NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

聚合物回收技術:2020-2030

Polymer Recycling Technologies 2020-2030

出版商 IDTechEx Ltd. 商品編碼 945621
出版日期 內容資訊 英文 157 Pages
商品交期: 最快1-2個工作天內
價格
聚合物回收技術:2020-2030 Polymer Recycling Technologies 2020-2030
出版日期: 2020年06月30日內容資訊: 英文 157 Pages
簡介

到2030年,聚合物回收市場預計將增長到1620億美元。在過去的幾年中,開發可持續技術以實現塑料循環經濟在工業中變得越來越重要。由於越來越多的客戶意識到具有數百年使用壽命的聚合物對環境的影響,並且對與石化產品在塑料製造中使用相關的碳排放的意識也在不斷變化,因此正在重新建立聚合物回收和廢物管理技術。它引起了很多關注。

本報告調查了全球聚合物回收技術的趨勢,包括塑料製造/消費趨勢,環境問題/排放法規/循環經濟目標,回收技術的類型和概述,技術供應商以及技術引進的動因。以及問題,各種技術的經濟學,聚合物回收收益預測,未來前景等。

第1章執行摘要

第2章簡介

  • 塑料廢物
    • 社會,經濟和環境大趨勢
    • 減少二氧化碳排放指令
    • 什麼是循環經濟?
    • 塑料供應激增
    • 對一次性塑料污染的認識
    • 城市固體廢物管理的歷史
    • 十大城市固體廢物(MSW)回收商
    • 全球塑料廢物:按廢物類型分類
    • 中國的國家劍政策
    • 聚合物類型:熱塑性樹脂,熱固性樹脂,彈性體等
  • 生物基和可生物降解的聚合物
    • 可用的生物基單體
    • 生物基聚合物的定義
    • 原材料競爭:食物或燃料(或塑料)
    • 市場增長動力,約束等

第3章回收技術概述

  • 聚合物回收過程
    • 收集方法/設施
    • 單流/多流
    • 四種回收類型:流程定義
    • 聚合物價值鏈中的回收機會
  • 主要聚合物和技術供應商的回收
    • 寵物
    • PE
    • PP
    • PS

第4章一次和二次回收

  • 機械回收
    • 主要機械回收
    • 二次機械回收:回收
    • 二次機械回收:去污
    • 二次機械回收:熔融和擠出
    • 隱形條形碼可改善塑料回收利用
    • 食品工業中的再生聚合物
    • 降級問題
    • 驅動程序/約束
  • 溶劑萃取
    • 什麼是溶劑萃取?
    • VinyLoop- PVC保護套
    • 技術供應商
    • APK
    • 聚苯乙烯
    • Purecycle Technologies
    • 再次磨損
    • 驅動程序/約束

第5章第三級回收

  • 塑料到燃料的轉換
    • 塑料到燃料的轉化(PTF)
    • 塑料廢物的熱解
    • 塑料熱解的優勢和挑戰
    • 技術供應商
    • 敏捷工藝化學品有限公司
    • Agilyx
    • Enerkem
    • 啟用
    • 支鏈生物能源
    • 克林工業
    • Plastic2Oil
    • 塑料能源
    • Nexus燃料
    • 回收技術
    • 驅動程序/約束
  • 解聚
    • 聚合物到單體/中間解聚
    • PET解聚
    • 聚苯乙烯解聚
    • 聚烯烴解聚
    • 可生物降解的聚合物解聚
    • 按原材料分類的技術供應商
    • Agilyx
    • 琥珀週期
    • Aquafil
    • 生物選擇
    • Carbios
    • 嘉寶
    • Gr3n
    • Ioniqa
    • 傑普蘭
    • 循環工業
    • 自然工程
    • 熱浪
    • 驅動程序/約束

第6章第四次回收

  • 從廢物到能源:焚燒聚合物
  • 城市生活垃圾與煤/石油/天然氣的比較
  • 與垃圾填埋場和垃圾回收競爭的焚化
  • 焚燒點差:美國與歐洲
  • 關於焚燒的討論

第7章市場預測/常規

  • 油價對塑料回收的影響
  • 收支平衡點:機械回收
  • 收支平衡點:溶劑萃取
  • 收支平衡點:從塑料到燃料的轉化
  • 收支平衡點:解聚
  • 聚合物回收收入
  • 依法促銷
  • 聚合物回收的前景

第8章附錄:術語和定義

目錄

Title:
Polymer Recycling Technologies 2020-2030
End of life options for plastic waste: tools, trends and markets.

The market for polymer recycling will reach $162 billion by 2030.

Developing sustainable technologies to create a circular economy for plastics has become increasingly important in industry over the past few years. Increasing customer awareness of the environmental impact of polymers with lifespans of several hundreds of years, as well as a global shift in attitudes towards carbon dioxide emissions from the use of petrochemicals to create new plastics, has resulted in renewed focus on polymer recycling and waste management technologies.

