表紙
市場調查報告書
商品編碼
978824

透明電子材料市場2021-2041

Transparent Electronics Materials, Markets 2021-2041

出版日期: | 出版商: IDTechEx Ltd. | 英文 295 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

<字體顏色= "#4682B4" > 標題 < BR > 透明電子材料,市場2021至41年 < BR > <我>透視微LED,OLED,QD顯示器,photov oltaic窗,電動變暗,RadarGlass ,電路,超材料,加熱器,天線。

現代汽車承諾,其未來的一些電動汽車將保留大型車頂窗戶,但它們還將提供足夠的電力以大大增加行駛距離。中國鐵路正在部署帶有窗戶的火車,這些窗戶在需要時可以顯示交互式的發光彩色顯示屏。美國擁有越來越多的農用溫室,它們可以吸收最佳生長植物的光,而其餘的則用於發電。新的IDTechEx報告 "透明電子材料,應用程序和市場2021-2041" 進行了解釋。沒有懷舊之情或學術上的it昧,它是唯一最新的,全面的,針對材料和市場的。

透明電子的迅速發展的業務包括透明電子和光電。使用透明材料或其他不透明材料製成的圖案(如車窗天線和除霧器圖案)可以使光線通過,從而實現透明。實際上,在德國,他們正在開發可轉向無人駕駛汽車雷達束的前照燈玻璃。德國已經提供透明加熱器層壓去在電動的內部廁設備車輛,節省重量和功率,從而增加範圍。

該報告具有全面,易於掌握的執行摘要和結論,並帶有新的信息圖和29個預測。引言介紹了從2021-2041開始突出的主要方面。第3章和第4章分析了出現的多種類型的透明顯示器。第5章深入探討了透明光伏技術,因為它找到了新用途並變得多功能。第6章介紹使用透明的帶間隙的材料圖案或使用透明的導電層使她透明的透明電路所發生的情況。第7章介紹建築物,車輛等中的電黑玻璃。第8章蓋使在透明電子構建設備。

回答的問題包括:

< ul >
  • 為什麼知名人士如此感興趣? < ul >
  • 透明電子2021-2041最具活力,增長最快的市場是什麼? < ul >
  • 需要什麼材料,它們將如何發展? < ul >
  • 市場空白?領先的研究人員正在展示方法? < ul >
  • 透明LCD,迷你LED,微型LED,QD,OLED顯示器的技術進步? < ul >
  • 透明顯示的新興應用? < ul >
  • 透明光伏技術的進步,新應用,多功能性? < ul >
  • 透明電路的進步-哪些新功能,新材料,新潛力? < ul >
  • 電黑玻璃:進展,潛力,材料? < ul >
  • 使能器:構造,材料,阻擋層的用途,導電圖案? < ul >
  • 為什麼超材料在透明電子學中將變得非常重要?怎麼樣? < ul >
  • 從IDTechEx進行分析師訪問

    所有報告購買都包括與專家分析師進行的長達30分鐘的電話時間,專家分析師將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。需要在購買報告的三個月內使用。

  • 目錄
    Product Code: ISBN 9781913899288

    Title:
    Transparent Electronics Materials, Markets 2021-2041
    See-through micro LED, OLED, QD displays, photovoltaic windows, electric darkening, RadarGlass, circuits, metamaterials, heaters, antennas.

    Expect a $20+ billion market for smart vehicle and building windows, invisible electronic overlayers.

    Hyundai promises that some of its future electric cars will retain large roof windows but they will also make enough electricity to greatly increase range. The Chinese railways are deploying trains with windows that have interactive, light-emitting colour displays visible when needed. The USA has an increasing number of farm greenhouses that let in the types of light that optimally grow plants while using the rest to make electricity. The new IDTechEx report, "Transparent Electronics Materials, Applications, Markets 2021-2041" explains. With no nostalgia or academic obscurity, it is uniquely up-to-date, comprehensive and materials and markets focused.

    SAMPLE VIEW

    The rapidly expanding business of transparent electronics includes transparent electrics and optronics. The transparency is achieved using transparent materials or alternatively opaque materials in patterns that let light through as with your car window antenna and demister patterns. Indeed, in Germany they are developing headlamp glass that steers to radar beam of driverless vehicles. Germans are already offering transparent heater laminate to go over the inside fitments of electric vehicles, saving weight and power, increasing range.

    The report has a comprehensive, easily grasped Executive Summary and Conclusions with new infograms and 29 forecasts. The Introduction presents the main aspects coming into prominence from 2021-2041. Chapters 3 and 4 analyse the many types of transparent display emerging Chapter 5 is a deep dive into transparent photovoltaics as it finds new uses and becomes multifunctional. Chapter 6 explains what is happening with see-through circuits whether using opaque material patterns with gaps or using transparent conductive layers. Chapter 7 addresses electrically darkened glass in buildings, vehicles and more. Chapter 8 covers enabling constructs in transparent electronic devices.

