表紙
市場調查報告書
商品編碼
975916

智慧城市新興材料市場2021-2041

Smart Cities Emerging Materials Markets 2021-2041

出版日期: | 出版商: IDTechEx Ltd. | 英文 337 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

標題
智慧城市新興材料市場2021-2041
多功能智能材料,生物塑料,結構電子,複合材料,3D打印,石墨烯,2D和3D分子,5G,6G,物聯網,新回收利用。

"預計將有4000億美元的智慧城市材料市場。智慧建築,新能源,食品,水,旅行。"

智慧城市現在雄心勃勃。這意味著新材料是它們的最大推動力,而信息和計算機技術則跌落為重要的支持角色。IDTechEx報告在其340頁清晰的信息中, "智能城市新興材料市場2021-2041" 進行了解釋。該報告由IDTechEx多國語言水平的分析師進行研究,並不斷更新,該報告的重點是商業機會和社會收益。沒有懷舊之情,也沒有學術上的默默無聞。每年將有數千億美元的新興市場產生許多新的數十億美元的業務,這些新材料將主要用於滿足新需求的新材料。

請考慮從沙特沙漠中收回價值0.5萬億美元的NEOM智慧城市,以及從馬來西亞海中收回價值0.1萬億美元的森林城市。森林城市□□將智能材料列為關鍵。

零排放智慧城市將獲得能源,食物和水的獨立性。這意味著遙遠的電站,水壩,水庫,石油,天然氣和煤炭開採以及它們向城市提供的長輸電線的材料要求將越來越多地替換為非常不同的城市替代材料的材料要求,例如各地的太陽能,使用綠色的重力存儲混凝土,開闊水域的電力,更好的自供電淡化。材料供應線變得越來越短,涉及不同的材料並最終到達了不同的客戶。該注意了!

適應性強的能源建築將在處理自己的污水的同時進行食物,電力和人類活動,但前提是即將推出環保,負擔得起的新材料。取代現有車輛最多的城市機器人穿梭車有很多特殊材料,部分原因是有些是3D打印的,有些是用電動和光學多功能材料替代了啞窗口和車身,然後側向停靠了。絕對不是將來要向城市出售更多舊物品的故事。

此報告回答以下問題:

  • 涉及的智慧城市和物資公司的目標和潛力
  • 哪些人花了大筆錢,他們的材料重點是什麼?
  • 城市材料市場存在50個缺口,有哪些可能的解決方案?
  • 我可以解決哪些重大材料故障才能創造出大量銷售?
    < li>哪些可以創造十億美元的業務?
  • 研究得出的相關20年預測和路線圖?
  • 為什麼與水有關的多功能材料越來越重要?
    用於城市建築,機器人班車,電動機,零件,3DP電子產品的3D打印的材料?
  • 用於城市的多功能複合材料和結構電子產品。有什麼可能?
  • 智能玻璃,透明塑料,透明,磁性和綠色混凝土?
  • 用於城市的柔性有機物,膜,生物塑料,高級聚合物?
  • 城市中的熱界面材料和隔熱挑戰?
  • 2D和3D分子,石墨烯,CNT在城市中的應用?
  • 2021-2041年城市中用於5G,6G和THz電子產品的材料?
  • 為什麼除了矽之外光伏材料需要這麼多材料?哪裡?為什麼?
    • 什麼是新的可能的回收保證成功?

    99頁的執行摘要和結論對於那些急忙的人們來說足夠了。它提供了13個主要結論的新信息報,比較表和圖形。70個預報在以後的頁面上。廣泛的引言對智慧城市及其重新發明的運輸,建築物和水環境趨勢,簡化,可移動設備以及零排放進行了全面解釋。這都是在二十年來的背景下。

    第3章涉及建築物,車輛(例如Olli城市機器人穿梭車和3DP電子設備)的3D打印材料。

    第4章介紹了面向未來城市的多功能複合材料和結構電子。

    第5章解釋並預測了對智能玻璃,透明智能塑料(例如前照燈RadarGlass&trade)的巨大需求。以及新的microLED廣告牌和窗戶。透明的,菱形的和綠色的混凝土使城市建築,橋樑,太陽能道路,行駛中的車輛充沛運轉,可回收利用的長期儲存等多種方式產生了不同的結果。您有機會嗎?

