表紙
市場調查報告書

電子皮膚貼片市場:2020年∼2030年

Electronic Skin Patches 2020-2030

出版商 IDTechEx Ltd. 商品編碼 936178
出版日期 內容資訊 英文 405 Slides
商品交期: 最快1-2個工作天內
價格
電子皮膚貼片市場:2020年∼2030年 Electronic Skin Patches 2020-2030
出版日期: 2020年05月14日內容資訊: 英文 405 Slides
簡介

本報告提供電子皮膚貼片市場相關調查分析,概要,市場分析與預測,案例研究等相關之系統性資訊。

目錄

第1章 摘要整理

第2章 簡介

第3章 皮膚貼片的糖尿病管理

  • 背景:糖尿病的數量
  • 背景:增加中的糖尿病
  • 背景:糖尿病的費用
  • 糖尿病管理流程
  • 糖尿病管理設備發展藍圖:摘要
  • 糖尿病管理設備發展藍圖:感測器
  • 持續的血糖監測系統 (CGM)的案例
  • 典型性的CGM設備結構
  • CGM感測器結構
  • CGM經由皮膚貼片展開等

第4章 心血管監控的皮膚貼片

  • 在簡介:穿戴式設備經由心血管監控
  • 檢測簡介:生物電位
  • 測量技術概要:生物電位的電路
  • 簡介:心電圖 (ECG,EKG)
  • 心臟監測用設備
  • 心臟監測設備的種類:皮膚貼片
  • 企業與產品類型
  • 技術概要:電極特性
  • 拋棄式Ag/AgCl電極
  • 電極:傳統的方法等

第5章 一般病床的監測

  • 簡介
  • 經由皮膚貼片無線住院病患監測
  • 經由皮膚貼片妊娠監測
  • 經由皮膚貼片一般門診病人監測
  • 市場預測

第6章 溫度感測的皮膚貼片

  • 簡介:體溫
  • 溫度感測技術選擇
  • 醫療用溫度感測的方法與規格
  • 溫度感測皮膚貼片
  • 皮膚貼片的溫度感測:使用案例等

第7章 皮膚貼片的電刺激

  • 簡介:電刺激的種類
  • 電刺激的區別
  • 電刺激的命名
  • 電刺激產品的種類
  • 醫療設備和非醫療設備
  • 生物電子學的醫療:定義和背景
  • 生物電子學的醫療主要的形態
  • 生物電子學的醫療的演進等

第8章 離子導入的皮膚貼片:化妝品、藥物輸送

  • 簡介:離子導入
  • 化妝品
  • 藥物輸送
  • 逆離子導入
  • 市場預測與結論

第9章 發汗感測:發汗速度和生物標記

  • 簡介:發汗感測
  • 發汗速度的檢測
  • 技術概要:生物電阻的檢測
  • 技術概要:皮膚電反應 (GSR)
  • 技術概要:發汗的濕度感測器等

第10章 皮膚貼片的創傷監測、治療

第11章 皮膚貼片的運動感測

第12章 對植入的通訊閘道器的皮膚貼片

第13章 皮膚貼片的其他應用

第14章 市場預測

目錄

Title:
Electronic Skin Patches 2020-2030
The most comprehensive assessment on the commercialization of flexible, wearable, smart skin patches.

The market for electronic skin patches will be worth over $20bn by 2023.

This report characterizes the markets, technologies and players in electronic skin patches. With coverage across 28 application areas and over 120 companies, historic market data from 2010-2019 and market forecasts from 2020 to 2030, it is the most comprehensive study compiled for this emerging product area. It reveals significant opportunity, with nearly $10bn in revenue made from electronic skin patches in 2019, and a forecast for this to grow to nearly $40bn by 2030.

Skin patches are wearable products attached to the skin. The electronic element involves the integration of electronic functionality such as sensors, actuators, processors and communication, allowing the devices to become connected and "smart". In many ways, skin patches act as the ultimate wearable electronic devices, augmenting the wearer with minimal encumbrance and maximum comfort. As such, interest in electronic skin patches soared as a by-product of the significant hype and market growth around "wearables" starting in 2014.

