表紙
市場調查報告書

電子設備的能量採集:2020年∼2040年

Energy Harvesting for Electronic Devices 2020-2040

出版商 IDTechEx Ltd. 商品編碼 933731
出版日期 內容資訊 英文 214 Slides
商品交期: 最快1-2個工作天內
價格
電子設備的能量採集:2020年∼2040年 Energy Harvesting for Electronic Devices 2020-2040
出版日期: 2020年04月29日內容資訊: 英文 214 Slides
簡介

全球首款自供電智慧手錶已經問世。發電設備的潛力預計將會1年擁有10億規模,緊接在後的是的同規模的物聯網 (IoT) 。如果不是手機跟電腦出現,能量採集將是這些技術實現的重要技術。能量採集模組的市場規模將在2030年以前超過20億美元。

此報告針對電子設備的能量採集市場進行調查分析,聚焦於需求、挑戰、可能性,提供有系統的資訊。

目次

第1章 重點摘要與結論

第2章 新興市場趨勢

  • 概要
  • 電子設備的能量採集特徵
  • 能量採集系統的設計
  • 「微微電網」(pico-grids)
  • 皮安(Pico)產品
  • 提供電力:能量採集技術的選擇
  • 轉向靈活的多模式採集
  • 靈活的能量採集感測器趨勢
  • 運動的能量採集:換能器選項的比較

第3章 新興的光電技術

  • 電子設備中太陽能發電案例
  • 太陽能光電機制
  • 晶圓 vs. 薄膜
  • 太陽能光電趨勢及優先順序
  • 單晶 vs. 多晶
  • 非晶矽
  • 薄膜 vs. rigid silicon
  • 與晶矽相比,更重要的太陽能光電選項
  • 主流電子產品的晶矽替代品製造準備狀況
  • 電池效率
  • 太陽能光電:2D半導體、量子點、整流天線陣列

第4章 電子的摩擦生電能量採集技術

  • 概要
  • 基本
  • 目標運用
  • 摩擦介電質系列
  • 材料的機會
  • 將TENG與其他採集進行組合

第5章 電子的熱電能量採集技術

  • 基本
  • 電子TE的軟體
  • 商業和迫在眉睫的應用示例
  • Gentherm Global Power Technologies
  • Marlow Industries
  • Matrix Industries
  • EnOcean
  • KCF Technologies
  • 自動車與物聯網
  • PowerPot□、Biolite□、Spark□
  • 其他業界、軍用
  • 合作、合併、退出
  • 影響
  • Pyroelectric underwhelms

第6章 電力學

  • 基本
  • EnOcean GmbH、EnOcean Alliance
  • SEIKO KINETIC系列 (人動電能腕錶)
  • Kinetron
  • Kinetron微型渦輪機
  • 利用線性運動
  • 利用人類動能
  • 緊急手搖式充電消費電子產品
  • 風力、水力
  • 利用6D動能
  • Witt Energy

第7章 壓電

  • 基本
  • 壓電式能量採集器應用:不同模式
  • 製造:典型過程
  • 印刷、靈活壓電式能量採集器
  • 磷酸鎵
  • 壓電膠原蛋白使用於拋棄式、植入式、穿戴式設備
  • MEMS微機電
  • MEMS能量採集案例
  • 壓電開關
  • 應用與研究
  • 人體壓電能量採集器
  • 植入式共形壓電能量採集器
  • 內耳
  • 手腕用健康監控
  • 患者行動監控
  • 汽車、航太宇宙
  • Algra

第8章 人為環境電磁波、其他

  • 用於其他目的的電磁波
  • 電力電纜磁場
  • 蜂窩式網路通訊
  • 兆赫輻射
  • 微生物燃料電池、其他選項
目錄

Title:
Energy Harvesting for Electronic Devices 2020-2040
Materials, self-charging device opportunities, technology roadmaps, forecasts.

Passing $2bn by 2030, energy harvesting modules become key to smart watches, IoT and more.

The new 215 page IDTechEx report, "Energy Harvesting for Electronic Devices 2020-2040" comes at just the right time. The world's first self-powered smart watches have just arrived. They are not full-function but we are getting there. That billion a year harvester potential will be followed by similar numbers of Internet of Things nodes but why will Tesla jump in? Energy harvesting is a key enabling technology for these when it was not the case for the emergence of mobile phones and computers. Indeed, the hand crank/solar radio graduating to be the pendulum generator/solar watch shows how two forms of harvesting in one device are increasingly seen, one smart watch melding thermoelectrics and solar.

Indeed, wireless, no-battery building controls harvest up to three modes. That multiplier effect powers demand well beyond $2 billion in 2030 and much more beyond, on IDTechEx 20 year forecasts. What next? Winners? Losers? Technology and sales forecasts? All in the report because of its unique scope and PhD level insights. Low power wireless networks, 5G, smart skin patches electrically powered by sweat, implants and medical wearables triboelectrically and electrodynamically powered by heartbeats, temperature differences, body movements. All are on the way but there is more.