    第6章著重於柔性有機物,用於廣泛的傳感器的膜片,能量存儲和燃料電池。它揭示了新的生物塑料和先進的聚合物。他們的新技能解決了電子和電氣工程方面的挑戰,可回收性,生物降解性和多功能性。

    第7章熱界面材料TIM具有導電性和隔熱性,這兩者值得一章,因為這裡有這麼多未滿足的需求帶來了很多機會。

    第8章分析了哪些2D和3D分子(例如石墨烯,CNT和MXenes)可以實現未來的能量收集,能量存儲,甚至是自修復,儲能的汽車車身。

    第9章認識到5G通信已廣泛普及,然後從材料的角度出發,6G將於2030-2035年開始以太赫茲頻率運行,實際上從總體上來說,還是新的THz電子產品,因為大多數的部署和創新都將城市的要求。

    第10章討論了城市中無處不在的光伏發電所使用的多種材料和格式,從太陽能道路,廣場,公共汽車和船隻到立面,窗戶,太陽能塗料,農用電氣,浮法和跟蹤照明, V太陽。

    第11章涉及到新的可能的回收利用,這有利於環境,並使某些材料更容易被接受。其中包括塑料,甚至含氟聚合物,下一個電池和下一個風力渦輪機葉片。

    大多數最大的城市都在海上或大河上,並且隨著海平面的上升,現代將以水為基礎。貫穿所有章節的主題是城市在與水有關的活動上投入大量資金的趨勢,從沙漠城市的清潔水的供應和保存到水上,水上和水上更常見的城市。他們將使用海水和河水來飲用,魚類和蔬菜種植,休閒,運輸,電力等。瞭解這些市場中的差距,例如波浪能材料不會被風暴破壞以及在海平面上升後仍能倖存的建築物。瞭解為什麼多功能材料,組件,系統和基礎設施也是所有智慧城市的共同主題。在那裡你可以繁榮。該報告提供30分鐘的免費諮詢服務以填補空白。

    從IDTechEx進行分析訪問

    所有報告購買都包括與專家分析師進行的長達30分鐘的電話時間,專家分析師將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。需要在購買報告後的三個月內使用。

