many solar golf cars, vans and other options from Italy to India. Chapter 4 concerns solar buses and trucks from new Fraunhofer advances in Germany to solar versions in Brazil and Uganda. From Norway to Japan, this chapter also includes people movers and recreational vehicles and a surprising variety of solar technologies in action, with reasons why.

Chapters 5 and 6 concern solar assisted trains and solar agricultural robots, some energy independent.

However, solar boats in Chapter 7 are a bigger business than trains and agribots and solar aircraft covered in Chapter 8 are rapidly becoming important. More-powerful, more-expensive solar film is on airship and fixed-wing drones in the Stratosphere and LEO satellites, all essential for surveillance and the next generation 5G and 6G communications. However, the Chinese have just demonstrated solar independence in a lower altitude drone day-and-night and trials on regular electric light aircraft will result in large adoption later even on battery-electric regional aircraft now being prepared. Learn what technology and when. The report then ends with a long chapter on the big picture of photovoltaics, its technologies and evolving improvements and uses.

Anyone entering the value chain of solar vehicles land, water and air from regulators and investors to users and system operators must look at the big picture in the form of land, water and air and all technologies to benchmark best practice, winners and losers. Only the new IDTechEx report, "Solar Vehicles 2021-2041 Second Edition" gives all this with the latest information appraised by highly technical analysts creating infograms, graphs and forecasts that are simply understood not nostalgic or academically obscure. From the start, clarity is assisted with a comprehensive glossary of the jargon. This report serves those seeking commercial success and benefits to society.

This report answers questions such as:

  • Who, where, why, what for solar vehicles land, water and air over the next 20 years?
  • Forecasts for numbers, unit value and market value of premium vs regular solar cars 2021-2041?
  • Detailed roadmap of technology and applications 2021-2041?
  • What do the PhD-level analysts derive as 13 primary conclusions and 30 specific conclusions?
  • Companies, technologies and approaches that are and will be winners and losers?
  • Most suitable applications now and in future and why and relative importance for suppliers?
  • All solar technologies compared now and in future with pros and cons for vehicles, suppliers?
  • The bad news not just the good news?

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Basics
    • 1.2.1. Definitions and history
    • 1.2.2. Benchmarking
  • 1.3. Primary conclusions
    • 1.3.1. Importance of solar vehicles
    • 1.3.2. Primary conclusions
    • 1.3.3. Tipping points for sales of solar trucks, buses and trains
    • 1.3.4. Corporate and geographical positioning
    • 1.3.5. Chemistry generally including protection
    • 1.3.6. Format
    • 1.3.7. Leading solar cars compared: Sono, Lightyear, Toyota
    • 1.3.8. Solar two-seater city cars Squad, Zoop
    • 1.3.9. Aptera solar car
    • 1.3.10. Patent analysis: solar car
    • 1.3.11. Solar buses and trucks
    • 1.3.12. Trains
    • 1.3.13. Solar aircraft
    • 1.3.14. New directions
    • 1.3.15. Patent analysis: solar vehicle
  • 1.4. Market forecasts
    • 1.4.1. Solar energy-independent cars 2021-2041
    • 1.4.2. Solar energy-independent cars 2021-2041 - number of vehicles (thousand)
    • 1.4.3. Solar energy-independent cars 2021-2041 - unit value (US$ thousand) - ex factory
    • 1.4.4. Solar energy-independent cars 2021-2041 - market value (US$ billion)
    • 1.4.5. Major solar opportunity on 20 million 48V hybrid cars yearly
    • 1.4.6. Global photovoltaic technology share $bn % 2041
    • 1.4.7. Technology timeline for solar cars

2. INTRODUCTION

  • 2.1. Extreme solar vehicles and next advances
    • 2.1.1. Antarctic to stratosphere
    • 2.1.2. Solar spacecraft beam power to Earth?
    • 2.1.3. Pick up trucks: Tesla solar Cybertruck and alternatives
    • 2.1.4. Renovagen: unrolling like a carpet
    • 2.1.5. Double roll solar on a truck?
    • 2.1.6. Solar reduces PHEV truck fuel consumption 5-20%
  • 2.2. How an Electric Vehicle EV works
  • 2.3. Photovoltaic technology choice vehicles
    • 2.3.1. Definition, background
    • 2.3.2. Choice of chemistry
    • 2.3.3. III-V materials
    • 2.3.4. Move to multijunction: OxfordPV, Swift Solar
    • 2.3.5. Affordable thin film more efficient than rigid silicon 2031-2041?
    • 2.3.6. Choice of format
  • 2.4. Solar racers show the future - triple junction III-V, solar on sides
  • 2.5. Solar aircraft and boats show the future
  • 2.6. The big picture: Energy Independent Electric Vehicles
    • 2.6.1. Definition and derivation
    • 2.6.2. Types of Energy Independent Electric Vehicle EIEV
    • 2.6.3. EIEV operational choices
    • 2.6.4. Key EIEV technologies
    • 2.6.5. Examples of EIEV technologies on land past, present and concept
    • 2.6.6. Technologies of marine EIEVs past, present and concept
    • 2.6.7. Technologies of airborne EIEVs past, present and concept
    • 2.6.8. Characteristics of the High Power Energy Harvesting essential to EIEVs

