NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

固定式儲能電池2021-2031

Batteries for Stationary Energy Storage 2021-2031

出版商 IDTechEx Ltd. 商品編碼 975914
出版日期 內容資訊 英文 274 Pages
商品交期: 最快1-2個工作天內
價格
固定式儲能電池2021-2031 Batteries for Stationary Energy Storage 2021-2031
出版日期: 2020年12月15日內容資訊: 英文 274 Pages
簡介

標題
2021-2031年固定式儲能電池
用於靜態儲能市場的以鋰離子為主的電池的全球觀點。計價器(BTM)和計價器(FTM)的發展,政策和市場參與者的區域分析。

"憑藉2021- 2031年的38%複合年增長率,到2031年,固定存儲市場價值預計將達到566億美元。"

現在可以預訂,完整的報告將於12月中旬發佈

儲能係統已成為電力供應鏈各個環節(從發電,輸電,配電到消費)中不可避免的資產。固定式儲能市場正在以非常高的速度增長,為了更好地瞭解未來的發展,IDTechEx發佈了其報告 "固定式儲能電池" 的更新。該報告還介紹了主要國家採用儲能係統的最新政策以及最新的技術改進,顯示了未來十年電池市場的未來發展。

用於固定存儲應用的電池在不斷增長,每天都會發佈新的電池安裝信息。在不斷採用可再生能源的推動下,不斷發展的網格基礎設施正在推動採用目前由鋰離子電池主導的存儲系統。

鋰離子電池(LiB)在汽車和便攜式設備中的快速採用促進了此類電池的成本下降,促進了其作為固定存儲系統的採用。此外,由於過去幾年的經驗積累,安裝時間短,以及(現在)市場管制良好,使這項技術處於有利的位置,可以大規模採用。

儘管LiB是最被廣泛採用和引用的技術,但其他存儲系統正以不同的速度進入市場。氧化還原液流電池(RFB)就是其中之一。基於電活性物質的流動,該電池的特點是能量密度較小,但循環壽命較高。而且,RFB所使用的活性材料要比LiB更安全,因此,著火的風險與這些系統無關。除了允許在特定存儲方案中使用RFB的技術特性外,較高的前期成本目前是該技術與Li-ion系統競爭的主要限制之一。

雖然不是字面上的 "電池" ,而是用作二次電化學存儲設備,但另一類存儲系統也正在接近固定存儲標記等。這些是高功率,長存儲系統,由IDTechEx在另一份報告中進行了調查。

這些具有大功率和長存儲持續時間的系統正在面向FTM市場,將有助於改善電網基礎設施,避免安裝新的電力線。大型設備具有較高的功率和較長的存儲時間,因此儘管降低了存儲成本,但仍需要較長的安裝和時間以及前期成本。

電力市場的發展很快將集中在成本分析上,這為新興技術提供了在較高的前期成本中找到其在市場中的地位的機會。

儲能設備的需求日益增長與可再生能源的日益普及有關。可再生能源裝置正在影響電網的現有結構,而保持恆定電流的需求正在為儲能市場創造巨大的商機。

如報告中所述,固定式儲能設備可以為電網提供不同的服務。公用事業級電池可以例如通過電網延期和能源容量服務以及其他服務來支持電網。輔助服務也是電池可以提供的另一種服務,以穩定電網。這是目前選擇最多的細分市場。

由於可再生能源的整合,而且由於燃煤和天然氣發電廠的退役,對這些服務的需求正在持續增長。

在現有的電網基礎設施中採用電池的同時,還基於電池系統的管理,正在開發新的業務模型,例如我們將多個電池單元的集聚成虛擬的電廠(VPP),以及採用並實施 "車輛到網格(V2G)" 方法。這種方法利用了具有相當大的電池容量(100kWh相比家用電池為幾十kWh)的電池電動車(BEV),為電網提供了輔助服務。

因此,固定存儲市場在不斷發展。除電池存儲系統外,還有越來越多的公司提供太陽能存儲,電力購買協議(PPA)和電費。

儘管固定存儲市場面臨快速採用,但該市場仍受到政治決策的強烈影響。實際上,採用可再生能源目標,改善電網或關閉電廠都是決定採用儲能係統的決定。

為了瞭解儲能技術的部署現狀以及主要國家採用的政策,IDTechEx預測了固定式儲能市場的未來發展。

儘管不同國家/地區存在類似的情況,但每個被分析的國家在法規,技術要求和採用的政策方面都表現出其特殊性。因此,IDTechEx估計了每個被分析國家的增長趨勢,最終結果是2021年和2031年之間的複合年增長率為38%,累計裝機容量超過1TWh。