However, several product types within the sector transcend this hype. Several skin patch product areas, particularly in diabetes management and cardiovascular monitoring, have superseded incumbent options in established markets to create billions of dollars of new revenue each year for the companies at the forefront of this wave. However, success is not ubiquitous; each market discussed within this report sits within a unique ecosystem, with different players, drivers, limitations and history to build on.

As such, the report looks at each of the application areas for electronic skin patches in turn, discussing the relevant technology, product types, competitive landscape, industry players, pricing, historic revenue, and market forecasts. The areas covered include diabetes management, cardiac devices, medical patient monitoring (both inpatient and outpatient), motion sensing, temperature sensing, drug and cosmetic delivery patches, smart bandages for wound care and more. For the established markets within the sector, the report contains historic revenue data by company back to 2010. The report also contains detailed market forecasting over 10 years for each of the key application areas.

The product category of "electronic skin patches" conceals a significant amount of diversity. Whilst many people may imagine skin patches to be thin, highly conformable devices that sit close to the skin, the reality is that many of the most successful products today are still relatively bulky devices. As such, the report also contains a discussion of technology areas relevant to the future development of smart patches, particularly around areas such as flexible, stretchable and conformal electronic components. Development of these technologies will not only enable more products to be deployed as skin patches, but will also improve the form factor of electronic skin patches that already exist.

The research behind the report has been compiled over several years by IDTechEx analysts. It follows existing coverage of areas such as wearable technology, flexible electronics, stretchable and conformal electronics, electronic textiles, advanced wound care, bioelectronics and more. The methodology involved a mixture of primary and secondary research, with a key focus on speaking to executives and scientists from companies developing commercial electronic skin patches. As such, the report compiles case studies of over 120 companies and projects, each updated over time and compared within their appropriate product ecosystems.

Unique position and experience behind the report

IDTechEx is afforded a particularly unique position in covering this topic. The experienced analyst team builds on decades of experience covering emerging technology markets, and particularly areas such as flexible electronics which are central to electronic skin patches. This has been historically supported by IDTechEx's parallel activities in organising the leading industry conferences and exhibitions covering flexible and wearable electronics, as well as smaller events covering specific innovation trends such as for healthcare sensors or related areas. IDTechEx has the unique ability to curate a network in these topic areas, facilitating the reporting in this report.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Executive introduction: Electronic skin patches
  • 1.2. Application overview
  • 1.3. Applications, market sizes and outlook
  • 1.4. CGM leads the way
  • 1.5. Insulin pumps and patch pumps
  • 1.6. Diabetes management: full historic data and forecast
  • 1.7. Monitoring the heart via skin patches
  • 1.8. Players and product types in cardiac monitoring
  • 1.9. Cardiac monitoring skin patches: Historic data: 2010-2019
  • 1.10. Cardiac monitoring skin patches: Market forecasts
  • 1.11. Skin patches patient monitoring: Historic data: 2010-2019
  • 1.12. Skin patch patient monitoring: Market forecasts: 2020-2030
  • 1.13. Skin patch temperature sensing: Use cases across 12 case studies
  • 1.14. Key conclusions: Temperature sensing skin patches
  • 1.15. Electrical stimulation product types
  • 1.16. Skin patches in bioelectronic medicine
  • 1.17. Electrical stimulation via skin patches: Market data (2010-2019)
  • 1.18. Electrical stimulation via skin patches: Market forecast (2020-2030)
  • 1.19. Introduction - Iontophoresis
  • 1.20. Iontophoresis via skin patches: Market data (2010-2019)
  • 1.21. Iontophoresis via skin patches: Market forecast (2020-2030)
  • 1.22. Key conclusions: Iontophoresis
  • 1.23. Examples of players from case studies