    目錄

    1。執行摘要和結論

    • 1.1。本報告的目的和範圍
      • 1.1.1。誰協助
      • 1.1.2。範圍:優先考慮34個新興材料系列
    • 1.2。Infogram:未來零排放智慧城市的一些材料
    • 1.3。Infogram:一些材料公司正在改變未來的零排放城市
    • 1.4。Infogram:下一個運行中的智能城市設備
    • 1.5。智慧城市的一些新興材料
    • 1.6。新興光伏技術
    • 1.7。電氣設備膜
    • 1.8。認知響應智能材料
    • 1.9。多功能聚合物複合材料
    • 1.10。結構電子學
    • 1.11。通過應用對電子和電氣用智能材料的研究興趣
    • 1.12。主要結論
    • 1.13。70市場預測
      • 1.13.1。多功能綜合預測2012-2029
      • 1.13.2。電子和電氣價值市場的含氟聚合物2031:主要用途
      • 1.13.3。2031年電子和電氣用含氟聚合物的主要應用市場價值
      • 1.13.4。熱界面材料TIM預測
      • 1.13.5。市場預測:EV電池組的TIM
      • 1.13.6。市場預測:電力電子模塊的TIM
      • 1.13.7。市場預測:TIM用於通用照明的LED
      • 1.13.8。市場預測:4G/LTE基站中的TIM
      • 1.13.9。市場預測:消費電子產品的TIM
      • 1.13.10。摹raphene市場細分的收入和數量
      • 1.13.11。3DP金屬的市場預測
      • 1.13.12。金屬3DP市場預測-行業細分
      • 1.13.13。金屬3DP材料預測-技術細分
      • 1.13.14。我TAL為3DP預報-合金分割
      • 1.13.15。按收入預測5G中的低損耗材料
      • 1.13.16。按頻率預測5G中的低損耗材料領域
      • 1.13.17。按細分市場預測的5G低損耗材料領域 18年1月13日。按材料類型在5G中預測的低損耗材料領域
      • 1.13.19。5G基站按材料類型預測的低損耗材料區域
      • 1.13.20。5G智能手機中按材料類型預測的低損耗材料領域
      • 1.13.21。5G CPE中的低損耗材料領域預測,按材料類型劃分的熱點
      • 1.13.22。2020-2040年全球鋰離子電池回收容量(GWh)
      • 1.13.23。2020-2040年可回收的全球鋰離子電池:按地區(噸)-摘要
      • 1.13.24。2020年至2040年可回收的全球鋰離子電池:按化學性質(噸)
      • 1.13.25。全球鋰離子電池可回收利用2020-2040:按化學(噸)-摘要
      • 1.13.26。2020-2040年全球鋰離子電池回收金屬(噸)
      • 1.13.27。2020-2040年全球鋰離子電池回收金屬(噸)
      • 1.13.28。2020-2040年全球鋰離子電池回收市場價值預測(百萬美元)
      • 1.13.29。2028年全球塑料產量將增長到485 Mt
      • 1.13.30。城市固體廢物的歷史管理
      • 1.13.31。靈活的CIGS:按屏障技術預測的市場平方米和價值
      • 1.13.32。2020-2030年將導電油墨和漿糊劃分為30個應用領域
      • 1.13.33。按應用預測所有導電油墨和漿料
      • 1.13.34。按用途劃分的所有導電油墨和漿料的噸預測
      • 1.13.35。預測打印的傳感器(壓阻式,葡萄糖,電容式,觸摸邊緣電極,ITO更換等)
      • 1.13.36。保形金屬化的預測(氣溶膠和包裝級保形EMI塗層)
      • 1.13.37。2020-2030年印刷電子產品預測
      • 1.13.38。鐠inted電子元器件和材料,2020- 2030年
      • 1.13.39。2020-2030年印刷與非印刷電子產品的總市場價值
      • 1.13.40。2020-2030年柔性/整合電子市場規模
      • 1.13.41。2020-2030年Flexib le/Conformation Electronics市場規模
      • 1.13.42。柔性/保形與剛性電子的市場價值
      • 1.13.43。透明導電膜或玻璃市場的應用
      • 1.13.44。1950-2030年全球塑料產量
      • 1 .13.45。市場預測:汽車LED熱界面材料TIM
      • 1.13.46。電源的TIM預測
      • 1.13.47。市場預測:TIM in LED for display
      • 1.13.48。薄膜CIGS光伏全球市場$十億美元和GWp 2020-2040
      • 1.13.49。薄膜CIGS光伏全球市場GWp 2020-2030
      • 1.13.50。2020-2030年全球CIGS薄膜光伏市場規模為10億美元
      • 1.13.51。2020年至2040年全球ll-v化合物半導體光伏市場10億美元和GWp
      • 1.13.52。2020年至2030年ll-V化合物半導體PV GWp的全球市場
      • 1.13.53。2020-2030年間,III-V族化合物半導體光伏的全球市場將達到10億美元
      • 1.13.54。2040年全球光伏技術份額10億美元
      • 1。13.55。聚合物回收的全球收入
      • 1.13.56。2020-2040年全球可回收利用的鋰離子電池容量(GWh)
      • 1.13.57。2020-2040年可回收的全球鋰離子電池:按地區(噸)
      • 1.13.58。Globa l鋰離子電池可在主要地區通過化學方法回收
      • 1.13.59。2020-2040年全球鋰離子電池回收市場價值預測(百萬美元)
    • 1.14。鈣鈦礦PV $ M的全球市場
    • 1.15。全球有機光伏市場價值OPM $ M
    • 1.16。智慧城市中的88種先進材料的路線圖2021-2050

