表紙
市場調查報告書

電動休閒船、海洋船舶:2021年∼2040年

Electric Leisure & Sea-going Boats and Ships 2021-2040

出版商 IDTechEx Ltd. 商品編碼 934258
出版日期 內容資訊 英文 304 Slides
商品交期: 最快1-2個工作天內
價格
電動休閒船、海洋船舶:2021年∼2040年 Electric Leisure & Sea-going Boats and Ships 2021-2040
出版日期: 2020年04月30日內容資訊: 英文 304 Slides
簡介

許多船對電力、能源、距離的要求相當高,為了減少海上排放量,將需要各種解決方案,例如電池、燃料電池、優質燃料、洗滌器、慢速航行等。而電動、混合動力船市場則在史無前例的全球排放法規中,迅速發展。

此報告針對全球的電動船、混合動力船進行調查分析,包括船的種類、不同業界的預測、推動技術、電池技術趨勢、自動航行船等未來的可能性,提供有系統的資訊。

目次

第1章 重點摘要

第2章 海運政策、法規、目標

  • 海洋污染源排放法規簡介
  • 排放法規:Annex VI
  • 降低SOx比NOx重要
  • Annex VI - 硫磺
  • 低硫燃料
  • Annex VI - NOx
  • CO2目標
  • CO2預測
  • 法規發展的時間軸
  • 地區限制:美國等

第3章 休閒船

  • 所謂的休閒船
  • 休閒船市場
  • 馬達類型概述
  • 船外機
  • 地區的船外機銷售業績
  • 船外排放
  • 船外污染
  • 拖曳電機
  • 電動推進器

第4章 商船 (近海)

  • 運輸條款
  • 業界術語
  • 電動、混合動力船的配置
  • 混合動力推進
  • 高效混合動力推進
  • 電池推進
  • 低負載效率低下
  • 燃油效率計算

第5章 商船 (深海)

  • 海上貿易與全球經濟
  • 全球經濟與海運需求
  • 高價燃料
  • 造船業是循環
  • 深海船隊
  • 各國造船

第6章 推進技術

  • 採用哪些技術?
  • 電力牽引馬達的基準化
  • 馬達效率比較
  • 電力推進:Danfoss Motor
  • 電力推進:Vebrat
  • 柴油
  • 柴油電動
  • 燃氣輪機
  • 噴水推進等

第7章 電池技術概述

  • 船舶用電池的不同
  • DNG.VL類型的認證
  • 安全性
  • 熱暴走
  • 電池類型:鉛酸電池與NiMH
  • 鋰離子電池的優勢
  • 各種電池系統的比能量和能量密度比較
  • 什麼是鋰離子電池 (LiB) ?

第8章 船舶用超級電容器

  • 什麼是超級電容器
  • 超級電容器的相對性能
  • 船舶電力系統的超級電容器
  • DNG.VL
  • 最大功率:美國海軍Arleigh Burke
  • 船上緊急啟動用超級電容器

第9章 船舶用燃料電池

  • 燃料電池種類
  • 燃料電池推進
  • PEM燃料電池
  • 沼氣/電解
  • 運用成本:電池、燃料電池、柴油發動機等

第10章 自動航行船的主要範例

  • 自動航行船
  • Ocean Phoenix
  • Yara Birkeland

第11章 能量收集船的主要範例

  • 船舶用能量採集
  • 能源獨立船舶的機會
  • OceanVolt motors
  • Turanor PlanetSolar

第12章 電動、混合動力船專案125的清單

目錄

Title:
Electric Leisure & Sea-going Boats and Ships 2021-2040
Leisure Boats, Ferries, Offshore Support Vessels, Tugboats, Fishing, Cruise Ships, Deep-sea.

Markets for electric & hybrid vessels are rocketing amid unprecedented global emissions regulations.

