表紙
市場調查報告書

鋰離子電池:專利狀況(2020年)

Li-ion Battery Patent Landscape 2020

出版商 IDTechEx Ltd. 商品編碼 953287
出版日期 內容資訊 英文 210 Slides
商品交期: 最快1-2個工作天內
價格
鋰離子電池:專利狀況(2020年) Li-ion Battery Patent Landscape 2020
出版日期: 2020年08月11日內容資訊: 英文 210 Slides
簡介

自2010年以來,與鋰離子相關的專利申請總數已增加了約300%。特別是,在過去十年中,使用納米碳的專利數量顯示出最高的增長。

該報告調查了與鋰離子電池有關的世界專利申請趨勢,並按技術類別,受讓人,地區分佈,申請數量排名,主要受讓人的比較以及專利申請示例顯示了申請數量,總結了未來的前景。

第1章執行摘要

第2章簡介

第3章鋰離子專利狀況

  • 簡介
  • 調查範圍
  • 調查方法
  • 專利申請總數
  • 申請國/目標國
  • 按國家劃分的簡單家庭
  • 專利出口
  • 知識產權地區情況
  • 前5名受讓人
  • 排名前5位的受讓人
  • 前5-20名受讓人
  • 共同受讓人:LG Chem
  • 共同受讓人:Samsung
  • 共同受讓人:Panasonic
  • 共同受讓人:Toyota
  • 共同受讓人:GS Yuasa
  • 鋰離子的趨勢

第4章NMC/NCA專利情況

  • 陰極:概述/歷史
  • 專利範圍
  • 專利趨勢
  • 地理分佈
  • 十大受讓人
  • 十大受讓人
  • 應用共享
  • 應用趨勢
  • 公司應用排名
  • 專利示例
  • 富鋰錳的陰極等

第5章矽陽極的專利狀態

  • 陽極材料
  • 專利範圍
  • 應用趨勢
  • 地理分佈
  • 最高受讓人
  • 最高受讓人的申請佔有率
  • 應用共享
  • 前3名受讓人的比較
  • 專利等的示例

第6章LTO陽極專利狀況

  • LTO的重要性
  • LTO/鈦酸鹽陽極:專利申請趨勢
  • LTO/鈦酸鹽陽極:專利的地理分佈
  • 各地區應用趨勢
  • 最高受讓人
  • 未來方向等

第7章電解質專利狀況

  • 概述
  • 專利申請趨勢
  • 十大受讓人
  • 十大受讓人
  • 各地區應用趨勢
  • 技術趨勢
  • 電解質技術分佈
  • 電解質添加劑的專利案
  • 離子液體
  • 離子液體:專利申請趨勢
  • 電解質:一般等

第8章分隔符的專利情況

  • 概述
  • 專利申請趨勢
  • 各地區應用趨勢
  • 十大受讓人
  • 十大受讓人
  • 分隔符:常規等。

第9章納米碳(CNT/石墨烯)專利情況

  • 導電劑
  • LIBs CNT/石墨烯的專利申請趨勢
  • CNT或石墨烯中的LIB專利申請趨勢
  • 十大受讓人-碳納米管,石墨烯
  • 前10-20名受讓人
  • 各地區應用趨勢
  • 按地區劃分的專利簡單家庭
  • CNT/石墨烯受讓人前三名:主要IPC比較
  • CNT/石墨烯矽陽極
  • 關注Samsung/LG Chem
  • 未來方向
  • 專利案等
目錄

Title:
Li-ion Battery Patent Landscape 2020
Technologies, trends, player comparisons, patent examples.

"Since 2010, the total number of Li-ion patent applications has grown by approximately 300%."

First commercialised in the 1990s, the Li-ion battery consists of a graphitic or carbonaceous negative electrode, a lithium salt dissolved in an organic solvent as the electrolyte and a transition metal oxide as the cathode. While this setup has not fundamentally changed, the performance, safety and cost of Li-ion batteries have improved substantially as a result of continuous R&D into to almost all components of a Li-ion cell and battery. Indeed, further improvements may be necessary to truly disrupt automotive and power generation markets, and R&D effort has grown in line with the growth in the market, as can be demonstrated by the growth in Li-ion patents. There has been consistent growth in patents across Li-ion technology and across many technology groups. Specifically covered in the report are trends and analyses on NMC/NCA and Li- and Mn-rich cathodes, silicon and titanate, electrolytes and electrolyte additives, separators and nanocarbons. Significant growth in the number of applications per year, including for a number of individual topic areas, was seen particularly between 2010-2015. While all areas covered have seen growth since 2010, the number of patents regarding the use of nanocarbons in Li-ion have seen the most substantial growth over the past 10 years.

