表紙
市場調查報告書
商品編碼
943884

新型太陽能電池材料的市場機會:2020-2040年

Materials Opportunities in Emerging Photovoltaics 2020-2040

出版日期: | 出版商: IDTechEx Ltd. | 英文 212 Slides | 商品交期: 最快1-2個工作天內

價格
  • 全貌
  • 簡介
  • 目錄
簡介

預計到2024年,除矽以外先進級PV(太陽能電池)市場將擁有約400億美元的市場機會。

本報告調查了PV(太陽能電池)材料的市場機會,並概述了PV和PV材料市場的現狀和現狀,概述了主要新材料,功能和特性,發展計劃以及主要公司和機構的舉措。 製造/成本趨勢,市場前景/預測等。

第1章執行摘要

第2章簡介

第3章市場機會:無機化合物半導體LLL-V PV材料

  • 概述
  • 毒性
  • 太空計劃:ITMO大學IOFFE研究所
  • 波音光譜實驗室
  • NREL
  • 顯著降低成本和價格
  • 室內:重量輕
  • 太陽能汽車技術比較:Sono/Lightyear/Toyota

第4章市場機會:硒化銅銦鎵(CIGS)

  • 概述
  • 工作原理
  • CIGS PV工藝:Sunflare/Flisom/EMPA/Manz/Solar Frontier
  • CIGS製造/材料/無毒路線
  • 避免ITO
  • Ascent Solar
  • 更好的聚合物基材工藝:KIER
  • Renovagen:高輸出PV
  • Manz
  • Flisom
  • 其他
  • 市場領導者:Solar Frontier
  • 專業利基市場:Sunflare

第5章市場機會:有機OPV材料

  • 概述
  • 競爭環境
  • 促進商業化
  • Heliatek
  • Opvius、Armor
  • 設備架構-Sigma Aldrich材料
  • 材料:Merck、DuPont Teijin
  • 首選基材
  • 主要設備架構
  • 供體聚合物
  • 供體小分子
  • 主要受體材料
  • 解決方案處理方面的進展
  • 串聯OPV
  • R2R溶液和R2R蒸發的比較
  • R2R主要技術問題
  • 障礙/封裝挑戰
  • 透明電極
  • 重大進展:NFA(非富勒烯受體)等

第六章市場機會:鈣鈦礦光伏材料

  • 概述
  • 結構/設備架構
  • 工作原理
  • 架構
  • 到2040年提供的價值/路線圖
  • 鈣鈦礦材料
  • 效率原因
  • 效率與傳遞
  • 無鉛鈣鈦礦:路線圖
  • 延長壽命
  • 鈣鈦礦柔性太陽能電池
  • 鈣鈦礦組件成本估算等

第7章組合技術,量子點,通配符

  • 多技術太陽能發電
  • 鈣鈦礦串聯矽片:記錄的效率為25.2%
  • CIGS鈣鈦礦
  • 量子點
  • 毒性
  • 通卡:2D材質天線

第8章用於太陽能發電的導電膠

  • 概述
  • 射擊
  • 太陽能發電的主要成本因素
  • 減少每個晶片的銀含量
  • 市場份額預測:電鍍和絲網印刷
  • 太陽能發電:更薄晶圓的發展路線圖
  • 光伏市場份額預測:各種金屬化技術
  • 矽油墨
  • 太陽能電池的銅金屬化
  • 銀納米顆粒和薄膜太陽能電池
  • PV/加熱器:數字印刷

第9章PV阻擋層

  • 勢壘封裝的重要性
  • 屏障性能要求(透射率)
  • 屏障要求:靈活性/可旋轉性
  • 塑料基材問題
  • 多層方法的基礎
  • R2R阻隔膜
  • 玻璃/多層膜/多層串聯薄膜封裝
  • TFE趨勢:沉積的過去,現在和未來
  • 障礙解決方案基準測試
  • 靈活的CIGS:市場預測等
目錄

Title:
Materials Opportunities in Emerging Photovoltaics 2020-2040
CIGS, GaAs, lll-V compound, perovskite, OPV, CdTe, conductor, barrier, TCO, ITO, paint, transparent, flexible.

"Nearly $40bn in 2040 sales of advanced photovoltaics beyond silicon await."

New IDTechEx report, "Materials Opportunities in Emerging Photovoltaics 2020-2040" is based on interviews by multi-lingual, PhD level IDTechEx analysts across the world and 20 years tracking the research and applications. Nearly $40 billion dollars envisaged in 2040 without colliding with commoditised silicon-in-glass "power station" business. Much premium-pricing of specialist materials.

See why profit from emerging PV will be disproportionately high - up to half the profit from all PV in 2040. Learn why over $10,000/W is currently paid for record 30% efficient lll-V compound PV in a designer watch, as an array on a satellite or surface of a high-altitude drone and lll-V is the basis of Toyota's solar car development. Tripled-efficiency indoor "lll-V" PV is newly on sale. Organic PV has jumped in efficiency, adding other uniques for other segments. Understand how copper-indium-gallium-diselenide PV created $2 billion yearly sales in only ten years. Further stellar growth powered by what improved materials?