從IDTechEx進行分析訪問

所有報告購買都包括與專家分析師進行的長達30分鐘的電話時間,專家分析師將幫助您將報告中的關鍵發現與您要解決的業務問題聯繫起來。需要在購買報告後的三個月內使用。

目錄

1。執行摘要

  • 1.1。儲能:鋰離子電池主導的市場
  • 1.2。儲能係統分類
  • 1.3。可再生能源的目標是採用
  • 1.4。鋰離子電池將主導市場
  • 1.5。可再生能源對電網的影響
  • 1.6。輔助服務概述
  • 1.7。相似情況,不同問題
  • 1.8。美國各州平均電價
  • 1.9。相似情況,不同問題
  • 1.10。加利福尼亞的大型公用事業電池項目
  • 1.11。美國電池安裝故障
  • 1.12。澳大利亞的電池部署
  • 1.13。日本與能源(獨立)
  • 1.14。日本電池安裝
  • 1.15。中國,ES潛力巨大,但增長緩慢
  • 1.16。中國固定電池預測
  • 1.17。南韓
  • 1.18。韓國電池安裝
  • 1.19。印度
  • 1.20。英國
  • 1.21。德國
  • 1.22。意大利
  • 1.23。電池儲能發展2018-2020
  • 1.24。全球電池安裝
  • 1.25。FTM,BTM市場預測明細
  • 1.26。IMP對電池選擇ortant考慮
  • 1.27。預測假設和解釋

2。簡介

  • 2.1。用電量正在變化
  • 2.2。可再生能源引領著能源的變化
  • 2.3。電網中儲能的優勢
  • 2.4。電網中的固定存儲位置
  • 2.5。不同用途的不同電池尺寸
  • 2.6。哪裡可以存儲能量?
  • 2.7。電池儲存系統
  • 2.8。專供自用的電池儲藏室

3。固定儲能電池

  • 3.1.1。固定式儲能電池:概述
  • 3.1.2。電化學定義
  • 3.1.3。性能共同有用的圖表mparison
  • 3.1.4。兆瓦還是兆瓦時?
  • 3.2。鋰離子電池
    • 3.2.1。什麼是鋰離子電池?
    • 3.2.2。拉貢情節
    • 3.2.3。一種以上的鋰離子電池
    • 3.2.4。商業用包裝TECHNOLO吉斯
    • 3.2.5。電池,模塊和電池組之間的差異
    • 3.2.6。鋰基電池的家譜
    • 3.2.7。鋰離子電池的重量含量
  • 3.3。陰極材料
    • 3.3.1。陰極歷史
    • 3.3.2。貓HODE材料- LCO和LFP
    • 3.3.3。陰極材料-NMC,NCA和LMO
    • 3.3.4。陰極發展
  • 3.4。陽極材料
    • 3.4.1。陽極材料
    • 3.4.2。石墨簡介
    • 3.4.3。矽的前景
    • 3.4.4。鈦酸鋰氧化物(LTO)簡介
    • 3.4.5。LTO將在哪裡發揮作用?
    • 3.4.6。陽極比較
    • 3.4.7。IDTechEx的鋰離子電池相關報告
  • 3.5。其他電池
    • 3.5.1。不止鋰離子
    • 3.5.2。固定存儲的作用越來越重要
    • 3.5.3。鉛酸電池
    • 3.5.4。鈉硫電池
    • 3.5.5。鎳鎘鎳氫電池
    • 3.5.6。用於固定存儲的氧化還原液流電池?
    • 3.5.7。氧化還原液流電池工作原理
    • 3.5.8。VRFB的分解圖
    • 3.5.9。RFB的案例:固定電池比較
    • 3.5.10。RFB化學物質:所有釩(VRFB)
    • 3.5.1 1. RFB化學方法:溴化鋅液流電池(ZBB)-混合動力
    • 3.5.12。RFB化學物質:氫/溴化物-混合
    • 3.5.13。RFB化學物質:全鐵-混合
    • 3.5.14。其他RFB:有機氧化還原液流電池
    • 3.5.15。技術REC AP
    • 3.5.16。PEMFC概述
    • 3.5.17。燃料電池的局限性
    • 3.5.18。可再生能源+天然氣儲存
    • 3.5.19。ES技術用例比較
    • 3.5.20。高潛力ES技術:概述
    • 3.5.21。高POTE週期邊值問題PBVP ES技術:屬性
    • 3.5.22。高潛力ES技術:性能比較
    • 3.5.23。高潛力ES技術分析
    • 3.5.24。為什麼不使用鋰離子或氧化還原液流電池?
    • 3.5.25。儲能裝置比較