    Questions answered include:

    • Why are big names becoming so interested?
    • What are the most vibrant, growth markets for transparent electronics 2021-2041?
    • What materials are needed and how will they evolve?
    • Gaps in the market? Leading researchers showing the way?
    • Technical progress with transparent LCD, mini LED, micro LED, QD, OLED displays?
    • Emerging applications of transparent displays?
    • Transparent photovoltaics progress, new applications, multifunctionality?
    • Progress with transparent circuits - what new functionality, materials, potential?
    • Electrically darkening glass: progress, potential, materials?
    • Enablers: construction, materials, uses of barrier layers, conductive patterns?
    • Why will metamaterials become very important in transparent electronics? How?

    Analyst access from IDTechEx

    All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

    TABLE OF CONTENTS

    1. EXECUTIVE SUMMARY AND CONCLUSIONS

    • 1.1. Purpose of this report and methodology
    • 1.2. Why is transparent electronics becoming a large business?
    • 1.3. Why make electronics transparent?
    • 1.4. Why make transparent things multifunctional?
    • 1.5. 11 major conclusions
    • 1.6. Smart city robot shuttles need many forms of transparent electronics and display
    • 1.7. Examples of deployed transparent electronics and displays
    • 1.8. Transparent micro LED vs OLED
    • 1.9. Examples of planned transparent electronics
    • 1.10. Transparent electronics roadmap 2021-2050
    • 1.11. Market forecast for transparent electronics by four categories $ million 2021-2041
    • 1.12. Transparent display forecasts percentage $M by four technologies 2021-2041
    • 1.13. 22 backup forecasts

    2. INTRODUCTION

    • 2.1. Transparent electronics choices
    • 2.2. Evolution of transparent displays
    • 2.3. Evolution of transparent circuits
    • 2.4. Transparent mobile phones get cleverer but for what?
      • 2.4.1. Polytron
      • 2.4.2. LG
      • 2.4.3. Oppo
      • 2.4.4. Huawei
      • 2.4.5. Samsung
      • 2.4.6. Tianma
    • 2.5. Technologies in future zero-emission smart cities
    • 2.6. Smart roads, other ground area, environs
      • 2.6.1. Roads and plazas
      • 2.6.2. Solar road with integral lit markers - concept
      • 2.6.3. Translucent photovoltaic barriers
    • 2.7. Robot shuttles will be major adopter

    3. TRANSPARENT LIGHT-EMITTING DISPLAYS: MINI LED, MICRO LED, QD

    • 3.1. Emerging markets for transparent light-emitting displays
      • 3.1.1. Overview of miniLED, µLED, QLED, OLED
      • 3.1.2. Micro and mini LED types
      • 3.1.3. How quantum dot QD competes
      • 3.1.4. Limited role for miniLEDs
      • 3.1.5. µLED in action
    • 3.2. Display requirements
      • 3.2.1. Resolution
      • 3.2.2. Highest transparency
      • 3.2.3. Simple structure
      • 3.2.4. Sensor integration
    • 3.3. Appraisal by application
      • 3.3.1. Overview
      • 3.3.2. Augmented and mixed reality displays
    • 3.4. Technology improvements to enable future micro LED displays

    4. TRANSPARENT OLED OPPORTUNITIES

    • 4.1. Transparent OLED history and current status
    • 4.2. Commercial success
    • 4.3. Merchandising and exhibits
    • 4.4. GPO Display added value
      • 4.4.1. Multi-functional windows and promotion
    • 4.5. Transparent OLED technology
      • 4.5.1. Overview
      • 4.5.2. Touch-controlled transparent OLED technology
      • 4.5.3. Projected capacitive (P-Cap) touch screen technology
      • 4.5.4. New materials for OLED