Most emerging PV is thin film, flexible and some will be stretchable materials. Tightly-rollable PV in your mobile phone, aircraft skin, billions of Internet of Things nodes? Hundreds of millions more building facades need lightweight PV. What three technologies for PV paint? Retrofit on windows, boats, buses?

Whisper it quietly, but with silicon near its theoretical limits and taking massive areas of real estate - often prime agricultural land and lakes - emerging PV will eventually compete with some "power station" silicon by affordably providing the power in half the area and therefore being much more widely deployable and environmentally acceptable but this report is mainly about the huge opportunities in the run up to that.

The 212 page IDTechEx report, "Materials Opportunities in Emerging Photovoltaics" has executive summary and conclusions sufficient for busy people. Absorb 18 primary conclusions, 2020-2040 forecasts, roadmaps, price sensitivity, learning curves projected forward, gaps in the market, the application hierarchy. The introduction reveals the amazing virtuosity of PV already, important parameters, SOFT report, PV architectures, efficiency trends. New infograms compare PV options beyond silicon, production readiness, 13 examples of new formats/ locations, progress to user-customised PV materials, PV combinations.

Chapter 3 dives into inorganic compound semiconductor lll-V PV architectures, material advances of Boeing Spectrolab, the Russians, Lightricity, Sharp-Toyota and cost-reduction routes to volume lll-V sales researched by NREL. Chapter 4 concerns copper-indium-gallium-diselenide CIGS opportunities including cost reduction research, efficiency increase, elimination of cadmium. See activities of Ascent Solar, Flisom-EMPA, Manz, Renovagen, Solar Frontier and others. Chapter 5 on organic OPV materials opportunities reveals recently-transformed competitive situations, rapid efficiency and life potential, Armor-Opvius, Heliatek, materials suppliers, gaps in the market. Understand new molecule choices, fullerene elimination and special OPV barrier-layers.

Chapter 6 is a sober look at the now-fashionable perovskite PV balancing stellar efficiency gains with challenges in stability and use of lead. What is being done about it? Chapter 7 wraps up the basic chemistry options with dual technology such as perovskite on silicon or CIGS then wild card PV materials opportunities. Here are quantum dot toxicity issues, rectenna-array harvesting and 2D PV materials. Chapters 8 and 9 are a close analysis of the conductive pastes and barrier layers opportunity overall.

VIDEO DEMONSTRATION

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Purpose of this report
  • 1.2. Two worlds
  • 1.3. Anatomy of the photovoltaic business 2020-2040
  • 1.4. Primary conclusions: photovoltaics top ten manufacturers chemistry
  • 1.5. Primary conclusions: price-volume sensitivity by application
  • 1.6. Primary conclusions: cost progression 1976-2040
  • 1.7. Primary conclusions: thin film PV market
  • 1.8. Primary conclusions: cadmium telluride
  • 1.9. Primary conclusions: geographic PV materials demand
  • 1.10. CIGS PV forecasts
    • 1.10.1. Global output of thin film CIGS photovoltaics $M and MWp 2000-2018
    • 1.10.2. Global market for thin film CIGS photovoltaics $ billion and GWp 2020-2040
  • 1.11. Global market for lll-V compound semiconductor PV $ billion and GWp 2020-2040
  • 1.12. Global market for perovskite PV $M
  • 1.13. Global market for OPV $M

2. INTRODUCTION

  • 2.1. Overview: amazing virtuosity
    • 2.1.1. Extreme vehicles and weak light create new markets
    • 2.1.2. Photovoltaic cooking without batteries
  • 2.2. The energy positive house
  • 2.3. Ever larger solar farms
  • 2.4. Solar cars: Hyundai, Tesla
  • 2.5. Winning electromagnetic frequencies
  • 2.6. SOFT report on photovoltaics
  • 2.7. Some of the important parameters
  • 2.8. Single crystal scSi vs polycrystal pSi vs amorphous
  • 2.9. Amorphous silicon
  • 2.10. Big picture: wafer vs thin film photovoltaics 2020-2040
  • 2.11. PV mechanisms: status, benefits, challenges, market potential compared
    • 2.11.1. Five mechanisms compared
    • 2.11.2. Best research-cell efficiencies assessed 1975-2020
  • 2.12. Important PV options beyond silicon compared
  • 2.13. Thirteen new photovoltaic formats creating materials markets
  • 2.14. Photovoltaics progresses to become paint and user material
  • 2.15. Solar piazzas, driveways, roads: Platio Hungary
  • 2.16. MEMS PV
  • 2.17. Transparent, indoor and underwater PV materials needed
  • 2.18. Materials opportunities from integration with other harvesting materials
    • 2.18.1. Triboelectric TENG with other harvesting: experimental
    • 2.18.2. Integration in smart watches