4。固定式儲能:驅動器

  • 4.1.1。ES驅動程序簡介
  • 4.1.2。ES驅動程序概述
  • 4.1.3。價值鏈中每個位置的ESS
  • 4.1.4。功率容量VS。放電持續時間
  • 4.2。儀表背後的應用
    • 4.2.1。可再生能源自耗
    • 4.2.2。自我消費原則
    • 4.2.3。使用時間(ToU)套利
    • 4.2.4。逐步淘汰關稅
    • 4.2.5。淨計量淘汰
    • 4.2.6。其他司機
    • 4.2.7。購電協議
    • 4.2.8。虛擬電廠
    • 4.2.9。虛擬電廠公司
    • 4.2.10。太陽補償匯總
    • 4.2.11。減少需求費用
    • 4.2.12。車輛到電網和車輛到家
    • 4.2.13。V2G/V2H的簡要歷史
    • 4.2.14。在Mirafiori中的FCA V2G
    • 4.2.15。V2G和V2H的示意圖
    • 4.2.16。摘要:電池存儲提供的值-Cu stomer側面
  • 4.3。儀表前端應用
    • 4.3.1。氣體峰化器廠延期
    • 4.3.2。離網和遠程應用
    • 4.3.3。其他司機
    • 4.3.4。實用程序中電池存儲提供的值
    • 4 .3.5。輔助服務概述
    • 4.3.6。輔助服務要求
    • 4.3.7。頻率調節
    • 4.3.8。頻率調節水平
    • 4.3.9。負載跟隨
    • 4.3.10。紡紗和非紡紗儲備
    • 4.3 .11。輔助服務中電池存儲提供的值

