NEWS: 公告在東京證券交易所JASDAQ標準市場新上市

表紙
市場調查報告書

軟性混合電子 (FHE) 2020年∼2030年的運用、挑戰、創新、預測:

Flexible Hybrid Electronics 2020-2030: Applications, Challenges, Innovations and Forecasts

出版商 IDTechEx Ltd. 商品編碼 933126
出版日期 內容資訊 英文 401 Slides
商品交期: 最快1-2個工作天內
價格
軟性混合電子 (FHE) 2020年∼2030年的運用、挑戰、創新、預測: Flexible Hybrid Electronics 2020-2030: Applications, Challenges, Innovations and Forecasts
出版日期: 2020年04月21日內容資訊: 英文 401 Slides
簡介

軟性混合電子 (FHE) 主要為柔性基板、印刷電路、IC積體電路所組成。全球對於軟性混合電子的需求在2030年時將超過30億美金。根據所需組建的技術準備水準,我們預測將會有對廣泛運用的需求。從皮膚的補強到工業監控,從汽車用溫度感測器到印刷RFID標籤,將會有超過20個運用子領域,預計到2030年將會生產近50億個FHE電路。

此報告針對軟性混合電子 (FHE) 市場進行調查分析,針對市場概要、運用、挑戰、創新、市場預測進行系統性資訊。

目次

第1章 重點摘要

第2章 軟性混合電子 (FHE) 的介紹

  • 原有的印刷電路/軟性混合電子市場
  • 一般電子產品:剛性PCB、軟性PCB
  • 介紹摘要

第3章 適合FHE的柔性基板

  • 低溫聚合物基板
  • 可伸縮基板
  • 紙基板
  • 摘要:適合FHE的柔性基板

第4章 連接組件材料

  • 低溫焊接
  • 光子焊接
  • 導電性接著劑
  • 摘要:連接組件材料

第5章 邁向高度柔性邏輯電路、記憶體

  • 印刷薄膜電晶體
  • 金屬氧化物IC
  • 薄矽IC
  • 摘要:高度柔性邏輯電路

第6章 導電墨水

  • 銀導電墨水
  • 銅導電墨水
  • 摘要:導電墨水

第7章 柔性薄膜電源

  • 柔性電池
  • 柔性太陽能發電
  • 其他柔性電源
  • 概述:薄膜電源

第8章 印刷感測器

  • 靜電容量感測器
  • 其他印刷感測器
  • 摘要:薄膜感測器

第9章 軟性混合電子的組裝

  • FHE的曲放
  • 在柔性基板上安裝晶片
  • FHE的設計工具和規格
  • 摘要:FHE的組裝

第10章 政府所支援的研究中心及專案

  • FHE製造中心
  • 政府出資的FHE專案
  • 摘要:政府的研究中心及專案

第11章 運用及範例學習

  • 智能包裝及功能性RFID
  • 穿戴式裝置/醫療監控
  • 消費性電子產品
  • 汽車、航太產業
  • 產業、環境監控
  • 摘要:運用及範例學習

第12章 市場預測

  • FHE對於各種運用的準備
  • 支援FHE技術的技術準備水準
  • FHE路線圖
  • 採用FHE的非技術障礙
  • FHE市場預測方法
  • FHE電路的整體預測
  • FHE電路整體預測 (數量)
  • 用於智能包裝、功能性RFID的FHE電路(數量)
  • 用於工業/環境監控的FHE電路預測
  • 用於工業/環境監控的FHE電路預測 (數量)
  • 用於工業/環境監控的FHE電路預測 (收入)
  • 用於穿戴式設備/醫療監控的FHE電路
  • 用於穿戴式設備/醫療監控的FHE電路 (數量)
  • 用於穿戴式設備/醫療監控的FHE電路 (收入)
  • 消費產品的FHE電路
  • 消費產品的FHE電路 (數量)
  • 消費產品的FHE電路 (收入)
  • 汽車/航空產業的FHE電路
  • 汽車/航空產業的FHE電路 (數量)
  • FHE電路的整體預測 - 包含所有的印刷RFID
  • FHE電路的整體預測 - 包含所有的印刷RFID(數量)
  • FHE電路的整體預測 - 包含所有的印刷RFID(收入)

第13章 企業介紹

  • 企業介紹一覽表 (按類別)
目錄

Title:
Flexible Hybrid Electronics 2020-2030:
Applications, Challenges, Innovations and Forecasts

Printed electronics, Flexible ICs, Printed Sensors, Conductive Inks, R2R manufacturing, Smart Packaging.

Flexible Hybrid Electronics will be ubiquitous by 2030, with the market projected to reach over $3bn.

This IDTechEx Research report covers the rapidly emerging field of flexible hybrid electronics. Such circuits are a compromise that aims to capture the benefits of flexible printed electronics while retaining the processing capability of conventional circuits. This combination of attributes has a vast array of applications, ranging from smart packaging to wearable technology, all of which are comprehensively examined in our report.