In the over one hundred electric vehicle sectors tracked by IDTechEx, we predominantly foresee a transition partly or completely to a traction battery over the next two decades. The case is not so simple for the marine sector: due to the sheer scale of the power, energy and distance requirements for many vessels, reducing maritime emissions will require solutions varying from batteries and fuel cells to premium fuels, scrubbers and slow-steaming.

Today, batteries have mainly emerged in leisure boating, ferries and short-sea vessels, where they have enjoyed steady uptake due to small vessel sizes or well-defined cyclical routes (that allow for opportunity charging). In larger deep-sea vessels, uptake is slow, but unprecedented global emissions regulations are driving change, and shortages of traditional solutions on the horizon are creating new opportunities for energy storage start-ups in the arena.

By volume, electric leisure boating is the largest market, with tens of thousands sold yearly: electric leisure boats can be thought of as the cars of the marine world as they are privately owned, have short range requirements and can jump straight to a pure electric powertrain. In contrast, there are less than 20 hybrid deep-sea vessels in-service, yet the sector has the largest market value and demand for maritime batteries due to the vessel sizes and high energy requirements involved.

The new report 'Electric Leisure & Sea-going Boats and Ships 2021-2040' provides historical data from 2016 and forecasts up to 2040 in number of electric vessels, battery demand (MWh) and market value ($ billion) broken down by pure electric and hybrid powertrain as well as by each marine sector: leisure boats, fishing, cruise ships, ferries, offshore support, tugboats and deep-sea. The report delves into key underlying technologies and draws parallels and differences with the auto industry. All results are underpinned by primary research and interviews undertaken around the globe, from Seoul, South Korea to San Diego, USA.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Marine sectors
  • 1.2. Overview
  • 1.3. Do diesel-electrics count?
  • 1.4. Overview of drivers
  • 1.5. Drivers: fuel economy
  • 1.6. Emissions reduction study
  • 1.7. Why use a battery?
  • 1.8. Fuel cost savings and ROI
  • 1.9. Roadblocks to maritime electrification
  • 1.10. Shipping emissions: the problem
  • 1.11. NOx and SOx: a huge problem for the shipping sector
  • 1.12. Emission control areas (ECA)
  • 1.13. Emission control areas (ECA) before 2020
  • 1.14. Unprecedented global cap on Sulphur
  • 1.15. Emissions Control World - Annex VI - Sulphur
  • 1.16. What about CO2?
  • 1.17. Regulatory Developments
  • 1.18. Historic market growth and 2020 - 21 pipeline
  • 1.19. Forecast 2021 - 2040 - Cruise, Ferry, Offshore Support, Tugboat, Deep-sea (Vessels)
  • 1.20. Forecast 2021 - 2040 - Leisure Boats & Fishing (Vessels)
  • 1.21. Forecast 2021 - 2040 - Leisure Boats, Fishing, Cruise, Ferry, Offshore Support, Tugboat, Deepsea (MWh)
  • 1.22. Forecast 2021 - 2040 - Pure Electric v Hybrids (MWh)
  • 1.23. Forecast 2021 - 2040 ($ billion)
  • 1.24. Assumptions and analysis
  • 1.25. Impact of coronavirus on forecasts
  • 1.26. Maritime battery pack suppliers
  • 1.27. Maritime battery maker market share (2019)
  • 1.28. Corvus Energy: battery deployment by vessel type
  • 1.29. Marine battery pack price forecast

2. MARITIME POLICY, REGULATIONS AND TARGETS

  • 2.1. Introduction to marine emissions regulation
  • 2.2. Emissions Regulation: Annex VI
  • 2.3. SOx reductions more important than NOx
  • 2.4. Annex VI - Sulphur
  • 2.5. US seeks late change to sulphur-cap fuel rules
  • 2.6. Annex VI - NOx
  • 2.7. CO2 target for shipping
  • 2.8. CO2 in shipping forecast
  • 2.9. Timeline of regulatory developments
  • 2.10. Local regulations: U.S.
  • 2.11. Local regulations: Asia
  • 2.12. Local regulations: Amsterdam zero emission canals
  • 2.13. Bell Marine: Major Supplier to Amsterdam Canals!
  • 2.14. Solutions to emissions targets
    • 2.14.1. What cards do vessel operators have to play?
    • 2.14.2. Slow-steaming: the first port of call
    • 2.14.3. Scrubbers
    • 2.14.4. More expensive fuels
    • 2.14.5. Batteries and electrification