New battery advancements and energy storage technologies are regularly publicised, but they are competing against a moving target in Li-ion batteries. Reviewing the patent literature can provide valuable information and context for which direction innovation is heading in and which areas are seeing the most recent activity. NMC and NCA layered oxides have been commercial for many years now but development continues as the industry attempts to further increase nickel and lower cobalt content of these materials. At the anode, silicon can be added in small percentages to improve capacity, but increasing the amount of silicon beyond a few percent means silicon anodes are yet to enter the market. Beyond the active materials, solid-state batteries and electrolytes rightly receive considerable attention and hype. Nevertheless, liquid electrolytes are still a key area of development, with additives potentially playing a decisive role in commercialising new anode and cathode materials. This patent analysis will provide insight into how these materials are being developed, the challenges associated with incorporating new technologies, which companies are active in these topics, and how strategies may differ between the top assignees.

The report provides a view of the main IP trends with respect to geographical activity, player strategy and technological trends and can be used to help clarify what innovation is taking place in Li-ion batteries and where. The report also provides an overview of the patent trends for Li-ion players and assignees, ranks assignees in each topic category and provides a deeper dive and comparison on particular topics that are focussed on by the top assignees. A breakdown of patents that are active or pending, compared to the total number of applications made, is also provided to allow insight into assignees who have been recently active in Li-ion innovation.

This report will provide insight and discussion on where Li-ion performance improvements will come from and as an outcome of the analysis, example patents are also reviewed and discussed in the context of current Li-ion market developments alongside a discussion of future technology commercialisation. Highlighted in the report are key technology/IP trends, geographical activity, key players and assignees, and player rankings.

Included in the report:

  • Introduction to the Li-ion market
  • Overview of Li-ion patents
  • NMC/NCA and Li-Mn-rich cathode patent landscape
  • Silicon anode patent landscape
  • Titanate anode patent landscape
  • Liquid electrolyte patent landscape
  • Carbon nanotubes and graphene for Li-ion
  • Player analysis and comparison
  • Patent examples and case studies
  • Discussion of future technology direction

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Introduction
  • 1.2. Report scope
  • 1.3. Li-ion patent analysis overview
  • 1.4. Patent trends overview
  • 1.5. Total patent applications
  • 1.6. Top 5 Li-ion patent assignees
  • 1.7. NMC patents - player rank
  • 1.8. LG Chem co-assignees
  • 1.9. Samsung co-assignees
  • 1.10. Panasonic co-assignees
  • 1.11. Trends in Li-ion mirrored by patents
  • 1.12. Patent examples
  • 1.13. NMC cathode - top 3 assignee main IPC comparison
  • 1.14. Top 3 assignee NMC/NCA technology comparison
  • 1.15. NMC assignee supply chain position
  • 1.16. Si-anode patent application trend by assignee location
  • 1.17. Top assignees - total Si-anode patents
  • 1.18. Recent Si-anode patent citations
  • 1.19. Top 3 Si-anode assignee main IPC comparison
  • 1.20. Top 3 assignee Si-anode technology comparison
  • 1.21. Electrolyte patents - player rank
  • 1.22. Electrolyte patents - trend by assignee location
  • 1.23. Electrolyte technology trend
  • 1.24. CNTs or graphene in LIB patent application trend
  • 1.25. Nanocarbon patents - player rank
  • 1.26. Player rank by number of active and pending patents
  • 1.27. Top 3 CNT/graphene assignee main IPC comparison
  • 1.28. Future cathode direction
  • 1.29. Future anode direction
  • 1.30. Electrolyte overview
  • 1.31. Future nanocarbon direction