3. SOLAR CARS, VANS, RICKSHAWS, TRIKES

  • 3.1. Multipurpose
    • 3.1.1. AEV Australia
  • 3.2. Cars
    • 3.2.1. Economia Pakistan
    • 3.2.2. Fisker USA
    • 3.2.3. Fraunhofer ISE Germany
    • 3.2.4. Hyundai-Kia Korea
    • 3.2.5. Karma USA
    • 3.2.6. Lightyear Netherlands
    • 3.2.7. Manipal IT India
    • 3.2.8. Sono Motors Germany
    • 3.2.9. Toyota Japan
  • 3.3. Car-like vehicles
    • 3.3.1. Amthi China
    • 3.3.2. Cambridge University UK
    • 3.3.3. Dalian Sengu China
    • 3.3.4. Deeraj China
    • 3.3.5. Evovelo Spain
    • 3.3.6. Ibaze Rwanda
    • 3.3.7. I-FEVS Italy
    • 3.3.8. Midsummer Sweden
    • 3.3.9. Neeraj and other solar rickshaws India
    • 3.3.10. Sunnyclist Greece
    • 3.3.11. Sky Ace Tiga Japan
    • 3.3.12. Stella Lux, Stella Era, Stella Vie Netherlands
    • 3.3.13. Vikram Solar and IESA India
  • 3.4. Cargo Trikes
    • 3.4.1. Cargo Trike UK
    • 3.4.2. Royal Mail UK
  • 3.5. Golf carts

4. SOLAR BUSES, TRUCKS

  • 4.1. Buses
    • 4.1.1. Akita prefecture Japan
    • 4.1.2. BYD and others China
    • 4.1.3. Green Energy Norway
    • 4.1.4. K-Bus Austria
    • 4.1.5. Kiira Motors Uganda
    • 4.1.6. Nanowinn Technologies China
    • 4.1.7. North Korea Research Department
    • 4.1.8. Solarve Japan
    • 4.1.9. TAM Slovenia
  • 4.2. Trucks
    • 4.2.1. E-FORCE Switzerland
    • 4.2.2. Group Robert Canada
    • 4.2.3. Fraunhofer ISE Germany
    • 4.2.4. Greentrucks on the go USA
    • 4.2.5. Mesilla Valley Transportation and K&J Trucking USA
    • 4.2.6. Sunew Brazil
    • 4.2.7. University of Southampton UK
    • 4.2.8. Volvo Sweden
  • 4.3. Recreational vehicles
    • 4.3.1. Detleffs USA

5. SOLAR ASSISTANCE FOR TRAINS

  • 5.1. Overview
  • 5.2. Indian Railways
  • 5.3. Byron Bay USA
  • 5.4. Solar Bullet USA

6. SOLAR AGRIBOTS

  • 6.1. University of Sydney Australia
  • 6.2. Amity University Haryana, India
  • 6.3. Vinerobot Europe

7. SOLAR BOATS

  • 7.1. Structural photovoltaics: Solar boats pSi or scSi
  • 7.2. Energy Observer France
  • 7.3. Greenline Yachts Slovenia
  • 7.4. Lazzarini Design Italy
  • 7.5. Soel Yachts Netherlands
  • 7.6. Sunreef Poland

8. SOLAR AIRCRAFT

  • 8.1. Upper atmosphere solar drones
    • 8.1.1. Fixed wing
    • 8.1.2. Airbus Zephyr
    • 8.1.3. AVIC China Caihong (Rainbow) CH-T4 and Morning Star
    • 8.1.4. CASIC Solar
    • 8.1.5. BAE Systems, UK and Australia Defence PHASA-35
    • 8.1.6. Boeing Aurora Odysseus
    • 8.1.7. NASA swift solar drone
    • 8.1.8. Inflated HAPS
    • 8.1.9. Thales-Alenia's Stratobus airship
    • 8.1.10. Why Loon died in 2021
  • 8.2. Low level solar drones
  • 8.3. Solar manned aircraft
    • 8.3.1. Overview
    • 8.3.2. Solar Impulse
    • 8.3.3. Bye Aerospace manned aircraft
    • 8.3.4. NASA solar helicopter on Mars

9. PHOTOVOLTAICS: THE BIG PICTURE

  • 9.1. Purpose of this chapter
  • 9.2. Anatomy of the photovoltaic business 2021-2041
  • 9.3. Price-volume sensitivity by application
  • 9.4. Two worlds
  • 9.5. Top ten PV manufacturers by chemistry
  • 9.6. Si and CdTe cost progression 1976-2040
  • 9.7. Silicon PV costs race downward 2021-2050
  • 9.8. Primary conclusions: thin film PV market
  • 9.9. Cadmium telluride
  • 9.10. CIGS PV
    • 9.10.1. Global output of thin film CIGS photovoltaics $M and MWp 2000-2018
    • 9.10.2. CIGS cost reduction
    • 9.10.3. Global market for thin film CIGS photovoltaics GWp and $ billion 2020-2040
  • 9.11. Global market for III-V compound semiconductor PV $ billion and GWp 2020-2040
  • 9.12. Global market for perovskite PV $M
  • 9.13. Organic photovoltaics OPV
    • 9.13.1. Global market for OPV $M 2020-2040
    • 9.13.2. OPV relative to other photovoltaic technologies
    • 9.13.3. Technical background
    • 9.13.4. Types of OPV materials
    • 9.13.5. OPV for semi-transparent and hybrid cells
    • 9.13.6. SWOT analysis: OPV materials
  • 9.14. Geographic PV materials demand

10. APPENDIX: PHOTOVOLTAICS EXPERIENCE CURVES AND WHY CIGS PRICES WILL START TO IMPROVE AT A NORMAL, STEEPER RATE