    2。簡介

    • 2.1。智慧城市
    • 2.2。馬來西亞森林城有0.1萬億美元的支出
    • 2.3。認知反應基礎設施
    • 2.4。智慧城市中的傳感器
    • 2.5。綠色技術融合併減少損害
    • 2.6。智慧城市以水為中心的物質影響
      • 2.6.1。從源頭處理污水
      • 2.6.2 。漂浮的城市?
    • 2.7。太陽能無處不在:示例
      • 2.7.1。農用電
      • 2.7.2。太陽能道路市場的空白:材料不足
      • 2.7.3。輕型地面太陽能成功
      • 2.7.4。太陽能船和機場
      • 2.7.5。靈活的CIGS PV進行救援:波多黎各的MIT USA
    • 2.8。微電網成為最小的間歇性並可以重新定位
    • 2.9。糧食獨立城市概述
    • 2.10。魚菜共生:魚類和蔬菜一起在海上和建築物中
    • 2.11。機器人技術和重塑的運輸概述
    • 2.12。優秀的歐盟舉措

    3。建築物,車輛和零件的3D打印材料,3D電子學

    • 3.1。為什麼要採用3D打印?
    • 3。2.主要的材料-工藝關係
    • 3.3。汽車
    • 3.4。3DP建築物:混凝土,泥漿,鹽,沙子,建築廢料
    • 3.5。月亮城
    • 3.6。較小的物品和紡織品
    • 3.7。駕駛員和約束

    4。多功能複合材料和結構電子

    • 4.1。總覽
    • 4.2。多功能複合材料
    • 4.3。最終目標
    • 4.4。自愈零件
    • 4.5。可編輯(用戶專用)的電子和電氣智能材料
    • 4.6。智能道路材料和複合材料

    5。智能玻璃,透明智能塑料,智能和綠色混凝土

    • 5.1。總覽
    • 5.2。智能玻璃
      • 5.2.1。嵌入式電路
      • 5.2.2。電黑
      • 5.2.3。牛逼ransparent microLED和OLED
      • 5.2.4。光伏窗戶
    • 5.3。智慧綠色水泥
      • 5.3.1。用於城市車輛充電的磁性水泥
      • 5.3.2。透明混凝土太陽能路Pavenergy China
      • 5.3.3。格力水泥和混凝土

    6。柔性有機物,膜,生物塑料,高級聚合物

    • 6.1。用於超級電容器,電池,燃料電池,傳感器,制氫的膜
    • 6.2。印刷,有機和柔性電子材料
      • 6.2.1。定義
      • 6.2.2。描述和分析印刷,柔性和有機電子產品的主要技術組件
      • 6.2.3。市場潛力和盈利能力
      • 6.2.4。印刷版和非印刷版電子產品上的發現
      • 6.2.5。柔性/共形與剛性電子
      • 6.2.6。摩擦電學
      • 6.2.7。印刷和柔性電子材料市場的空白
    • 6.3。生物塑料
    • 6.4。高級氟聚合物

    7。熱界面材料和熱絕緣

    • 7.1。熱界面材料(TIM)
    • 7.2。保溫層

    8。2D和3D分子,石墨烯,碳納米管

    • 8.1。2D和3D分子
    • 8.2。石墨烯應用開始商業化
    • 8.3。示例:超級電容器研究中的2D分子優先級
    • 8.4。石墨烯產品和原型
    • 8.5。石墨烯分類
    • 8.6。石墨烯與碳納米管:一般觀察
    • 8.7。碳納米管(CNT)
    • 8.8。導電塑料:應用實例

    9。5G,6G和TERAHERTZ電子材料

    • 9.1。本章介紹的低損耗材料
    • 9.2。5G,下一代蜂窩通信
    • 9.3。6G通訊材料

    10。泛光作用的材料

    • 10.1。範圍
    • 10.2。兩個世界
    • 10.3。光伏業務剖析2021-2041
    • 10.4。矽photovol taics
    • 10.5。常規太陽能無法使用的專業太陽能平行宇宙
    • 10.6。價格量敏感性顯示出許多高價位
    • 10.7。主要結論:薄膜光伏市場
    • 10.8。主要結論:碲化鎘
    • 10.9。主要結論:地理光伏材料需求

    11。新可能的回收:

    • 11.1。風力渦輪機葉片
    • 11.2。鋰離子電池
    • 11.3。新的聚合物回收利用
目錄
Product Code: ISBN 9781913899240

Title:
Smart Cities Emerging Materials Markets 2021-2041
Multifunctional smart materials, bioplastics, structural electronics, composites, 3D printing, graphene, 2D and 3D molecules, 5G, 6G, IOT, new recycling.