However, existing technologies have relied upon mechanically sorting and melting plastic waste, which frequently result in "down-cycling" of materials due to high levels of contamination. The issues with current recycling processes are so severe that countries like China who were previously mass importers of waste for recycling have closed their doors, throwing the world of recycling into chaos and driving Western nations to look for alternative technologies for recycling the growing mountain of plastic waste. Technologies such as thermal pyrolysis or catalytic depolymerisation could be part of the solution, allowing unrecyclable plastics to be converted into fuels and chemical feedstocks. But will these technologies ever be cheap or functional enough to become viable solutions?

Technology and applications

In 2020, the range of technologies to recycle polymer waste is growing rapidly. Polymer recycling technologies 2020-2030 takes an in-depth look into the diverse range of leading-edge companies developing new technologies to process polymer waste. In-depth assessments of the latest technologies are provided, with focus on chemical recycling, including depolymerisation, pyrolysis, gasification and solvent extraction. Furthermore, this report cuts through the marketing hype to offer a detailed insight into some of the foremost polymer recycling technology suppliers leading global innovation and bringing potentially disruptive products to market.

Market analysis

This report provides an overview of the technological advancements in polymer recycling to date, a comprehensive insight into the drivers and restraints affecting adoption and implementation at scale, and provides case studies and SWOT analyses for the most prolific disrupters developing novel polymer recycling technologies. IDTechEx conducted exhaustive primary research with companies across a range of industries developing polymer recycling technologies for key insights into the drivers and restraints affecting the growth of this technology.

Key questions answered in this report:

  • Who are the key players developing new technologies for polymer recycling?
  • What are the types of new technologies being developed?
  • Which polymers are being actively targeted and why?
  • How do new recycling technologies feed into the polymer value chain?
  • What are the key drivers and restraints of market growth?
  • How can mechanical recycling be disrupted by new polymer recycling technologies?
  • How will revenues from new polymer recycling technologies evolve from 2020-2030?

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. What is the circular economy?
  • 1.2. Awareness around single use plastic pollution
  • 1.3. Global plastics production to pass 600 million tonnes by 2030
  • 1.4. Historical management of Municipal Solid Waste
  • 1.5. China's National Sword policy
  • 1.6. Outlook for managing plastic waste in largest producers
  • 1.7. What is solvent extraction?
  • 1.8. Drivers and restraints
  • 1.9. Conversion of plastics to fuels (PTF)
  • 1.10. Drivers and restraints
  • 1.11. Polymer to monomer and intermediate depolymerisation
  • 1.12. Drivers and restraints
  • 1.13. Global revenues from polymer recycling
  • 1.14. What is the future for polymer recycling?

2. INTRODUCTION

  • 2.1. Plastic Waste
    • 2.1.1. Social, economic and environmental megatrends
    • 2.1.2. Reduced carbon dioxide emissions directives
    • 2.1.3. What is the circular economy?
    • 2.1.4. Global supply of plastics has grown exponentially
    • 2.1.5. Awareness around single use plastic pollution
    • 2.1.6. Global plastics production to pass 600 million tonnes by 2030
    • 2.1.7. Historical management of municipal solid waste
    • 2.1.8. The top 10 global recyclers of municipal solid waste (MSW)
    • 2.1.9. Plastic recycling is lagging behind
    • 2.1.10. Global plastic waste by disposal type
    • 2.1.11. China's National Sword policy
    • 2.1.12. The consequences of the National Sword policy
    • 2.1.13. Plastic recycling varies by polymer type
    • 2.1.14. Polymer types: thermoplastics, thermosets and elastomers
    • 2.1.15. Why are plastic recycling rates so low?
    • 2.1.16. Outlook for managing plastic waste in largest producers
  • 2.2. Biobased and biodegradable polymers
    • 2.2.1. The range of available biobased monomers
    • 2.2.2. Defining "biobased polymers"
    • 2.2.3. Biobased polymers and waste management in 2020
    • 2.2.4. Are biodegradable plastics the solution?
    • 2.2.5. Biobased value add: The Green Premium...
    • 2.2.6. ...versus the price of Brent Crude
    • 2.2.7. Environmental costs: the rising tide of plastic pollution
    • 2.2.8. Feedstock competition: food or fuel (or plastics)?
    • 2.2.9. Drivers and restraints of market growth
    • 2.2.10. Relevant IDTechEx research

3. RECYCLING TECHNOLOGIES OVERVIEW

  • 3.1. Polymer recycling processes
    • 3.1.1. Recycling collection methods and facilities
    • 3.1.2. Single vs multiple stream recycling
    • 3.1.3. The four types of recycling: process definitions
    • 3.1.4. Opportunities for recycling in the polymer value chain
  • 3.2. Recycling key polymers
    • 3.2.1. Recycling key polymer types
    • 3.2.2. Recycling PET
    • 3.2.3. Technology suppliers for PET recycling in this report
    • 3.2.4. Recycling PE
    • 3.2.5. Technology suppliers for PE recycling in this report
    • 3.2.6. Recycling PP
    • 3.2.7. Technology suppliers for PP recycling in this report
    • 3.2.8. Recycling PS
    • 3.2.9. Technology suppliers for PS recycling in this report