IDTechEx analyses and concludes in this report how the global demand for flexible hybrid electronic circuits will reach a value of over $3 billion in 2030 - more if the infrastructure, software and services are included. Our detailed and highly granular market forecasts take account of projected demand for a wide range of applications, along with the technological readiness level of the required components. Based on an impartial analysis across over 20 application sub-categories, ranging from skin patches to industrial monitoring and from automotive temperature sensors to printed RFID tags, IDTechEx expects that almost 5 bn FHE circuits will be produced in 2030.

We define FHE as a circuit that comprises a flexible substrate, printed functionality and an externally manufactured integrated circuit (IC). Manufacturing such circuits requires many current and developing emerging technologies which are essential to FHE circuits. These include:

  • Low cost thermally stabilised PET substrates that are dimensionally stable.
  • Component attachment materials compatible with flexible thermally fragile substrates, such as low temperature solder and field aligned anisotropic conductive adhesives.
  • Flexible integrated circuits, based on both thinned Si and metal oxides.
  • Conductive inks, based on both silver and copper.
  • Thin film batteries, especially if printable.
  • Printed sensors of all types.
  • Manufacturing methods for mounting components on flexible substrates.

Each of these technologies is reviewed in detail, based on our interviews and visits to many of the suppliers, and the merits of different approaches compared. Furthermore, we profile multiple government research centres and a range of collaborative projects from around the world that support the adoption of flexible hybrid electronics, demonstrating the major players and technological themes.

Based on this analysis of the technology and our interviews with many players in the field, we identify many technological trends and innovation opportunities. In terms of substrates, R2R manufacturing of hybrid electronics is made difficult by PET's dimensional instability and low glass transition temperature. As such more complex FHE circuits will require higher performance substrates. Thermally fragile substrates mean that replacements for SAC solder are required. While conductive adhesives are currently used to attach RFID chips to PET, these are likely to be replaced to some extent with low temperature solder since it enables self-alignment.

An especially clear innovation opportunity is flexible ICs, which would enable the whole circuit to bend and hence be compatible with continuous R2R manufacturing. There are arguably two approaches: thinned Si chips for more complex applications, and natively flexible ICs based on metal oxides for simpler applications like RFID. At present flexible ICs are still a long way from widespread adoption, but the demand is sure to grow as flexible hybrid electronics becomes more established due to the demand for low cost circuits and hence continuous manufacturing methods. Rapid placement of these flexible ICs on flexible substrates, which is very difficult for current pick-and-place technology, is another substantial opportunity.

As a technology that spans so many different applications, there are many drivers for the adoption of FHE. The most significant are the rapidly developing 'Internet of Things' and 'Smart packaging' applications, which require low cost electronics to be integrated into many everyday items. Such circuits are basically RFID tags with greater functionality, and will require similar continuous manufacturing methods and low cost materials. Unlike conventional electronics, these requirements are well suited to FHE. Wearable technology, in which flexibility/stretchability are highly desirable, is another rapidly growing application space. Additional drivers are the desire for differentiation in consumer products by adding flexibility through removing the form factor constraint of PCBs, and for electronic circuits in vehicles (especially planes and electric vehicles) to be lighter.

This report from IDTechEx provides a comprehensive overview of the flexible hybrid electronics market, including the technological challenges and the opportunities they create, market forecasts and over 20 interview-based company profiles.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. What is flexible hybrid electronics (FHE)?
  • 1.2. What advantages does FHE promise?
  • 1.3. Enabling technologies for FHE
  • 1.4. Transition from PI to cheaper substrates
  • 1.5. Low temperature component attachment
  • 1.6. Development of flexible ICs
  • 1.7. Conductive inks: Silver to copper
  • 1.8. Assembling FHE circuits
  • 1.9. Government backed research centres
  • 1.10. Main addressable markets for FHE
  • 1.11. SWOT Analysis for FHE
  • 1.12. Predicted manufacturing trends
  • 1.13. Total FHE circuits forecast
  • 1.14. Total FHE circuits forecast (volume)

2. INTRODUCTION TO FLEXIBLE HYBRID ELECTRONICS (FHE)

  • 2.1. The existing printed/flexible electronics market
    • 2.1.1. Printed/flexible/organic electronics market size
    • 2.1.2. Description and analysis of the main technology components of printed, flexible and organic electronics
    • 2.1.3. Market potential and profitability
    • 2.1.4. Route to market strategies: Pros and Cons
    • 2.1.5. Printed/flexible electronics value chain is unbalanced
    • 2.1.6. Many manufacturers now provide complete solutions
    • 2.1.7. Many printed electronic technologies are an enabler but not an obvious product
  • 2.2. Conventional electronics: Rigid and flexible PCBs
    • 2.2.1. Types of printed circuit boards (PCBs)
    • 2.2.2. Comparing PCB, FPCB and FHE
    • 2.2.3. Multilayer PCBs - a challenge for FHE
  • 2.3. Summary: Introduction