3. LEISURE BOATING

  • 3.1. What is a leisure watercraft?
  • 3.2. Leisure boating market
  • 3.3. Overview of boating motor types
  • 3.4. Powerful Outboards Undermining Inboards
  • 3.5. Regional outboard sales
  • 3.6. Outboard emissions
  • 3.7. Outboard pollution: an increasing problem, ignored
  • 3.8. Trolling motors
  • 3.9. Electric propeller
  • 3.10. Torqeedo motor range
  • 3.11. Shaft power versus propulsive power
  • 3.12. Torqeedo
  • 3.13. Torqeedo: Moving Up to 100kW!
  • 3.14. Torqeedo: Low Voltage Sales Dominate
  • 3.15. Torqeedo storage systems
  • 3.16. Torqeedo uses BMW i battery systems
  • 3.17. Conventional outboard companies
  • 3.18. Electric outboard price
  • 3.19. Outboard-powered ferry
  • 3.20. Oceanvolt
  • 3.21. OceanVolt motors
  • 3.22. Hull efficiency zones
  • 3.23. Aquawatt
  • 3.24. Selected examples
    • 3.24.1. Aquawatt 550 Elliniko
    • 3.24.2. Duffy - 16 Sport Cat Lake Series
    • 3.24.3. Savannah - superyacht
    • 3.24.4. 006 Yacht
    • 3.24.5. Hybrid-electric Tag 60 yacht

4. COMMERCIAL (SHORT-SEA)

  • 4.1. Navigating shipping terms
  • 4.2. Industry Jargon
  • 4.3. Electric and hybrid vessel configurations
  • 4.4. Hybrid battery propulsion
  • 4.5. Efficient hybrid battery propulsion
  • 4.6. Battery propulsion
  • 4.7. Low load is inefficient
  • 4.8. Fuel efficiency calculation
  • 4.9. Wartsila: hybrid engine profile
  • 4.10. Offshore support vessels
    • 4.10.1. Types of offshore support vessels
    • 4.10.2. The uses of offshore support vessels
    • 4.10.3. OSV: the global fleet
    • 4.10.4. Offshore support vessel oversupply
    • 4.10.5. Negative oil price?
    • 4.10.6. The spike for hybrid OSVs
  • 4.11. Tugboats
    • 4.11.1. Tugboat definition and market size
    • 4.11.2. Electric tugboat projects tracked by IDTechEx
    • 4.11.3. Kotug and Corvus Energy
    • 4.11.4. Tugboat operational profile
    • 4.11.5. Ports of Auckland buy electric tug
  • 4.12. Fishing
    • 4.12.1. Global fishing fleet by region
    • 4.12.2. Global fishing fleet by vessel length
    • 4.12.3. Fishing in Europe
    • 4.12.4. Fishing relies on subsidies
    • 4.12.5. Leo Greentier Marines: electric fishing boats in Asia
    • 4.12.6. Leo Greetier Marines
    • 4.12.7. Cutting Norway's Emissions with Electric Fishing Boats
  • 4.13. Ferries
    • 4.13.1. Ferries, the addressable market
    • 4.13.2. Electric and hybrid ferries: regional market share
    • 4.13.3. Short routes
    • 4.13.4. Ferries in Norway
    • 4.13.5. Electric ferry forecast 2021 - 2040 - Norway, EU, RoW
    • 4.13.6. Fuel economy for electric ferries
    • 4.13.7. Scandlines
    • 4.13.8. Scandlines timeline for electrification
  • 4.14. Selected examples of e-ferry projects
    • 4.14.1. Leclanché e-ferry
    • 4.14.2. 50MWh Ferry?
    • 4.14.3. Supercapacitor ferry
    • 4.14.4. The Prius of the Sea - battery hybrid ferry
    • 4.14.5. Ampere
    • 4.14.6. Green City Ferries: Innovation on Swedish waterways
    • 4.14.7. Ferry Conversion: M/S Prinsesse Benedikte
    • 4.14.8. Energy Absolute
    • 4.14.9. HH Ferries Group conversion
    • 4.14.10. Scandlines battery price
    • 4.14.11. Scandlines Hybrid Ferry Inverter