2. INTRODUCTION

  • 2.1.1. The case for skin patches: Augmenting the human body
  • 2.1.2. The case for skin patches: Improving device form factor
  • 2.1.3. Definitions and exclusions
  • 2.1.4. History of skin patches
  • 2.1.5. Applications, market sizes and outlook
  • 2.1.6. Reimbursement drives commercial business models
  • 2.1.7. Patents: Total active patents by assignee
  • 2.1.8. Patents over time
  • 2.1.9. Patents: Active and strong patents by assignee
  • 2.1.10. Context: Wearables hype
  • 2.1.11. Glossary
  • 2.2. Application overview
    • 2.2.1. Skin patches competing with established products
    • 2.2.2. New market creation around skin patches
    • 2.2.3. Section contents

3. DIABETES MANAGEMENT VIA SKIN PATCHES

  • 3.1.1. Background: Diabetes in numbers
  • 3.1.2. Background: Diabetes on the rise
  • 3.1.3. Background: The cost of diabetes
  • 3.1.4. Diabetes management process
  • 3.1.5. Diabetes management device roadmap: Summary
  • 3.1.6. Diabetes management device roadmap: Sensors
  • 3.1.7. The case for continuous glucose monitoring (CGM)
  • 3.1.8. Anatomy of a typical CGM device
  • 3.1.9. Anatomy of a CGM sensor
  • 3.1.10. CGM is deployed via skin patches
  • 3.1.11. Non-invasive glucose monitoring?
  • 3.1.12. Opinions against non-invasive glucose monitoring
  • 3.2. Key players in continuous glucose monitoring (CGM)
    • 3.2.1. CGM: Overview of key players
    • 3.2.2. Abbott Laboratories
    • 3.2.3. Abbott: FreeStyle Libre
    • 3.2.4. Abbott: SMBG vs CGM comparison
    • 3.2.5. Dexcom
    • 3.2.6. Medtronic
    • 3.2.7. Medtronic: Patents in CGM
    • 3.2.8. Roche
    • 3.2.9. Roche: Patents in CGM
    • 3.2.10. Senseonics
  • 3.3. Other players
    • 3.3.1. Ascensia & POCTech
    • 3.3.2. AgaMatrix & WaveForm Technologies
    • 3.3.3. PKVitality
    • 3.3.4. Sano
    • 3.3.5. DiabeLoop
    • 3.3.6. Verily / Google: Contact lenses
  • 3.4. Insulin delivery
    • 3.4.1. Diabetes management device roadmap: Insulin delivery
    • 3.4.2. Insulin pumps: Introduction
    • 3.4.3. Insulin pumps currently available
    • 3.4.4. Insulin pump breakdown
    • 3.4.5. Insulin patch pumps
    • 3.4.6. Example: Progress from Medtronic
    • 3.4.7. Outlook for insulin pumps
  • 3.5. Linking insulin pumps and CGM: Towards an artificial pancreas
    • 3.5.1. Today: Hybrid closed loop systems
    • 3.5.2. Example: Progress from Medtronic
    • 3.5.3. The objective: Closing the feedback loop
    • 3.5.4. Examples and partnerships
  • 3.6. Market data: Historic & forecasts
    • 3.6.1. A shifting focus in diabetes management - Historic data: 2010-2019
    • 3.6.2. Test strip business in decline
    • 3.6.3. The growth of CGM accelerates
    • 3.6.4. Diabetes management: full historic data and forecast
    • 3.6.5. Full dataset with table: 2010-2019 (historic) & 2020-2030 (forecast)