The 25 page executive summary and conclusions is easily read by those in a hurry. Many new infograms pull together the needs, challenges, potential and compare forecasts/ leaders/ market drivers and battery elimination milestones ahead. Dip into the next 25 pages of new 20 year forecasts as you wish - triboelectric, photovoltaic, electrodynamic, thermoelectric, piezoelectric and other backed by forecasts for those smart watches, pico products, wearable technologies, medical, IoT and other uses. Understand why Apple and Boeing will be involved.

Chapter 2 introduces the principles, compares the technologies in many ways including vibration harvesting comparisons, what exactly is needed and 38 companies to contact in IoT, LPWAN and so on. Chapter 3 explains 12 photovoltaic technologies and their future with many infograms. Significance of the 2020 Garmin smart watch having solar glass, why is stretchable photovoltaics coming in? It is all here.

Chapter 4 explains why IDTechEx believes triboelectrics is coming from nowhere with its initial sales of dust-filtering self-charging face masks in 2019 to be a strong contender overall. It will use non-toxic, affordable materials in a dazzling array of applications. An example is work on a smart watch integral battery + harvester in one smart composite. The Chinese government is massively supporting triboelectric harvester research with many research centres and over 200 PhD projects at a time.

Chapter 5 explores the burgeoning thermoelectric improvements and applications from smart watches to IoT nodes and fit-and-forget industrial uses. Pyroelectrics get less mention because of its poor potential. Chapter 6 surprises with electrodynamics technology presented and how has already replaced tens of millions of batteries by using microturbine generators in electronic toilets and pipeline sensors, similar electrodynamics in Seiko, Swatch, Tissot and many more watches. Hand-crank and pull-charged medical and consumer electronics are proliferating. Why the big effort on electrodynamic and thermoelectric harvesting in humans? We need fit-and-forget implants dealing with the epidemic of diabetes. The pacemaker has already saved over three million lives but the 600,000 pacemakers now implanted every year have batteries lasting no more than seven years. That is part of the answer.

Chapter 7 does it all for piezoelectrics. Chapter 8 rounds off with harvesting man-made ambient electromagnetic radiation from 50Hz power lines to the new terahertz inventions and also other harvesting options.

Throughout these technology chapters there are common themes such as the immense amount of new work on flexible, transparent, biocompatible and stretchable versions and how they will transform wearables and healthcare. Another over-arching theme is battery elimination even extending to woven supercapacitors or no storage at all. Throughout there are many ghost diagrams, photographs and infograms. It is based on 20 years of ongoing research by multilingual PhD level experts travelling, interviewing and benchmarking. The report's emphasis is on creating new business, including identification of gaps in the market. There is much on the new advanced materials needed, on harvester opportunies and new products benefitting society.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Primary conclusions: market and technology dynamics
    • 1.2.1. Market
  • 1.3. Primary conclusions: technology specifics
  • 1.4. Primary conclusions: Emerging industries
    • 1.4.1. Internet of Things and LPWAN potential
    • 1.4.2. Healthcare
    • 1.4.3. Military, industrial, automotive and aerospace
  • 1.5. Multimode harvesting, no battery
  • 1.6. Device power harvested and needed in device use with examples
  • 1.7. Power range needed
  • 1.8. Energy harvesting options to power electronic devices
  • 1.9. Most promising future applications by preferred technology
  • 1.10. Energy harvesting for electronics forecasts
    • 1.10.1. Summary and roadmap 2020-2040
    • 1.10.2. Photovoltaic energy harvesting for electronics: units, unit price, market value 2020-2040
    • 1.10.3. Thermoelectric energy harvesting for electronics: units, unit price, market value 2020-2040
    • 1.10.4. Piezoelectric energy harvesting for electronics: market units, unit price, market value 2020-2040
    • 1.10.5. Triboelectric transducer and self-powered sensors 2020-2040 $ million
    • 1.10.6. Electrodynamic energy harvesting for electronics: units, unit price, market value 2020-2040
    • 1.10.7. Forecast for pico products with integral harvesting
  • 1.11. Addressable end uses for energy harvesting for electronics
    • 1.11.1. Wearable technology
    • 1.11.2. Augmented reality AR / virtual reality VR
    • 1.11.3. Cardiac monitoring skin patches
    • 1.11.4. Skin patches for continuous diabetes management
    • 1.11.5. Medical motion sensing patches
    • 1.11.6. Haptics
    • 1.11.7. Mobile phones
    • 1.11.8. Battery assisted and active RFID
    • 1.11.9. Low power WAN connections 2020-2030
  • 1.12. Li-ion battery demand, GWh 2020-2030 and price trend