3. INORGANIC COMPOUND SEMICONDUCTOR LLL-V PV MATERIAL OPPORTUNITIES

  • 3.1. Overview
  • 3.2. Toxicity
  • 3.3. Space program: IOFFE Institute, ITMO University
  • 3.4. Boeing Spectrolab
  • 3.5. NREL
  • 3.6. Costs and prices can be greatly reduced
  • 3.7. Indoors: Lightricity
  • 3.8. Solar vehicle technologies compared: Sono, Lightyear, Toyota with lll-lV
    • 3.8.1. Solar vehicle chemistry
    • 3.8.2. Solar vehicle format

4. COPPER INDIUM GALLIUM DISELENIDE CIGS OPPORTUNITIES

  • 4.1. Overview
  • 4.2. Operating principle
  • 4.3. CIGS photovoltaics processes: Sunflare, Flisom, EMPA, Manz, Solar Frontier
  • 4.4. CIGS production, materials, routes to non toxic
  • 4.5. Avoiding ITO
  • 4.6. Ascent Solar
  • 4.7. Better polymer substrate process: KIER
  • 4.8. Renovagen: high power PV like a carpet roll
  • 4.9. Manz
  • 4.10. Flisom customizable flexible
  • 4.11. Other CIGS PV in action on vehicles
  • 4.12. Market leader Solar Frontier
  • 4.13. Sunflare: specialist niches

5. ORGANIC OPV MATERIALS OPPORTUNITIES

  • 5.1. Overview
  • 5.2. Competitive situation
  • 5.3. OPV progress to commercialisation 2000-2040
  • 5.4. Sunew
  • 5.5. Heliatek
  • 5.6. Opvius and Armor
  • 5.7. Device architecture and Sigma Aldrich materials
  • 5.8. Materials: Merck, DuPont Teijin
  • 5.9. What substrates to choose?
  • 5.10. Typical device architectures
  • 5.11. Film morphology and degradation control for bulk heterojunction
  • 5.12. R2R solution vs R2R evaporation
  • 5.13. Donor polymers
  • 5.14. Donor small molecules
  • 5.15. Typical acceptor materials
  • 5.16. Progress in solution processing
  • 5.17. Progress in tandem cell evaporation
  • 5.18. Solution processed 17.5% tandem OPV
  • 5.19. R2R solution vs R2R evaporation
  • 5.20. Major technical challenges with R2R
  • 5.21. Barrier/encapsulation challenge
  • 5.22. Transparent electrode
  • 5.23. Big advance 2018- 2020: non-fullerene acceptors NFA

6. PEROVSKITE PV MATERIAL OPPORTUNITIES

  • 6.1. Overview
  • 6.2. Perovskite structure and device architecture
  • 6.3. Working principle
  • 6.4. Architectures
  • 6.5. Value propositions and roadmap to 2040
  • 6.6. Perovskite materials
  • 6.7. Why perovskite is so efficient
  • 6.8. Efficiency versus transmission
  • 6.9. Roadmap to lead-free perovskite
  • 6.10. Improving life
  • 6.11. Flexible perovskite solar cells
  • 6.12. Deposition processes for perovskite films
  • 6.13. Perovskite module cost estimation
  • 6.14. Future perovskite PV system cost breakdown

7. DUAL TECHNOLOGY, QUANTUM DOT, WILD CARD OPPORTUNITIES

  • 7.1. Dual technology photovoltaics
  • 7.2. Perovskite silicon tandem: record 25.2% efficiency
  • 7.3. Perovskite on CIGS
  • 7.4. Quantum dot
  • 7.5. Toxicity
  • 7.6. Wild cards: 2D materials, nantennas
    • 7.6.1. 2D materials
    • 7.6.2. Rectenna nantenna-diode

8. CONDUCTIVE PASTES IN PHOTOVOLTAICS

  • 8.1. Overview
  • 8.2. Firing
  • 8.3. Major cost drivers for photovoltaics
  • 8.4. Reducing silver content per wafer: industry consensus
  • 8.5. Expected market share: plating and screen printing of electrodes
  • 8.6. Photovoltaics: roadmap towards ever thinner wafers
  • 8.7. Photovoltaics market share forecast for different metallization technologies
  • 8.8. Silicon inks: made redundant before seeing daylight?
  • 8.9. Copper metallization in solar cells
  • 8.10. Silver nanoparticles adopted for thin film photovoltaics?
  • 8.11. PV and heater: digital printing comes of age?

9. BARRIER LAYERS FOR PHOTOVOLTAICS

  • 9.1. Why barriers and encapsulation?
  • 9.2. Barrier performance requirements (permeation rates)
  • 9.3. Barrier requirements: towards flexibility and rollability
  • 9.4. Plastic substrates are a challenge
  • 9.5. The basis of the multi-layer approach
  • 9.6. Status of R2R barrier films in performance, web width and readiness/scale
  • 9.7. Challenges of R2R barrier film production
  • 9.8. From glass to multi-layer films to multi-layer inline thin film encapsulation
  • 9.9. Trends in TFE: Past, present and future of deposition
  • 9.10. Benchmarking different barrier solutions
  • 9.11. Evolution of production parameters to enable multi-layer barrier cost reduction
  • 9.12. Flexible CIGS: market forecast sqm and value by barrier technology