"Expect a $400 billion smart city materials market. Smart buildings, new energy, food, water, travel."

Smart cities are now much more ambitious. That means new materials are their biggest enabler, with information and computer technology dropping to an important support role. In its lucid information-packed 340 pages, the IDTechEx report, "Smart Cities Emerging Materials Markets 2021-2041" explains. Researched by IDTechEx multilingual PhD level analysts across the world and constantly updated, the emphasis of the report is commercial opportunities and benefits to society. No nostalgia and no academic obscurity. Many new billion-dollar businesses will be created from this emerging market of hundreds of billions of dollars yearly for largely new materials for new requirements.

Consider the $0.5 trillion NEOM smart city being reclaimed from the Saudi desert and the $0.1 trillion Forest City being reclaimed from the Malaysian sea. Forest City names smart materials as pivotal.

Zero-emission smart cities will gain energy, food and water independence. That means materials requirements for far-away power stations, hydro dams, reservoirs, oil, gas and coal extraction and their long supply lines to cities will increasingly be replaced materials requirements for the very different city alternatives such as solar everywhere, gravity storage using green concrete, open-water power, better self-powered desalination. Materials supply lines get shorter, involve different materials and end up at different customers. Time to pay attention!

Adaptable energy-positive buildings will make food and electricity and human activities while treating their own sewage but only if environmental, affordable new materials are forthcoming. The city robot shuttles replacing up to ten existing vehicles have special materials with more to come, partly because some are 3D printed and some replace dumb windows and bodywork with electrically- and optically-multifunctional materials and dock sideways. This is definitely not a story of selling the same old stuff more to cities in future.

This report answers questions such as:

  • Objectives and potential of smart cities and material companies involved
  • Which are spending the big money and what is their materials focus?
  • What 50 gaps exist in the city materials market and what are the possible solutions?
  • What are the big materials failures that I can solve to create large sales?
  • Which can create billion-dollar businesses?
  • Relevant 20-year forecasts and roadmaps resulting from the research?
  • Why are water-related and multifunctional materials increasingly important?
  • Materials for 3D printing of city buildings, robot shuttles, motors, parts, 3DP electronics?
  • Multifunctional composites and structural electronics for cities. What becomes possible?
  • Smart glass, transparent smart plastic, transparent, magnetic and green concrete?
  • Flexible organics, membranes, bioplastics, advanced polymers for cities?
  • Thermal interface materials and thermal insulation challenges in cities?
  • 2D and 3D molecules, graphene, CNT applications in cities?
  • Materials for 5G, 6G and THz electronics in cities 2021-2041?
  • Why so many materials needed for photovoltaics beyond silicon? Where? Why?
  • What newly-possible recycling underwrites success?

The 99 page Executive Summary and Conclusions is sufficient for those in a hurry. It presents new infograms, comparison tables and graphics with 13 primary conclusions. 70 forecasts are on further pages. The extensive Introduction explains smart cities and their reinvented transport, buildings and trends to water environments, simplification, moveable equipment, zero-emission throughout. This is all in the context of the next twenty years.

Chapter 3 concerns materials for 3D printing of buildings, vehicles such as the Olli city robot shuttle and 3DP electronics.

Chapter 4 addresses multifunctional composites and structural electronics for future cities.

Chapter 5 explains and forecasts the surprisingly varied and large requirements for smart glass, transparent smart plastic such as headlamp RadarGlass™ and the new microLED billboards and windows. Transparent, magnetic and green concrete variously enable city buildings, bridges, solar roads, charge vehicles in motion and make recyclable long-term storage and more but with mixed results. Your opportunity?