2. NEW MARKET TRENDS

  • 2.1. Overview
  • 2.2. Features of energy harvesting for electronic devices
  • 2.3. Energy harvesting system design
  • 2.4. Picogrids
  • 2.5. Pico products
  • 2.6. Power offered: technology choices for harvesting
  • 2.7. Move to flexible and multi-mode harvesters
  • 2.8. Trend to flexible energy harvesting and sensing
  • 2.9. Energy harvesting of motion: transducer options compared
    • 2.9.1. Vibration harvesting
    • 2.9.2. Harvesting for wearables and mobile phones
    • 2.9.3. Hug opportunities in IoT, LPWAN and allied areas
    • 2.9.4. EH developers should talk to these 21 LPWAN silicon manufacturers
    • 2.9.5. EH developers should talk to these 17 WPAN module and chipset makers

3. EMERGING PHOTOVOLTAIC TECHNOLOGY FOR ELECTRONICS

  • 3.1. Examples of photovoltaics in electronic devices
  • 3.2. PV mechanisms: status, benefits, challenges, market potential compared
  • 3.3. Wafer vs thin film photovoltaics 2020-2040
  • 3.4. Photovoltaic trends and priorities 2020-2040
  • 3.5. Single crystal scSi vs polycrystal pSi
  • 3.6. Amorphous silicon dead end
  • 3.7. Thin film more efficient than rigid silicon 2030-2040?
  • 3.8. Important PV options beyond silicon compared
  • 3.9. Production readiness of Si alternatives for mainstream electronics
  • 3.10. Best research-cell efficiencies 1975-2020
  • 3.11. Photovoltaic wild cards: 2D semiconductors, quantum dots, rectenna arrays

4. TRIBOELECTRIC HARVESTING TECHNOLOGY FOR ELECTRONICS

  • 4.1. Overview
  • 4.2. Basics
  • 4.3. Targeted applications
    • 4.3.1. Performance available matched to potential applications
    • 4.3.2. Some targeted medical applications
    • 4.3.3. Battery free electronics: toys, biosensors, wearables
    • 4.3.4. Transparent, stretchable: an example
    • 4.3.5. Wind, river or tidal generation for electronic devices
  • 4.4. Triboelectric dielectric series
  • 4.5. Materials opportunities
  • 4.6. Work combining TENG with other harvesting

5. THERMOELECTRIC AND PYROELECTRIC HARVESTING FOR ELECTRONICS

  • 5.1. Basics
    • 5.1.1. Thermoelectric generator design considerations
    • 5.1.2. Thermoelectric harvester improvement 2020-2040
    • 5.1.3. TEG layouts and materials
    • 5.1.4. TEG material choices and improvement roadmap
    • 5.1.5. Thin film thermoelectric generators
    • 5.1.6. TEG materials, processing and designs compared
  • 5.2. SOFT report on TE for electronics
  • 5.3. Examples of commercial and imminent applications
  • 5.4. Gentherm Global Power Technologies
  • 5.5. Marlow Industries
  • 5.6. Best in class: Matrix Industries
  • 5.7. Building & home automation: EnOcean
  • 5.8. KCF Technologies
  • 5.9. Automotive and IoT
  • 5.10. PowerPot™ Biolite ™ and Spark ™ charging personal electronics
  • 5.11. Other industrial, military
  • 5.12. Collaborations, mergers and exits
  • 5.13. Impactful new research
    • 5.13.1. Thermoelectric power generation at room temperature
    • 5.13.2. First stretchable thermoelectrics
    • 5.13.3. TEG power boost by mechanical shuttling
  • 5.14. Pyroelectric underwhelms

6. ELECTRODYNAMIC

  • 6.1. Basics
  • 6.2. EnOcean GmbH and EnOcean Alliance
  • 6.3. Seiko Kinetic electrodynamically harvesting watch
  • 6.4. Kinetron
  • 6.5. Kinetron micro turbines
  • 6.6. Harnessing linear movement
  • 6.7. Human movement harvesting
  • 6.8. Crank charged consumer electronics
  • 6.9. Travellers use wind, water
  • 6.10. 6D movement harvesting
  • 6.11. Witt Energy

7. PIEZOELECTRIC

  • 7.1. Basics
  • 7.2. Piezo harvester application by mode
  • 7.3. Manufacture: Typical processes
  • 7.4. Printed and flexible piezoelectric harvesters
  • 7.5. Gallium phosphate
  • 7.6. Collagen piezoelectric for disposables, implants, wearables
  • 7.7. MEMS
  • 7.8. Examples of MEMS harvesting
  • 7.9. Piezoelectric switches
  • 7.10. Applications and research
  • 7.11. Piezo harvesters for the human body
  • 7.12. Conformal piezoelectric harvesting for implants
  • 7.13. Inner ear
  • 7.14. Wrist health monitor
  • 7.15. Patient behaviour monitoring
  • 7.16. Automotive and aerospace
  • 7.17. Algra

8. MAN-MADE AMBIENT ELECTROMAGNETIC RADIATION, OTHER

  • 8.1. Electromagnetic radiation made for other purposes
  • 8.2. Power cable magnetic field
  • 8.3. Cellular transmissions
  • 8.4. Terahertz radiation
  • 8.5. Microbial fuel cells and other options