5。區域分析

  • 5.1.1。區域分析概述
  • 5.1.2。全球電池安裝量(GWh)
  • 5.1.3。全球電池安裝故障
  • 5.2。美國
    • 5.2.1。美國概述
    • 5.2.2。美國政策和ES存儲項目
    • 5.2.3。美國電費
    • 5.2.4。美國:主要發展
    • 5.2.5。美國主要動態:FERC第2222號命令
    • 5 .2.6。FERC 2222對ES市場的優勢
    • 5.2.7。美國主要發展FERC 841號令
    • 5.2.8。美國:主要發展
    • 5.2.9。熱門狀態:任務和目標概述
    • 5.2.10。美國固定電池預測
    • 5.2.11。美國統計分析
  • 5.3。加利福尼亞州
    • 5.3.1。加州概述
    • 5.3.2。大型公用事業電池項目
    • 5.3.3。加州家庭電池政策:SGIP
    • 5.3.4。加州家庭電池政策:NEM
    • 5.3.5。加州家用電池市場
  • 5.4。夏威夷
    • 5.4.1。夏威夷: "原型州"
    • 5.4.2。夏威夷清潔能源倡議
    • 5.4.3。可再生能源+儲存與化石燃料競爭
    • 5.4.4。淨能源計量(NEM)及其升級
    • 5.4.5。基於績效的可再生能源法規
  • 5.5。維吉尼亞州
    • 5.5.1。儲能政策:弗吉尼亞
    • 5.5.2。南卡羅來納
    • 5.5.3。南卡羅來納州:《能源自由法》
  • 5.6。紐約
    • 5.6.1。紐約州向儲能邁進
    • 5.6.2。紐約,最大的已安裝電池-2.5 GWh
    • 5.6.3。紐約州儲能路線圖
  • 5.7。澳大利亞
    • 5.7.1。澳大利亞的摘要
    • 5.7.2。澳大利亞電池安裝
    • 5.7.3。澳大利亞的住宅倉儲熱潮
    • 5.7.4。澳大利亞的儲存政策和可再生能源目標
    • 5.7.5。澳大利亞的鋰離子電池供應鏈
    • 5.8。日本
      • 5.8.1。日本能源狀況介紹
      • 5.8.2。日本提高能源彈性的多種方法
      • 5.8.3。趨勢轉變:住宅2012-實用2017-住宅2020
      • 5.8.4。FiT逐步淘汰,電池能量存儲的驅動器
      • 5.8.5。投資太陽能+電池的私人家庭
      • 5.8.6。特斯拉進入日本家用電池
      • 5.8.7。除家用電池外的其他方法
      • 5.8.8。相關項目:Vehicle-to-grid(V2G)
      • 5.8.9。 "基本氫路線圖"
      • 5.8.10。10MW福島電解槽
    • 5.9。中國
      • 5.9.1。中國排放目標
      • 5.9.2。中國電網升級
      • 5.9.3。中國的能源儲備激增:穩步放緩
      • 5.9.4。中國ES市場注定會增長
      • 5.9.5。鋰離子電池驅動的儲能市場
      • 5.9.6。中國電池裝置
    • 5.10。印度
      • 5.10.1。印度對可再生能源的承諾
      • 5.10.2。鉛酸行業
      • 5.10.3。印度鋰離子電池產業發展
      • 5.10.4。印度電池裝置
    • 5.11。南韓
      • 5.11.1。韓國概述
      • 5.11.2。現在污染更多,以後污染更少
      • 5.11.3。政府對ES系統的態度
      • 5.11.4。韓國:市場驅動力
      • 5.11.5。韓國可再生能源證書(REC)
      • 5.11.6。2018年以後減少電池安裝
      • 5.11.7。韓國的電池起火
      • 5.11.8。電池起火的原因
      • 5.11.9。韓國:ESS開發人員市場份額
    • 5.12。英國
      • 5.12.1。英國可再生能源概述
      • 5.12.2。概要
      • 5.12.3。容量市場:2020年更新
      • 5.12.4。清潔能源的進步
      • 5.12.5。容量市場(CM)的主要變化
      • 5.12.6。產能市場:解釋
      • 5.12.7。電池在BEIS降級後會失去價值
      • 5.12.8。聖ORAGE調降因素
      • 5.12.9。收入疊加
      • 5.12.10。英國住宅市場落後
    • 5.13。德國
      • 5.13.1。德國:歐洲的 "加利福尼亞"
      • 5.13.2。 "能源概念" 的結構和目標
      • 5.13.3。德國概述
      • 5.13.4。從煤炭到倉儲
      • 5.13.5。電網升級
      • 5.13.6。德國能源過渡標誌: "BigBattery Lausitz"
      • 5.13.7。GridBooster項目
      • 5.13.8。德國的FTM < 3.9.5.1。家用電池解決方案
      • 5.13.10。太陽能+儲能達到成本平價
      • 5.13.11。德國復興信貸銀行的補貼
      • 5.13.12。FiT之後的其他選擇
      • 5.13.13。德國家用電池
      • 5.13.14。德國電池安裝ations
    • 5.14。意大利
      • 5.14.1。意大利充滿活力的局面
      • 5.14.2。意大利的塔裡夫進糧和新的RES法令
      • 5.14.3。意大利歷史關稅稅率
      • 5.14.4。意大利的儲能:VPP的發展
      • 5.14.5。在Mirafiori中的FCA V2G
      • 5.14.6。意大利:家用電池衰退
      • 5.14.7。意大利電池存儲

    6。能源存儲玩家

    • 6.1。太陽能與儲能之間的融合
    • 6.2。下游儲能組件供應商
    • 6.3。ESS的全球參與者
    • 6.4。其他行業的公司加入
    • 6.5。價值鏈
    • 6.6。大多數從事組裝業務的公司
    • 6.7。特斯拉的ESS業務
    • 6.8。Powerwall和Powerpack
    • 6.9。住宅倉儲成本明細
    • 6.10。特斯拉的ESS業務
    • 6.11。大型電源組項目
    • 6.12。特斯拉超級背包
    • 6.13。Leclanch&eacute;
    • 6.14。綠色收費網絡
    • 6.15。比亞迪
    • 6.16。比亞迪的佈局類似於特斯拉
    • 6.17。綠山電力
    • 6.18。綠山電力的創新戰略
    • 6.19。ESS的全球參與者
    • 6.20。公司簡介(超鏈接)
    • 6.21。Ampard和Fenecon
    • 6.22。幹
    • 6.23。各個供應商的IDTechEx指數基準
目錄
Product Code: ISBN 9781913899233

Title:
Batteries for Stationary Energy Storage 2021-2031
A global view on the Li-ion-dominated batteries for stationary energy storage market. Regional analysis for behind-the-meter (BTM) & front-of-meter (FTM) development, policies, and market players.