Chapter 6 focuses on flexible organics, membranes for the widespread sensors, energy storage, fuel cells. It reveals new bioplastics and advanced polymers. Their new virtuosity addresses both electronics and electrical engineering challenges, recyclability, biodegradability, multifunctionality.

Chapter 7 Thermal interface materials TIM are conductive and thermal insulation the opposite, these deserving a chapter because so many opportunities arise from so many unmet needs here.

Chapter 8 analyses which 2D and 3D molecules such as graphene, CNT and MXenes are enabling future energy harvesting, energy storage, even self-healing, energy-storing vehicle bodywork.

Chapter 9 acknowledges the pervasive rollout of 5G communications now and then 6G starting 2030-2035 at terahertz frequencies and indeed the new THz electronics in general from a materials viewpoint because most rollout and innovation will to the requirements of cities.

Chapter 10 concerns the many materials and formats emerging for ubiquitous photovoltaic power in cities from solar roads, plazas, buses and boats to facades, windows, solar paint, agrivoltaics, floatovoltaics and tracking lll-V solar.

Chapter 11 concerns newly possible recycling benefitting the environment and making certain materials more acceptable. That include plastics, even fluoropolymers, next batteries and next wind turbine blades.

Most of the largest cities are on the sea or a large river and, with rising sea levels, more will be water-based. Threads running through all the chapters are trends to cities spending heavily on water-related activities from supply and conservation of clean water in desert cities to the more common cities in, by and on water. They will use sea and river water for drinking, fish and vegetable cultivation, leisure, transport, power and more. Learn gaps in these markets such as materials for wave power not destroyed by storms and buildings surviving rising sea levels. Learn why multifunctional materials, components, systems and infrastructure are also a common theme for all smart cities. There you can prosper. The report comes with 30 minutes free consultancy to fill in the gaps.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose and scope of this report
    • 1.1.1. Who it assists
    • 1.1.2. Scope: 34 emerging material families prioritised
  • 1.2. Infogram: Some materials in future zero-emission smart cities
  • 1.3. Infogram: Some materials companies transforming future zero-emission cities
  • 1.4. Infogram: Next smart city devices in action
  • 1.5. Some pervasive emerging materials for smart cities
  • 1.6. Emerging photovoltaic technology
  • 1.7. Electrical device membranes
  • 1.8. Cognitive responsive smart materials
  • 1.9. Multifunctional polymer composites
  • 1.10. Structural electronics
  • 1.11. Research interest in reshapable smart materials for electronics and electrics by application
  • 1.12. Primary conclusions
  • 1.13. 70 Market forecasts
    • 1.13.1. Multifunctional composite forecasts 2012-2029
    • 1.13.2. Fluoropolymers for electronics and electrics value market 2031: by primary applications
    • 1.13.3. Fluoropolymers for electronics and electrics value market 2031 by primary application
    • 1.13.4. Thermal interface materials TIM forecast
    • 1.13.5. Market forecast: TIM for EV battery packs
    • 1.13.6. Market forecast: TIM for power electronic modules
    • 1.13.7. Market forecast: TIM in LED for general lighting
    • 1.13.8. Market forecast: TIM in 4G/LTE base stations
    • 1.13.9. Market forecast: TIM for consumer electronics
    • 1.13.10. Graphene market breakdown by revenue and volume
    • 1.13.11. Market forecast for metals for 3DP
    • 1.13.12. Metal 3DP market forecast - industry segmentation
    • 1.13.13. Metal 3DP material forecast - technology segmentation
    • 1.13.14. Metal for 3DP forecast - alloy segmentation
    • 1.13.15. Low-loss materials forecast in 5G by revenue
    • 1.13.16. Low-loss materials areas forecast in 5G by frequency
    • 1.13.17. Low-loss materials areas forecast in 5G by market segments
    • 1.13.18. Low-loss materials areas forecast in 5G by types of materials
    • 1.13.19. Low-loss materials areas forecast in 5G base station by materials types