4. CARDIOVASCULAR MONITORING SKIN PATCHES

  • 4.1.1. Introduction - Cardiovascular monitoring via wearable devices
  • 4.1.2. Introduction - Measuring biopotential
  • 4.1.3. Technology overview - the circuitry for measuring biopotential
  • 4.1.4. Introduction - Electrocardiography (ECG, or EKG)
  • 4.1.5. Devices for cardiac monitoring
  • 4.1.6. Cardiac monitoring device types - skin patches
  • 4.1.7. Companies and product types
  • 4.1.8. Technology overview - electrode properties
  • 4.1.9. Disposable Ag/AgCl electrodes
  • 4.1.10. Electrodes: Traditional approaches
  • 4.1.11. Skin patches with disposable electrodes
  • 4.1.12. Skin patches with integrated electrodes
  • 4.1.13. Reimbursement codes for wearable cardiac monitors
  • 4.1.14. 2021: New reimbursement structure in place
  • 4.2. Players
    • 4.2.1. Summaries and interviews with 20 industry players
    • 4.2.2. BioTelemetry, Inc.
    • 4.2.3. BioTelemetry: Timeline
    • 4.2.4. iRhythm
    • 4.2.5. ScottCare
    • 4.2.6. VivaLNK
    • 4.2.7. Fukuda Denshi
    • 4.2.8. Fujita Medical Instruments
    • 4.2.9. Bittium
    • 4.2.10. Byteflies & Quad Industries
    • 4.2.11. Cardiomo
    • 4.2.12. Vivomi
    • 4.2.13. QT Medical
    • 4.2.14. SWMedical
    • 4.2.15. SWMedical - CardiNova
    • 4.2.16. Seers Technology
    • 4.2.17. Rooti
    • 4.2.18. Preventice Solutions
    • 4.2.19. Sigknow
    • 4.2.20. Borsam
    • 4.2.21. Cortrium
    • 4.2.22. Qardio
    • 4.2.23. Holst Center: Skin patches
    • 4.2.24. Medtronic: SEEQ MCT (discontinued)
    • 4.2.25. LumiraDx / FitLinxx: Ampstrip (discontinued)
  • 4.3. Competition with other form factors
    • 4.3.1. Other form factors for ambulatory cardiac monitoring
    • 4.3.2. Wearable vs implantable monitoring
    • 4.3.3. Example: Medtronic (SEEQ & LINQ)
    • 4.3.4. Comparison: Chest straps
    • 4.3.5. Comparison: Apparel
    • 4.3.6. Comparison: Portable devices
    • 4.3.7. Comparison: Smartwatch optical HRM
  • 4.4. Market data and forecasts
    • 4.4.1. Market overview and forecasts
    • 4.4.2. Cardiac monitoring skin patches: Historic data: 2010-2019
    • 4.4.3. Cardiac monitoring skin patches: Market forecasts
    • 4.4.4. Comparison - 2019 & 2020 report forecasts
    • 4.4.5. Full dataset with table: 2010-2019 (historic) & 2020-2030 (forecast)
    • 4.4.6. Key conclusions: cardiac monitoring skin patches

5. GENERAL PATIENT MONITORING

  • 5.1.1. Introduction
  • 5.2. Wireless inpatient monitoring via skin patches
    • 5.2.1. Inpatient monitoring: The case for removing the wires
    • 5.2.2. Players and approaches
    • 5.2.3. Sensium (Surgical Company Group)
    • 5.2.4. VitalConect
    • 5.2.5. Isansys Lifecare
    • 5.2.6. Leaf Healthcare
  • 5.3. Pregnancy monitoring with skin patches
    • 5.3.1. GE Healthcare - Monica Novii
  • 5.4. General outpatient monitoring with skin patches
    • 5.4.1. Qualcomm Life
    • 5.4.2. Qualcomm Life / Capsule Technologies
    • 5.4.3. LifeSignals
    • 5.4.4. Samsung
    • 5.4.5. MC10
    • 5.4.6. DevInnova / Scaleo Medical
    • 5.4.7. Avanix
    • 5.4.8. Avanix - business model and target milestones
  • 5.5. Market forecasts
    • 5.5.1. Skin patches patient monitoring: Historic data: 2010-2019
    • 5.5.2. Skin patch patient monitoring: Market forecasts: 2020-2030
    • 5.5.3. Conclusions & related areas