5. COMMERCIAL (DEEP-SEA)

  • 5.1. Seaborne trade and the global economy
  • 5.2. Global economy and demand for shipping
  • 5.3. More expensive fuels
  • 5.4. Shipbuilding is cycle
  • 5.5. Deep-sea vessel fleet
  • 5.6. Shipbuilding by country 2017
  • 5.7. Hyundai Heavy Industries
  • 5.8. Hyundai Heavy partners with Magna E-Car
  • 5.9. Ship pricing
  • 5.10. Electric and hybrid trading vessels
  • 5.11. Selected examples
    • 5.11.1. First electric tanker - moving beyond ferries
    • 5.11.2. First pure electric container ship
    • 5.11.3. 6.7MWh pure electric barges?
    • 5.11.4. Asahi Tanker: Japan's First Pure Electric Tanker

6. PROPULSION TECHNOLOGY

  • 6.1. Which technologies are adopted?
  • 6.2. Benchmarking electric traction motors
  • 6.3. Motor efficiency comparison
  • 6.4. Electric Propulsion: Danfoss Motor
  • 6.5. Electric Propulsion: Vebrat
  • 6.6. Diesel
  • 6.7. Diesel-electric
  • 6.8. Gas turbine
  • 6.9. Water-jet propulsion
  • 6.10. Gas fuel or tri-fuel propulsion
  • 6.11. Steam turbine
  • 6.12. Biofuel
  • 6.13. Wind
  • 6.14. Norsepower Rotor Sail Specification
  • 6.15. Solar Propulsion

7. OVERVIEW OF BATTERY TECHNOLOGIES

  • 7.1. Why are marine batteries different?
  • 7.2. DNG.VL Type approval
  • 7.3. Safety - pause for thought?
  • 7.4. Thermal runaway
  • 7.5. Battery types: lead-acid and leapfrogging NiMH
  • 7.6. The Li-ion advantage
  • 7.7. Comparison of specific energy and energy density of various battery systems
  • 7.8. What is a Li-ion battery (LIB)?
  • 7.9. A family tree of batteries - lithium-based
  • 7.10. Standard cathode materials
  • 7.11. Conventional versus advanced Li-ion?
  • 7.12. Li-ion battery cathodes
  • 7.13. Cathode alternatives - NCA
  • 7.14. Li-ion battery cathode recap
  • 7.15. LTO anode -- Toshiba
  • 7.16. Battery cell geometries
  • 7.17. Short-sea battery packaging technologies
  • 7.18. Battery packaging technologies
  • 7.19. Differences between cell, module, and pack
  • 7.20. Strings
  • 7.21. ESS in shipping containers
  • 7.22. Cooling systems for LIB
  • 7.23. Current challenges facing Li-ion batteries
  • 7.24. Key marine battery suppliers
  • 7.25. Maritime battery vendor market share (based on MWh)
  • 7.26. Battery Chemistry Market Share
  • 7.27. Marine battery pack price forecast
  • 7.28. Corvus Energy: History
  • 7.29. Corvus Energy (2019 Update)
  • 7.30. Applications of Corvus' New ESS
  • 7.31. The Head-start Advantage
  • 7.32. Corvus Energy Orca ESS
  • 7.33. Corvus Energy: battery deployment by vessel type
  • 7.34. Second life marine batteries?
  • 7.35. Spear Power Systems (SPS): Up and Coming!
  • 7.36. Spear Power Systems
  • 7.37. Spear Power Systems: Trident ESS
  • 7.38. Spear Power Systems: choosing the right battery
  • 7.39. Valence (LithiumWerks)
  • 7.40. Valence Technology (LithiumWerks)
  • 7.41. LithiumWerks: The Road to $400 per kWh
  • 7.42. LithiumWerks' New Marine Stack
  • 7.43. LithiumWerks
  • 7.44. Bell Marine
  • 7.45. Akasol
  • 7.46. Leclanché
  • 7.47. Leclanché: LTO Rack
  • 7.48. Leclanché: NMC Rack
  • 7.49. Xalt Energy - marine storage systems
  • 7.50. Case study: XALT's ESS for a Platform Supply Vessel (PSV)
  • 7.51. Saft: Seanergy
  • 7.52. Saft projects in France
  • 7.53. Prime Energy Systems: Diversifying into Marine
  • 7.54. Anko
  • 7.55. Phinergy: Aluminium Air Battery!
  • 7.56. Phinergy: Reductions to the Cathode