    5. TRANSPARENT PHOTOVOLTAICS

    • 5.1. Overview
      • 5.1.1. SOFT
      • 5.1.2. Transparency requirements and thin film
      • 5.1.3. Five fundamental operating principles
      • 5.1.4. Some of the important parameters
      • 5.1.5. Single crystal scSi vs polycrystal pSi vs amorphous
      • 5.1.6. Best research-cell efficiencies assessed 1975-2020
      • 5.1.7. Important PV options beyond silicon compared
      • 5.1.8. Materials problems being tackled
      • 5.1.9. Photovoltaics progresses to become paint and user material
    • 5.2. Windows for buildings and vehicles, smart watch glass
      • 5.2.1. Vehicles: Hyundai
      • 5.2.2. Smart watch glass: Garmin
      • 5.2.3. Solar windows in patterned silicon: Onyx
      • 5.2.4. Smartflex solar facades
    • 5.3. Organic photovoltaics
      • 5.3.1. Competitive situation
      • 5.3.2. OPV progress to commercialisation 2000-2040
      • 5.3.3. Sunew
      • 5.3.4. Heliatek
      • 5.3.5. Opvius and Armor
      • 5.3.6. Device architecture and Sigma Aldrich materials
      • 5.3.7. Materials: Merck, DuPont Teijin
      • 5.3.8. What substrates to choose?
      • 5.3.9. Typical device architectures
      • 5.3.10. Film morphology and degradation control for bulk heterojunction
      • 5.3.11. R2R solution vs R2R evaporation
      • 5.3.12. Donor polymers
      • 5.3.13. Donor small molecules
      • 5.3.14. Typical acceptor materials
      • 5.3.15. Progress in solution processing
      • 5.3.16. Progress in tandem cell evaporation
      • 5.3.17. Solution processed 17.5% tandem OPV
      • 5.3.18. R2R solution vs R2R evaporation
      • 5.3.19. Major technical challenges with R2R
      • 5.3.20. Barrier/encapsulation challenge
      • 5.3.21. Transparent electrode
      • 5.3.22. Big advance 2018-2020: non-fullerene acceptors NFA
    • 5.4. Perovskite photovoltaics
      • 5.4.1. Overview
      • 5.4.2. Perovskite structure and device architecture
      • 5.4.3. Working principle
      • 5.4.4. Architectures
      • 5.4.5. Value propositions and roadmap to 2040
      • 5.4.6. Perovskite materials
      • 5.4.7. Why perovskite is so efficient
      • 5.4.8. Efficiency versus transmission
      • 5.4.9. Roadmap to lead-free perovskite
      • 5.4.10. Improving life
      • 5.4.11. Flexible perovskite solar cells
      • 5.4.12. Deposition processes for perovskite films
      • 5.4.13. Perovskite module cost estimation
      • 5.4.14. Future perovskite PV system cost breakdown
    • 5.5. Dual technology, quantum dot, wild card photovoltaics
      • 5.5.1. Perovskite silicon tandem: EPFL, OxfordPV, Swift Solar
      • 5.5.2. Perovskite on CIGS
      • 5.5.3. Quantum dot
      • 5.5.4. Toxicity
      • 5.5.5. Wild cards: 2D materials, nantennas
    • 5.6. Agrivoltaics comes to greenhouses: Soliculture
    • 5.7. Solar concentrators
    • 5.8. Quantum dot solar market

    6. TRANSPARENT CIRCUITS

    • 6.1. Overview: clocks and novelties
    • 6.2. Conformally transparent
    • 6.3. RadarGlass™
      • 6.3.1. The problem
      • 6.3.2. The solution

    7. ELECTRICALLY DARKENING GLASS

    • 7.1. Electronic shades
    • 7.2. Suspended particle devices
    • 7.3. Principle of electrochromic glass
    • 7.4. Technology comparison
    • 7.5. Mercedes Magic Sky Control
    • 7.6. Rivian Electrochromic Glass Roof?
    • 7.7. Mobile office concepts
    • 7.8. Toyota e-Palette robot shuttle in office mode
    • 7.9. Tesla
    • 7.10. Market applications mostly buildings
    • 7.11. Novel electrochromic film
    • 7.12. Three in one smart window by NREL

    8. ENABLING CONSTRUCTS TRANSPARENT METAMATERIALS, CONDUCTIVE FILMS AND BARRIER LAYERS

    • 8.1. Overview
    • 8.2. Transparent metamaterials
      • 8.2.1. Introduction
      • 8.2.2. Photonic metamaterials
      • 8.2.3. New metamaterial optimises photovoltaic cooling and capture
      • 8.2.4. Metamaterial guiding and enhancing light
    • 8.3. Transparent conductive patterns
      • 8.3.1. Overview
      • 8.3.2. Much can be done with metal patterning alone
      • 8.3.3. Transparent conductive layers for LED screens
    • 8.4. Transparent barrier layers
      • 8.4.1. Why barriers and encapsulation?
      • 8.4.2. Barrier performance requirements (permeation rates)
      • 8.4.3. Barrier requirements: towards flexibility and rollability
      • 8.4.4. Plastic substrates are a challenge
      • 8.4.5. The basis of the multi-layer approach
      • 8.4.6. Status of R2R barrier films in performance, web width and readiness/scale
      • 8.4.7. Challenges of R2R barrier film production
      • 8.4.8. From glass to multi-layer films to multi-layer inline thin film encapsulation
      • 8.4.9. Trends in TFE: Past, present and future of deposition
      • 8.4.10. Benchmarking different barrier solutions
      • 8.4.11. Evolution of production parameters to enable multi-layer barrier cost reduction