2. INTRODUCTION

  • 2.1. Li-ion technology development
  • 2.2. What is in a cell?
  • 2.3. Demand for Li-ion shifting
  • 2.4. European gigafactories announced by 2018
  • 2.5. European gigafactories announced to date
  • 2.6. Why lithium?
  • 2.7. More than one type of Li-ion battery
  • 2.8. The battery trilemma
  • 2.9. Battery wish list
  • 2.10. The Li-ion supply chain

3. LI-ION PATENT LANDSCAPE

  • 3.1. Introduction
  • 3.2. Report scope
  • 3.3. Search methodology
  • 3.4. Example patents criteria
  • 3.5. Total patent applications
  • 3.6. Country of origin vs country filed
  • 3.7. Patent simple families by country
  • 3.8. Patent simple families by country from 2010
  • 3.9. Export of patents
  • 3.10. Geographic IP landscape
  • 3.11. Top 5 patent assignees
  • 3.12. Top 5 assignee share
  • 3.13. Top 5th - 20th assignees
  • 3.14. LG Chem co-assignees
  • 3.15. Samsung co-assignees
  • 3.16. Panasonic co-assignees
  • 3.17. Toyota co-assignees
  • 3.18. GS Yuasa co-assignees
  • 3.19. Trends in Li-ion mirrored by patents

4. NMC, NCA PATENT LANDSCAPE

  • 4.1.1. Cathode recap
  • 4.1.2. Cathode history
  • 4.1.3. NMC/NCA patent scope
  • 4.1.4. NMC/NCA search term
  • 4.1.5. NMC/NCA patent trend
  • 4.1.6. NMC/NCA geographic distribution
  • 4.1.7. Top 10 NMC/NCA assignees
  • 4.1.8. 10th-20th top NMC/NCA assignees
  • 4.1.9. Application assignee share
  • 4.1.10. Application trend of top assignees
  • 4.1.11. Player rank by number of active and pending patents
  • 4.1.12. Top 3 NMC assignee's main IPC comparison
  • 4.1.13. Top 3 assignee technology comparison
  • 4.1.14. Geographical activity of top 20 assignees
  • 4.1.15. Top assignees of active and pending simple patent families
  • 4.1.16. Assignee supply chain position
  • 4.1.17. NMC citations per application
  • 4.1.18. Recent NMC citations per application
  • 4.1.19. Ternary cathode patent overview
  • 4.1.20. Future cathode direction
  • 4.2. Example patents
    • 4.2.1. Patent examples
    • 4.2.2. High nickel cathode synthesis
    • 4.2.3. Low cobalt NCA - SMM
    • 4.2.4. High nickel cathode stabilisation
    • 4.2.5. Single crystal NCA cathode
    • 4.2.6. EcoPro high-Ni concentration gradient synthesis
    • 4.2.7. Cathode concentration gradient
    • 4.2.8. Streamlined cathode synthesis
    • 4.2.9. Patent litigation over NMC/NCM - Umicore vs. BASF
    • 4.2.10. Patent litigation - the positive example of LFP
  • 4.3. Li- and Mn-rich cathodes
    • 4.3.1. Li- and Mn-rich cathode search string
    • 4.3.2. Li- and Mn-rich patent applications trend
    • 4.3.3. Top assignees
    • 4.3.4. Application trend of top assignees
    • 4.3.5. Li and Mn-rich cathode patent examples
    • 4.3.6. Li and Mn rich - Samsung
    • 4.3.7. Zenlabs Li- and Mn-rich
    • 4.3.8. Li and Mn rich oxides