4. PRIMARY AND SECONDARY RECYCLING

  • 4.1. Mechanical recycling
    • 4.1.1. Primary mechanical recycling
    • 4.1.2. Secondary mechanical recycling: collection
    • 4.1.3. Secondary mechanical recycling: decontamination
    • 4.1.4. Secondary mechanical recycling: melt and extrusion
    • 4.1.5. Invisible barcodes to improve plastic recycling
    • 4.1.6. Recycled polymers in the food industry
    • 4.1.7. The problem of downcycling
    • 4.1.8. Drivers and restraints of secondary mechanical recycling
  • 4.2. Solvent extraction
    • 4.2.1. What is solvent extraction?
    • 4.2.2. VinyLoop- PVC: a warning case study
    • 4.2.3. Technology suppliers
    • 4.2.4. APK
    • 4.2.5. Polystyvert
    • 4.2.6. Purecycle Technologies
    • 4.2.7. Worn Again
    • 4.2.8. Drivers and restraints

5. TERTIARY RECYCLING

  • 5.1. Plastic to fuel conversion
    • 5.1.1. Conversion of plastics to fuels (PTF)
    • 5.1.2. Conversion of plastics to fuels (PTF)
    • 5.1.3. Incineration, gasification or thermal pyrolysis?
    • 5.1.4. Typical outputs of plastic to fuel processes
    • 5.1.5. Pyrolysis of plastic waste
    • 5.1.6. Pyrolysis of plastic waste - process diagram
    • 5.1.7. Advantages and challenges in plastic pyrolysis
    • 5.1.8. Size limitations
    • 5.1.9. Hydrogen deficiency
    • 5.1.10. Contamination
    • 5.1.11. The impact of contamination
    • 5.1.12. Gasification of plastic waste
    • 5.1.13. Challenges in gasification
    • 5.1.14. Options for syngas from gasification
    • 5.1.15. Feedstock materials for PTF conversion
    • 5.1.16. PTF conversion outputs and side products
    • 5.1.17. A comparison of plastic to fuel techniques
    • 5.1.18. The environmental impact of plastic to fuel conversion
    • 5.1.19. Technology suppliers
    • 5.1.20. Agile Process Chemicals LLP
    • 5.1.21. Agilyx
    • 5.1.22. Enerkem
    • 5.1.23. Enval
    • 5.1.24. Fulcrum Bioenergy
    • 5.1.25. Klean Industries
    • 5.1.26. Plastic2Oil
    • 5.1.27. PlasticEnergy
    • 5.1.28. Nexus Fuels
    • 5.1.29. Recycling Technologies
    • 5.1.30. Drivers and restraints
  • 5.2. Depolymerisation
    • 5.2.1. Polymer to monomer and intermediate depolymerisation
    • 5.2.2. Depolymerisation of PET
    • 5.2.3. Depolymerisation of polystyrene
    • 5.2.4. Depolymerisation of polyolefins
    • 5.2.5. Depolymerisation of biodegradable polymers
    • 5.2.6. Technology suppliers by feedstock
    • 5.2.7. Agilyx
    • 5.2.8. Ambercycle
    • 5.2.9. Aquafil
    • 5.2.10. BioCellection
    • 5.2.11. Carbios
    • 5.2.12. Garbo
    • 5.2.13. Gr3n
    • 5.2.14. Ioniqa
    • 5.2.15. Jeplan
    • 5.2.16. Loop Industries
    • 5.2.17. Natureworks
    • 5.2.18. Pyrowave
    • 5.2.19. Drivers and restraints

6. QUATERNARY RECYCLING

  • 6.1. Waste to energy: polymer incineration
  • 6.2. MSW versus coal, oil and gas comparison
  • 6.3. Incineration competing with landfill and recycling
  • 6.4. Incineration uptake: USA versus Europe
  • 6.5. Debate surrounding incineration

7. MARKET FORECASTS AND CONCLUSIONS

  • 7.1. How oil prices affect plastic recycling
  • 7.2. Breakeven price point for mechanical recycling
  • 7.3. Breakeven for solvent extraction
  • 7.4. Breakeven for plastic to fuel conversion
  • 7.5. Breakeven for depolymerisation
  • 7.6. Global revenues from polymer recycling
  • 7.7. Could regulations spur things on?
  • 7.8. What is the future for polymer recycling?

8. APPENDIX: GLOSSARY AND DEFINITIONS

  • 8.1. Glossary: common acronyms for reference
  • 8.2. Key terms and definitions