"With a 38% CAGR 2021-2031, the stationary storage market value is expected to reach $56.6bn in 2031. "

Now available to pre-order, full report out mid-December

Energy storage systems became an unavoidable asset along the different segments of the electricity supply chain, from generation, to transmission and distribution, to consumption. The stationary energy storage market is growing at a very high pace, and to better understand the future development, IDTechEx released an update of its report "Batteries for Stationary Energy Storage". The report addresses the latest adopted policies of the main countries adopting energy storage systems, together with the latest technical improvements, showing the possible future evolution of the battery market toward the next ten years.

Batteries for stationary storage applications are constantly growing, with announcement of new battery installation on a daily basis. The evolving grid infrastructure, driven by a constant adoption of renewable energies, is facilitating the adoption of storage systems currently dominated by the Li-ion battery.

The fast adoption of Li-ion battery (LiB) in automotive and portable devices has facilitated the cost decrease of this type of battery, fostering their adoption as stationary storage systems. Moreover, the short installation time, and (now) well regulated market, also due to the experience acquired in the past years, has placed this technology in a favourable position to be adopted on a large scale.

Although LiB is the most adopted and cited technology, other storage systems are approaching the market at different paces. The redox flow batteries (RFBs) are one of them. Based on the flow of electroactive species, this battery is characterised by smaller energy density, but higher cycle life. Moreover, RFBs employ safer active materials than LiBs, therefore the risk of fire is not a concern for these systems. Besides the technical properties, which will allow RFBs to be adopted in specific storage scenarios, the higher upfront cost is currently one of the main restrictions for this technology to compete with Li-ion systems.

Although not literally 'batteries', intended as secondary electrochemical storage devices, another class of storage system is also approaching the stationary storage market. These are high power, and long storage systems, investigated by IDTechEx in another report.

These systems, characterised by large power and long storage duration, are addressing the FTM segment of the market, and will facilitate the improvement of the electricity grid infrastructure, avoiding the installation of new power lines. High power and long storage duration come with a large device, which therefore requires long installation and time, and upfront cost, although with a reduced levelized cost of storage.

The evolution of the electricity market will soon focus on cost analysis, offering to emerging technologies the opportunity to find their position in the market, even with a greater upfront cost.

The growing necessity of energy storage devices is linked to the growing adoption of renewable energies. The renewable installations are affecting the existing structure of the electricity grid, and the requirement to maintain a constant flow of electricity is creating big opportunities for the energy storage market.

As analysed in the report, stationary energy storage devices can provide different services to the electricity grid. Utility scale batteries can for example support the power grid, by grid deferral and energy capacity service, among other services. Ancillary services are also another type of service which batteries can provide, to stabilise the power grid. This is currently the most chosen segment.

The requirement for these services is constantly growing due to renewable energy integration, but also because of decommissioning of coal and gas power plants.

Together with the adoption of batteries in the existing power grid infrastructure, new business models are also being developed, based on the management of battery systems, such us the virtual power plant (VPP) from the agglomeration of several battery units, and the adoption and implementation of Vehicle-To-Grid (V2G) approach. This approach exploits the battery electric vehicles (BEV), which have a considerable battery capacity (100kWh compare to tens of kWh for home batteries), to provide ancillary services to the power grid.

The stationary storage market is therefore evolving. An increasing number of companies are offering, besides battery storage systems, also solar storage, power purchase agreements (PPAs), and electricity tariffs.

Although the stationary storage market is facing quick adoption, the market is still under the strong influence of political decisions. In fact, the adoption of renewable energy targets, the improvement of the power grid, or the decommission of power plant, are all decisions affecting the adoption of energy storage systems.

To understand the current status of deployment of energy storage technologies, and policies adopted by the main countries, IDTechEx forecasted the future evolution of the stationary storage market.