8. SUPERCAPACITORS FOR MARINE APPLICATIONS

  • 8.1. What is a supercapacitor?
  • 8.2. Relative supercapacitor performance
  • 8.3. Supercapacitors in shipboard power systems
  • 8.4. DNG.VL Adding Supercaps to Class Rules
  • 8.5. Peak Power USS Arleigh Burke
  • 8.6. Supercapacitors for emergency start in boats
  • 8.7. Fuel cells and supercapacitors in vessels
  • 8.8. Supercapacitor replaces battery across fuel cell
  • 8.9. Lithium-ion capacitor performance in context
  • 8.10. World's first supercapacitor passenger vessel
  • 8.11. Supercapacitor ferry

9. FUEL CELLS FOR MARINE APPLICATIONS

  • 9.1. Types of fuel cell
  • 9.2. Fuel Cell Propulsion
  • 9.3. PEM Fuel Cell
  • 9.4. Biogas or electrolysis?
  • 9.5. Operational cost: battery, fuel cell and diesel engine
  • 9.6. Echandia Marine: the fastest fuel cell ferry
  • 9.7. Fuel cells for long range
  • 9.8. Redrock power systems
  • 9.9. Metacon: hydrogen from biogas
  • 9.10. ABB: fuel cell systems for shipping
  • 9.11. Fuel cell - battery hybrid?
  • 9.12. ABB: Fuel Cells By 2030
  • 9.13. The SchIBZ - Ship integration of fuel cells
  • 9.14. Application of the SchIBZ system
  • 9.15. Hydrogenesis - the UK's first hydrogen fuelled ferry
  • 9.16. Hydrogenesis
  • 9.17. Fuel cells: a futuristic technology
  • 9.18. Hydrogen future?
  • 9.19. General Electric and Nedstack

10. SELECTED EXAMPLES OF AUTONOMOUS VESSELS

  • 10.1. Autonomous marine vehicles
  • 10.2. Ocean Phoenix 360
  • 10.3. Yara Birkeland - first autonomous and zero emissions ship

11. SELECTED EXAMPLES OF ENERGY HARVESTING VESSELS

  • 11.1. Energy harvesting for boats and ships
  • 11.2. Energy independent ship opportunity
  • 11.3. OceanVolt motors
  • 11.4. Turanor PlanetSolar
  • 11.5. Multiple energy harvesting coming in 'Glider' AUV surfaces
  • 11.6. Liquid Robotics U.S.

12. LIST OF 125 C&I ELECTRIC AND HYBRID VESSEL PROJECTS TRACKED BY IDTECHEX

  • 12.1. Navigating the list