6. TEMPERATURE SENSING SKIN PATCHES

  • 6.1. Introduction - Body Temperature
  • 6.2. Temperature sensing technology options
  • 6.3. Approaches and standards for medical temperature sensing
  • 6.4. Skin patches for temperature sensing
  • 6.5. Skin patch temperature sensing: Use cases across 12 case studies
  • 6.6. VivaLNK
  • 6.7. VivaLNK & Reckitt Benckiser
  • 6.8. Blue Spark
  • 6.9. Blue Spark & TempTraq®
  • 6.10. Life Science Technology
  • 6.11. Isansys Lifecare
  • 6.12. Raiing Medical
  • 6.13. Bonbouton
  • 6.14. CSEM
  • 6.15. Covestro
  • 6.16. Chois Technology
  • 6.17. Alternative options: Tympanic temperature sensing
  • 6.18. Key conclusions: Temperature sensing skin patches

7. ELECTRICAL STIMULATION WITH SKIN PATCHES

  • 7.1.1. Introduction: Types of electrical stimulation
  • 7.1.2. Differentiation for electrical stimulation
  • 7.1.3. Nomenclature in electrical stimulation
  • 7.1.4. Electrical stimulation product types
  • 7.1.5. Medical vs non-medical devices
  • 7.1.6. Bioelectronic Medicine: Definition and background
  • 7.1.7. Major Forms of Bioelectronic Medicine
  • 7.1.8. The Evolution of Bioelectronic Medicine
  • 7.1.9. Skin patches in bioelectronic medicine
  • 7.2. TENS
    • 7.2.1. TENS - Introduction
    • 7.2.2. Innovative Health Solutions: NSS-2 Bridge
    • 7.2.3. BeWellConnect: MyTens
    • 7.2.4. NeuroMetrix: Quell
    • 7.2.5. Theranica: Nerivio Migra
  • 7.3. EMS / NMES / FES
    • 7.3.1. EMS, NMES and FES
    • 7.3.2. Applications of EMS / NMES
    • 7.3.3. Example: Russian Stimulation
    • 7.3.4. Example: Therapeutic settings and uses
    • 7.3.5. Properties of the stimulation (as presented with a therapeutic focus)
    • 7.3.6. First Kind Medical: geko
    • 7.3.7. Example: HiDow
    • 7.3.8. Hivox Biotek
  • 7.4. Market data and forecasts
    • 7.4.1. Electrical stimulation via skin patches: Market data (2010-2019)
    • 7.4.2. Electrical stimulation via skin patches: Market forecast (2020-2030)

8. IONTOPHORESIS SKIN PATCHES: COSMETICS AND DRUG DELIVERY

  • 8.1.1. Introduction - Iontophoresis
  • 8.2. Cosmetics
    • 8.2.1. Cosmetic skin patches
    • 8.2.2. Estée Lauder
    • 8.2.3. BioBliss™, Iontera, Patchology
    • 8.2.4. Feeligreen (Feeligold)
  • 8.3. Drug delivery
    • 8.3.1. Iontophoresis for drug delivery
    • 8.3.2. Drugs studied for iontophoretic delivery
    • 8.3.3. Commercial activity with drug delivery patches
    • 8.3.4. Feeligreen (Feelicare)
    • 8.3.5. Seoul National University: Parkinson's medication via skin patches
  • 8.4. Reverse iontophoresis
    • 8.4.1. Example: GlucoWatch
    • 8.4.2. Nemaura Medical: sugarBEAT
  • 8.5. Market forecasts and conclusions
    • 8.5.1. Iontophoresis via skin patches: Market data (2010-2019)
    • 8.5.2. Iontophoresis via skin patches: Market forecast (2020-2030)
    • 8.5.3. Key conclusions: Iontophoresis