Although similar scenarios exist among different countries, each of the analysed countries presents its peculiarities, in terms of regulations, technical requirements, and adopted policies. Therefore, IDTechEx estimated a growing trend for each of the analysed countries, obtaining as a final result a 38% compound annual growth rate between 2021 and 2031, with a cumulative energy capacity installed above 1TWh.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Energy Storage: a Li-ion battery led market
  • 1.2. Classification of energy storage systems
  • 1.3. Renewable energy targets adoption
  • 1.4. Li-ion will dominate the market
  • 1.5. The impact of RES on the electricity grid
  • 1.6. Overview of ancillary services
  • 1.7. Similar situation, different problems
  • 1.8. US average electricity price per state
  • 1.9. Similar situation, different problems
  • 1.10. Large utility battery projects in California
  • 1.11. US Battery installation breakdown
  • 1.12. Australia's battery deployment
  • 1.13. Japan and the energy (in)dependency
  • 1.14. Japan battery installation
  • 1.15. China, high potential but slow growing for ES
  • 1.16. Chinese stationary battery forecast
  • 1.17. South Korea
  • 1.18. South Korea battery installations
  • 1.19. India
  • 1.20. United Kingdom
  • 1.21. Germany
  • 1.22. Italy
  • 1.23. Battery energy storage development 2018-2020
  • 1.24. Global battery installations
  • 1.25. FTM, BTM market forecast breakdown
  • 1.26. Important considerations for battery selection
  • 1.27. Forecast assumptions and explanation

2. INTRODUCTION

  • 2.1. Consumption of electricity is changing
  • 2.2. Renewables are leading the power source changes
  • 2.3. The advantage of energy storage in the power grid
  • 2.4. Stationary storage position in the power grid
  • 2.5. Different batteries size for different uses
  • 2.6. Where can energy storage be fit in?
  • 2.7. Battery storage system
  • 2.8. Battery storage designed for self consumption

3. BATTERIES FOR STATIONARY ENERGY STORAGE

  • 3.1.1. Battery for stationary energy storage: Overview
  • 3.1.2. Electrochemistry definitions
  • 3.1.3. Useful charts for performance comparison
  • 3.1.4. MW or MWh?
  • 3.2. Li-ion Batteries
    • 3.2.1. What is a Li-ion battery?
    • 3.2.2. Ragone plots
    • 3.2.3. More than one type of Li-ion battery
    • 3.2.4. Commercial battery packaging technologies
    • 3.2.5. Differences between cell, module, and pack
    • 3.2.6. A family tree of Li based batteries
    • 3.2.7. Weight content of a Li-ion cell
  • 3.3. Cathode Materials
    • 3.3.1. Cathode history
    • 3.3.2. Cathode materials - LCO and LFP
    • 3.3.3. Cathode materials - NMC, NCA and LMO
    • 3.3.4. Cathode development
  • 3.4. Anode Materials
    • 3.4.1. Anode materials
    • 3.4.2. Introduction to graphite
    • 3.4.3. The promise of silicon
    • 3.4.4. Introduction to lithium titanate oxide (LTO)
    • 3.4.5. Where will LTO play a role?
    • 3.4.6. Anodes compared
    • 3.4.7. IDTechEx's Li-ion Battery related reports
  • 3.5. Other Batteries
    • 3.5.1. More than Li-ion
    • 3.5.2. The increasingly important role of stationary storage
    • 3.5.3. Lead-acid batteries
    • 3.5.4. Sodium sulphur battery
    • 3.5.5. Nickel cadmium and nickel metal hydride battery
    • 3.5.6. Redox flow batteries for stationary storage?
    • 3.5.7. Redox flow batteries working principle
    • 3.5.8. Exploded view of VRFB
    • 3.5.9. The case for RFBs: Stationary Batteries Comparison
    • 3.5.10. RFB chemistries: All Vanadium (VRFB)
    • 3.5.11. RFB chemistries: Zinc Bromine flow battery (ZBB) - Hybrid
    • 3.5.12. RFB chemistries: Hydrogen/Bromide - Hybrid
    • 3.5.13. RFB Chemistries: all Iron - Hybrid
    • 3.5.14. Other RFBs: Organic Redox Flow Battery
    • 3.5.15. Technology recap
    • 3.5.16. PEMFC Overview
    • 3.5.17. The fuel cell limitations
    • 3.5.18. Renewables + storage to gas
    • 3.5.19. Comparison of ES technology use cases
    • 3.5.20. High Potential ES Technologies: Overview
    • 3.5.21. High Potential ES Technologies: Properties
    • 3.5.22. High Potential ES Technologies: Properties Comparison
    • 3.5.23. High potential ES technologies analysis
    • 3.5.24. Why not Li-ion or Redox Flow Batteries?
    • 3.5.25. Comparison of energy storage devices