    • 1.13.20. Low-loss materials areas forecast in 5G smartphones by material types
    • 1.13.21. Low-loss materials areas forecast in 5G CPE, hotspots by material types
    • 1.13.22. Global capacity of Li-ion batteries for recycling by territory 2020-2040 (GWh)
    • 1.13.23. Global Li-ion batteries available for recycling 2020-2040: by region (tonnes) - summary
    • 1.13.24. Global Li-ion batteries available for recycling 2020-2040: by chemistry (tonnes)
    • 1.13.25. Global Li-ion batteries available for recycling 2020-2040: by chemistry (tonnes) - summary
    • 1.13.26. Global recycled metals from Li-ion batteries 2020-2040 (tonnes)
    • 1.13.27. Global recycled metals from Li-ion batteries 2020-2040 (tonnes)
    • 1.13.28. Global Li-ion battery recycling market value forecast 2020-2040 ($ million)
    • 1.13.29. Global plastics production to grow to 485 Mt in 2028
    • 1.13.30. Historical management of municipal solid waste
    • 1.13.31. Flexible CIGS: market forecast sqm and value by barrier technology
    • 1.13.32. Conductive inks and pastes split by 30 application areas 2020-2030
    • 1.13.33. Forecasts for all conductive inks and pastes by application
    • 1.13.34. Forecasts in tonnes for all conductive inks and pastes split by application
    • 1.13.35. Forecasts printed sensors (piezoresistive, glucose, capacitive, touch edge electrode, ITO replacement, etc.)
    • 1.13.36. Forecasts for conformal metallization (aerosol and package-level conformal EMI coating)
    • 1.13.37. Printed electronics forecasts by component 2020-2030
    • 1.13.38. Printed electronics components and materials 2020-2030
    • 1.13.39. Total market value of printed versus non-printed electronics 2020-2030
    • 1.13.40. Market size of Flexible/ Conformation Electronics 2020-2030
    • 1.13.41. Market size of Flexible/ Conformation Electronics 2020-2030
    • 1.13.42. Market value of flexible/conformal versus rigid electronics
    • 1.13.43. Transparent conducting film or glass markets by application
    • 1.13.44. Global plastics production 1950-2030
    • 1.13.45. Market forecast: Thermal interface materials TIM in LED for automotive
    • 1.13.46. TIM forecast for power supplies
    • 1.13.47. Market forecast: TIM in LED for displays
    • 1.13.48. Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040
    • 1.13.49. Global market for thin film CIGS photovoltaics GWp 2020-2030
    • 1.13.50. Global market for thin film CIGS photovoltaics $ billion 2020-2030
    • 1.13.51. Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040
    • 1.13.52. Global market for lll-V compound semiconductor PV GWp 2020-2030
    • 1.13.53. Global market for lll-V compound semiconductor PV $ billion 2020-2030
    • 1.13.54. Global PV technology share $bn % 2040
    • 1.13.55. Global revenues from polymer recycling
    • 1.13.56. Global capacity of Li-ion batteries available for recycling 2020-2040 (GWh)
    • 1.13.57. Global Li-ion batteries available for recycling 2020-2040: by region (tonnes)
    • 1.13.58. Global Li-ion batteries available for recycling by chemistry in major regions
    • 1.13.59. Global Li-ion battery recycling market value forecast by region 2020-2040 ($ million)
  • 1.14. Global market for perovskite PV $M
  • 1.15. Global market for organic photovoltaics OPV $M
  • 1.16. Roadmap for 88 advanced materials in smart cities 2021-2050

2. INTRODUCTION

  • 2.1. Smart cities
  • 2.2. Forest City Malaysia has $0.1 trillion to spend
  • 2.3. Cognitive responsive infrastructure
  • 2.4. Sensors throughout smart cities
  • 2.5. Green technologies merging and doing less damage
  • 2.6. Materials implications of smart cities becoming water-centric
    • 2.6.1. Treat sewage at source
    • 2.6.2. Floating cities?
  • 2.7. Solar everywhere: examples
    • 2.7.1. Agrivoltaics
    • 2.7.2. Gap in market for solar roads: inadequate materials
    • 2.7.3. Light duty ground solar succeeds
    • 2.7.4. Solar boats and airports
    • 2.7.5. Flexible CIGS PV to the rescue: MIT USA in Puerto Rico
  • 2.8. Microgrids become minimal intermittency and relocatable
  • 2.9. Food independent cities overview
  • 2.10. Aquaponics: fish and vegetables together in sea and building
  • 2.11. Robotics and reinvented transport overview
  • 2.12. Excellent European Union initiatives