9. SWEAT SENSING: SWEAT RATE AND BIOMARKERS

  • 9.1.1. Introduction - Sweat sensing
  • 9.1.2. Measuring sweat rate
  • 9.1.3. Technology overview - measuring bioimpedance
  • 9.1.4. Technology overview - Galvanic skin response (GSR)
  • 9.1.5. Technology overview - humidity sensors for sweat
  • 9.1.6. GE Global Research
  • 9.2. Sensing biomarkers in sweat
    • 9.2.1. Technology overview - chemical sensing in sweat
    • 9.2.2. Sweat vs other sources of analytes
    • 9.2.3. Analytes in sweat
    • 9.2.4. Technology overview: Chemical sensing
    • 9.2.5. Biolinq
    • 9.2.6. Kenzen
    • 9.2.7. Milo Sensors
    • 9.2.8. Eccrine Systems
    • 9.2.9. PARC / UCSD
    • 9.2.10. Stanford and UC Berkeley
    • 9.2.11. Xsensio
    • 9.2.12. Epicore Biosystems
    • 9.2.13. Key conclusions: Sweat sensing

10. WOUND MONITORING AND TREATMENT WITH SKIN PATCHES

  • 10.1. Wound Monitoring
  • 10.2. Wound Monitoring: KAUST
  • 10.3. Wound Monitoring: Purdue University
  • 10.4. Wound Monitoring: Tufts University
  • 10.5. Wound Monitoring: Tyndall National Institute
  • 10.6. Wound Monitoring: UC Berkeley
  • 10.7. Wound Monitoring: UCSD
  • 10.8. Wound Monitoring: VTT
  • 10.9. Wound Treatment

11. MOTION SENSING WITH SKIN PATCHES

  • 11.1.1. Introduction - Monitoring motion via skin patches
  • 11.1.2. Different modes for sensing motion
  • 11.2. Measuring motion with inertial measurement units
    • 11.2.1. Introduction - Inertial measurement units
    • 11.2.2. Measuring motion with IMUs: Examples
    • 11.2.3. Value chain and examples of players
    • 11.2.4. IMUs in skin patches
    • 11.2.5. Measuring motion with conformal sensors
    • 11.2.6. Introduction - alternatives for measuring motion
    • 11.2.7. Technology overview - Resistive/piezoresistive sensing
    • 11.2.8. Players and industry dynamic
    • 11.2.9. Peratech
    • 11.2.10. Quantum tunnelling composite: QTC®
    • 11.2.11. QTC® vs. FSR™ vs. piezoresistor?
    • 11.2.12. Bebop Sensors
    • 11.2.13. Bainisha
    • 11.2.14. Technology overview - Capacitive sensing
    • 11.2.15. Parker Hannifin
    • 11.2.16. Stretchsense
    • 11.2.17. LEAP Technology
    • 11.2.18. Technology overview - Piezoelectric sensing
  • 11.3. Application examples
    • 11.3.1. Applications for skin patch motion sensors
    • 11.3.2. Case study - Concussion detection
    • 11.3.3. X2 Biosystems
    • 11.3.4. US Military head trauma patch / PARC
    • 11.3.5. Key conclusions: Motion sensing

12. SKIN PATCHES AS A COMMUNICATION GATEWAY TO IMPLANTS

  • 12.1.1. Communication with implants
  • 12.2. Examples in bioelectronic medicine
  • 12.2.1. Skin patches with bioelectronic medicine implants
  • 12.2.2. NeuroRecovery Technologies
  • 12.2.3. Stimwave: Freedom SCS
  • 12.2.4. SPR Therapeutics: Sprint PNS
  • 12.2.5. Bioness: StimRouter
  • 12.3. Other examples
    • 12.3.1. Proteus Digital Health
    • 12.3.2. GraftWorx

13. OTHER APPLICATIONS OF SKIN PATCHES

  • 13.1. Bladder volume sensing (wearable ultrasound)
    • 13.1.1. Novioscan
    • 13.1.2. Triple W - D Free
  • 13.2. Other healthcare & medical applications
    • 13.2.1. Acoustic respiration rate (Acurable, Masimo, etc.)
    • 13.2.2. UV protection
    • 13.2.3. MC10 & L'Oréal: Wisp
    • 13.2.4. Lief Therapeutics: Stress Management
  • 13.3. Others
    • 13.3.1. EOG - eye tracking with skin patches

14. MARKET FORECASTS

  • 14.1.1. Forecast details and assumptions