4. STATIONARY ENERGY STORAGE: DRIVERS

  • 4.1.1. Introduction to ES drivers
  • 4.1.2. Overview of ES drivers
  • 4.1.3. ESS for every position in the value chain
  • 4.1.4. Power capacity VS. discharge duration
  • 4.2. Behind-the-Meter Applications
    • 4.2.1. Renewable energy self-consumption
    • 4.2.2. Principle of self-consumption
    • 4.2.3. Time-of-Usage (ToU) arbitrage
    • 4.2.4. Feed-in-Tariff phase-outs
    • 4.2.5. Net metering phase-outs
    • 4.2.6. Other drivers
    • 4.2.7. Power Purchase Agreements
    • 4.2.8. Virtual Power Plants
    • 4.2.9. Virtual Power Plant companies
    • 4.2.10. Summary of solar compensations
    • 4.2.11. Demand charge reduction
    • 4.2.12. Vehicle-to-grid and vehicle-to-home
    • 4.2.13. A brief history of V2G/V2H
    • 4.2.14. FCA V2G in Mirafiori
    • 4.2.15. Schematics of V2G and V2H
    • 4.2.16. Summary: Values provided by battery storage - Customer Side
  • 4.3. Front-of-Meter Applications
    • 4.3.1. Gas peaker plant deferral
    • 4.3.2. Off-grid and remote applications
    • 4.3.3. Other drivers
    • 4.3.4. Values provided by battery storage in utility
    • 4.3.5. Overview of ancillary services
    • 4.3.6. Ancillary service requirements
    • 4.3.7. Frequency Regulation
    • 4.3.8. Levels of frequency regulation
    • 4.3.9. Load following
    • 4.3.10. Spinning and non-spinning reserve
    • 4.3.11. Values provided by battery storage in ancillary services