5. SILICON ANODE PATENT LANDSCAPE

  • 5.1.1. Anode materials
  • 5.1.2. Silicon anode patent scope
  • 5.1.3. Silicon anode patent application trend
  • 5.1.4. Si-anode application geographic distribution
  • 5.1.5. Application trend by assignee location
  • 5.1.6. Top assignees - total patents
  • 5.1.7. Top assignees - simple patent families
  • 5.1.8. Application assignee share
  • 5.1.9. 10th-20th top assignees
  • 5.1.10. Assignee supply chain position
  • 5.1.11. Main IPC trend
  • 5.1.12. Si-anode citations per application
  • 5.1.13. Recent Si-anode patent citations
  • 5.1.14. Top 3 assignees compared
  • 5.1.15. Top 3 assignees trends compared
  • 5.1.16. Top 3 assignees authorities
  • 5.1.17. Top 3 Si-anode assignee main IPC comparison
  • 5.1.18. Top 3 assignee technology comparison
  • 5.2. Example anode patents
    • 5.2.1. Silicon anode patent examples
    • 5.2.2. Si alloys/titanate coating
    • 5.2.3. Composite C/Si anode particle
    • 5.2.4. Carbon coated silicon anodes - LG Chem
    • 5.2.5. Porous silicon-carbon composite particles
    • 5.2.6. Si/SiC/C composite
    • 5.2.7. Graphene coated silicon nanowire
    • 5.2.8. Anode free lithium battery - Samsung
    • 5.2.9. "Anode-free" lithium battery - SolidEnergy

6. LTO ANODE PATENT LANDSCAPE

  • 6.1. Where will LTO play a role?
  • 6.2. LTO/titanate anode patent application trend
  • 6.3. LTO/titanate patent geographic distribution
  • 6.4. Application trend by assignee location
  • 6.5. Geographical activity of top 20 assignees
  • 6.6. Top 10 assignees
  • 6.7. Top assignees - LTO simple patent families
  • 6.8. Future anode direction

7. ELECTROLYTE PATENT LANDSCAPE

  • 7.1. Introduction to Li-ion electrolytes
  • 7.2. Electrolyte decomposition
  • 7.3. Electrolyte patent application trend
  • 7.4. Top 10 assignees
  • 7.5. Top 10 assignees - electrolyte simple patent families
  • 7.6. Top 10th - 20th assignees
  • 7.7. Player rank by number of active and pending patents
  • 7.8. Electrolyte application geographic distribution
  • 7.9. Geographical activity of top 20 assignees
  • 7.10. Application trend by assignee location
  • 7.11. Application assignee share
  • 7.12. Technology trend
  • 7.13. Electrolyte technology distribution
  • 7.14. Electrolyte patent citations
  • 7.15. Recent electrolyte patent citations
  • 7.16. Electrolyte patent simple family technology splits
  • 7.17. Top 3 electrolyte additive assignee comparison
  • 7.18. Electrolyte additive patent examples
  • 7.19. Ionic liquids
  • 7.20. Ionic Liquid patent application trend
  • 7.21. Ionic liquid usage
  • 7.22. Electrolyte overview

8. SEPARATOR PATENT LANDSCAPE

  • 8.1. Introduction to separators
  • 8.2. Separator search string
  • 8.3. Separator patent application trend
  • 8.4. Separator application geographic distribution
  • 8.5. Application trend by assignee location
  • 8.6. Top 10 assignees
  • 8.7. Top 10th - 20th assignees
  • 8.8. Player rank by number of active and pending patents
  • 8.9. Geographical activity of top 20 assignees
  • 8.10. Separator overview

9. NANOCARBONS - CNTS, GRAPHENE

  • 9.1.1. Conductive agents
  • 9.1.2. CNTs/graphene in LIB patent application trend
  • 9.1.3. CNTs or graphene in LIB patent application trend
  • 9.1.4. Top 10 assignees - CNT, graphene
  • 9.1.5. Top 10th-20th assignees
  • 9.1.6. Player rank by number of active and pending patents
  • 9.1.7. Li-ion CNT/graphene patent citations
  • 9.1.8. Application trend by assignee location
  • 9.1.9. CNT/graphene application geographic distribution
  • 9.1.10. Geographical activity of top 20 assignees
  • 9.1.11. Patent simple family - geographic distribution
  • 9.1.12. Top 3 CNT/graphene assignee main IPC comparison
  • 9.1.13. CNT/Graphene and silicon anodes
  • 9.1.14. Samsung and LG Chem focus
  • 9.1.15. Future nanocarbon direction
  • 9.2. Nanocarbon patent examples
    • 9.2.1. Si nanowire-graphene anodes - Samsung
    • 9.2.2. Tin-graphene anode
    • 9.2.3. Nanocarbon for rate improvement
    • 9.2.4. Tsinghua University portfolio