3. MATERIALS FOR 3D PRINTING OF BUILDINGS, VEHICLES AND PARTS, 3D ELECTRONICS

  • 3.1. Why adopt 3D printing?
  • 3.2. Major material-process relationships
  • 3.3. Vehicles
  • 3.4. 3DP buildings: concrete, mud, salt, sand, construction waste
  • 3.5. Moon city
  • 3.6. Smaller items and textiles
  • 3.7. Drivers and restraints

4. MULTIFUNCTIONAL COMPOSITES AND STRUCTURAL ELECTRONICS

  • 4.1. Overview
  • 4.2. Multifunctional composites
  • 4.3. End goal
  • 4.4. Self-healing parts
  • 4.5. Edit-able (user-dedicated) electronic and electric smart material
  • 4.6. Smart road materials and composites

5. SMART GLASS, TRANSPARENT SMART PLASTIC, SMART AND GREEN CONCRETE

  • 5.1. Overview
  • 5.2. Smart glass
    • 5.2.1. Embedded circuits
    • 5.2.2. Electrically darkening
    • 5.2.3. Transparent microLED and OLED
    • 5.2.4. Photovoltaic windows
  • 5.3. Smart and green cement
    • 5.3.1. Magnetic cement for charging city vehicles
    • 5.3.2. Transparent concrete solar road Pavenergy China
    • 5.3.3. Green cement and concrete

6. FLEXIBLE ORGANICS, MEMBRANES, BIOPLASTICS, ADVANCED POLYMERS

  • 6.1. Membranes for supercapacitors, batteries, fuel cells, sensors, hydrogen production
  • 6.2. Printed, organic and flexible electronics materials
    • 6.2.1. Definitions
    • 6.2.2. Description and analysis of the main technology components of printed, flexible and organic electronics
    • 6.2.3. Market potential and profitability
    • 6.2.4. Findings on printed versus non-printed electronics
    • 6.2.5. Flexible/conformal versus rigid electronics
    • 6.2.6. Triboelectrics
    • 6.2.7. Gaps in the printed and flexible electronics materials market
  • 6.3. Bioplastics
  • 6.4. Advanced fluoropolymers

7. THERMAL INTERFACE MATERIALS AND THERMAL INSULATION

  • 7.1. Thermal Interface Materials (TIM)
  • 7.2. Thermal insulation

8. 2D AND 3D MOLECULES, GRAPHENE, CNT

  • 8.1. 2D and 3D molecules
  • 8.2. Graphene applications going commercial
  • 8.3. Example: 2D molecule priorities in supercapacitor research
  • 8.4. Graphene products and prototypes
  • 8.5. Graphene categorisation
  • 8.6. Graphene vs. Carbon nanotubes: general observations
  • 8.7. Carbon Nanotubes (CNT)
  • 8.8. Conductive plastics: application examples

9. 5G, 6G AND TERAHERTZ ELECTRONICS MATERIALS

  • 9.1. Low-loss materials covered in this chapter
  • 9.2. 5G, next generation cellular communications
  • 9.3. 6G communications materials

10. MATERIALS FOR UBIQUITOUS PHOTOVOLTAIC POWER

  • 10.1. Scope
  • 10.2. Two worlds
  • 10.3. Anatomy of the photovoltaic business 2021-2041
  • 10.4. Silicon photovoltaics
  • 10.5. The Parallel Universe of specialist solar where conventional silicon cannot go
  • 10.6. Price-volume sensitivity showing many high price niches
  • 10.7. Primary conclusions: thin film PV market
  • 10.8. Primary conclusions: cadmium telluride
  • 10.9. Primary conclusions: geographic PV materials demand

11. NEWLY-POSSIBLE RECYCLING:

  • 11.1. Wind turbine blades
  • 11.2. Lithium-ion batteries
  • 11.3. Newly possible polymer recycling