5. REGIONAL ANALYSIS

  • 5.1.1. Regional analysis overview
  • 5.1.2. Global battery installation (GWh)
  • 5.1.3. Global battery installation breakdown
  • 5.2. United States
    • 5.2.1. U.S. overview
    • 5.2.2. US Policy, and ES storage projects
    • 5.2.3. US electricity cost
    • 5.2.4. US: Key Developments
    • 5.2.5. US Key Developments: FERC Order 2222
    • 5.2.6. FERC 2222 advantages for ES market
    • 5.2.7. US Key Developments FERC Order 841
    • 5.2.8. US: Key Developments
    • 5.2.9. Hot states: mandates and targets overview
    • 5.2.10. U.S. stationary battery forecast
    • 5.2.11. US State Analysis
  • 5.3. California
    • 5.3.1. California overview
    • 5.3.2. Large utility battery projects
    • 5.3.3. California home-batteries policies: SGIP
    • 5.3.4. California home-batteries policies: NEM
    • 5.3.5. California home battery market
  • 5.4. Hawaii
    • 5.4.1. Hawaii: 'The prototype state'
    • 5.4.2. Hawaii clean energy initiative
    • 5.4.3. Renewables + Storage are competitive with fossil fuels
    • 5.4.4. Net Energy Metering (NEM) and its upgrade
    • 5.4.5. Performance-based regulations for renewables
  • 5.5. Virginia
    • 5.5.1. Energy Storage Policy: Virginia
    • 5.5.2. South Carolina
    • 5.5.3. South Carolina: Energy Freedom Act
  • 5.6. New York
    • 5.6.1. New York state moving toward Energy Storage
    • 5.6.2. New York, and the largest installed battery - 2.5 GWh
    • 5.6.3. New York state energy storage roadmap
  • 5.7. Australia
    • 5.7.1. Australia's summary
    • 5.7.2. Australia battery installations
    • 5.7.3. Residential storage boom in Australia
    • 5.7.4. Australia storage policy and renewables targets
    • 5.7.5. Australia's Li-ion battery supply chain
  • 5.8. Japan
    • 5.8.1. Introduction to the Japanese energy status
    • 5.8.2. Japanese multiple approaches toward energy resiliency
    • 5.8.3. A trend shift: Residential2012 - Utility2017 - Residential2020
    • 5.8.4. FiT phase out, driver for battery energy storage
    • 5.8.5. Private households investing in Solar + Batteries
    • 5.8.6. Tesla entering the Japanese home batteries
    • 5.8.7. Other approaches besides Home Batteries
    • 5.8.8. Relevant Projects: Vehicle-to-grid (V2G)
    • 5.8.9. The "Basic Hydrogen Roadmap"
    • 5.8.10. 10MW Fukushima Electrolyser
  • 5.9. China
    • 5.9.1. Chinese emissions target
    • 5.9.2. Chinese power grid upgrade
    • 5.9.3. Chinese Energy Storage: a solid slowdown
    • 5.9.4. Chinese ES market is destined to grow
    • 5.9.5. A Li-ion battery driven Energy Storage market
    • 5.9.6. Chinese battery installations
  • 5.10. India
    • 5.10.1. India's commitment toward renewables
    • 5.10.2. A lead-acid dominated industry
    • 5.10.3. The Indian Li-ion battery industry development
    • 5.10.4. India battery installations
  • 5.11. South Korea
    • 5.11.1. Korea overview
    • 5.11.2. Polluting more now, to pollute less later
    • 5.11.3. Government approach toward ES system
    • 5.11.4. Korea: Market Drivers
    • 5.11.5. Korean Renewable Energy Certificate (REC)
    • 5.11.6. Reduced battery installations after 2018
    • 5.11.7. Battery fires in Korea
    • 5.11.8. Causes of battery fires
    • 5.11.9. Korea: ESS developer market share
  • 5.12. United Kingdom
    • 5.12.1. UK renewable energy overview
    • 5.12.2. Summary
    • 5.12.3. Capacity Market: 2020 updates
    • 5.12.4. A step forward for clean energy sources
    • 5.12.5. Key changes to the Capacity Market (CM)
    • 5.12.6. Capacity Markets: Explained
    • 5.12.7. Batteries lose value after BEIS de-rating
    • 5.12.8. Storage de-rating factors
    • 5.12.9. Revenue stacking
    • 5.12.10. UK residential market lagging
  • 5.13. Germany
    • 5.13.1. Germany: the European 'California'
    • 5.13.2. Structure and targets of the 'Energy Concept'
    • 5.13.3. Germany overview
    • 5.13.4. From coal to storage
    • 5.13.5. Electricity grid upgrade
    • 5.13.6. The German energy transition emblem: 'BigBattery Lausitz'
    • 5.13.7. GridBooster project
    • 5.13.8. FTM in Germany
    • 5.13.9. Home batteries as solution
    • 5.13.10. Solar-plus-storage reaches cost parity
    • 5.13.11. KfW bank subsidy
    • 5.13.12. Further options, after the FiT
    • 5.13.13. Home battery in Germany
    • 5.13.14. Germany battery installations
  • 5.14. Italy
    • 5.14.1. Italian energetic situation
    • 5.14.2. The Italian Feed-in-Tarif, and the new RES Decree
    • 5.14.3. Italian historical Feed-in-Tariff
    • 5.14.4. Electricity storage in Italy: the VPP development
    • 5.14.5. FCA V2G in Mirafiori
    • 5.14.6. Italy: home batteries recession
    • 5.14.7. Italian battery storage

6. ENERGY STORAGE PLAYERS

  • 6.1. Convergence between solar and storage
  • 6.2. Downstream Energy Storage component vendors
  • 6.3. Global players in ESS
  • 6.4. Companies from other sectors jumping in
  • 6.5. Value Chain
  • 6.6. Most companies in assembly business
  • 6.7. Tesla's ESS business
  • 6.8. Powerwall and Powerpack
  • 6.9. Residential storage cost breakdown
  • 6.10. Tesla's ESS business
  • 6.11. Major powerpack projects
  • 6.12. Tesla Megapack
  • 6.13. Leclanché
  • 6.14. Green Charge Networks
  • 6.15. BYD
  • 6.16. BYD's layout is similar to Tesla
  • 6.17. Green Mountain Power
  • 6.18. Green Mountain Power's Innovation Strategy
  • 6.19. Global players in ESS
  • 6.20. Company Profiles (Hyperlinks)
  • 6.21. Ampard and Fenecon
  • 6.22. Stem
  • 6.23. Benchmark of IDTechEx Index across vendors