3. FLEXIBLE SUBSTRATES FOR FHE

  • 3.1. Low temperature polymer substrates
    • 3.1.1. Cost and maximum temperature are correlated
    • 3.1.2. Substrates for flexible electronics
    • 3.1.3. Qualitative comparison of plastic substrates properties
    • 3.1.4. Manipulating polyester film microstructure for improved properties.
    • 3.1.5. Substrate stiffness
    • 3.1.6. Dimensional stability: Importance and effect of environment
    • 3.1.7. External debris and protection/cleaning strategies
  • 3.2. Stretchable substrates
    • 3.2.1. Requirements for stretchable electronics
    • 3.2.2. Thermosetting resin as a flexible substrate.
    • 3.2.3. Stress strain curves of flexible substrates
    • 3.2.4. Nikkan Industries: An alternative stretchable substrate
  • 3.3. Paper substrates
    • 3.3.1. Paper substrates: Advantages and disadvantages
    • 3.3.2. Paper substrates can have comparable roughness
    • 3.3.3. Thermal properties of paper substrates
    • 3.3.4. Paper substrate case studies
    • 3.3.5. Sustainable RFID tags with antennae printed on paper.
  • 3.4. Summary: Flexible substrates for FHE
    • 3.4.1. Roadmap for flexible substrate adoption

4. COMPONENT ATTACHMENT MATERIALS

  • 4.1. Low temperature solder
    • 4.1.1. Low temperature solder enables thermally fragile substrates
    • 4.1.2. Substrate compatibility with existing infrastructure
    • 4.1.3. Solder facilitates rapid component assembly via self alignment
    • 4.1.4. Low temperature solder alloys
    • 4.1.5. Low temperature soldering with core-shell nanoparticles
    • 4.1.6. Supercooled liquid solder
  • 4.2. Photonic soldering
    • 4.2.1. Photonic soldering: A step up from sintering
    • 4.2.2. Photonic soldering: Substrate dependence.
  • 4.3. Electrically conductive adhesives
    • 4.3.1. Electrically conductive adhesives: Two different approaches
    • 4.3.2. Example of conductive adhesives on flexible substrates
    • 4.3.3. Magnetically aligned ACA
    • 4.3.4. Electrically aligned ACA
    • 4.3.5. Conductive paste bumping on flexible substrates
    • 4.3.6. Ag pasted for die attachment.
  • 4.4. Summary: Component attachment materials
    • 4.4.1. Component attachment materials for FHE roadmap
    • 4.4.2. Component attachment materials for FHE roadmap

5. TOWARDS FLEXIBLE LOGIC AND MEMORY

  • 5.1. Printed thin film transistors
    • 5.1.1. Printed TFTs aimed to enable simpler processing
    • 5.1.2. Technical challenges in printing thin film transistors
    • 5.1.3. Printed TFT architecture
    • 5.1.4. Organic semiconductors for TFTs
    • 5.1.5. Organic transistor materials
    • 5.1.6. OTFT mobility overestimation
    • 5.1.7. Merck's Organic TFT
    • 5.1.8. Printed logic for RFID
    • 5.1.9. Commercial difficulties with printed transistors
    • 5.1.10. Fully printed ICs for RFID using CNTs.
  • 5.2. Metal oxide ICs
    • 5.2.1. MoOx semiconductors: Advantages and disadvantages
    • 5.2.2. Metal oxide semiconductor production methods
    • 5.2.3. Evonik's solution processible metal oxide
    • 5.2.4. IGZO TFTs room temperature with deep UV annealing
    • 5.2.5. Flexible metal oxide ICs
    • 5.2.6. Additional benefits of flexible metal oxide ICs
  • 5.3. Thinning silicon ICs
    • 5.3.1. OFETs offer insufficient processing capability
    • 5.3.2. Thinning silicon wafers for flexibility.
    • 5.3.3. Silicon on polymer technology
    • 5.3.4. Thin Si processing steps
    • 5.3.5. Flexible IC capabilities and comparison.
  • 5.4. Summary: Flexible logic
    • 5.4.1. Latest progress with flexible/printed transistor RFID
    • 5.4.2. Semiconductor Choices Compared
    • 5.4.3. Lessons from the silicon chip: Need for modularity
    • 5.4.4. Comparing flexible integrated circuit technologies
    • 5.4.5. Roadmap for flexible ICs

6. CONDUCTIVE INKS

  • 6.1. Silver conductive inks
    • 6.1.1. Silver nanoparticles outperform flakes
    • 6.1.2. Higher nanoparticle ink prices offset by conductivity
    • 6.1.3. Characteristics of Ag nano inks
    • 6.1.4. Curing profiles of traditional pastes
    • 6.1.5. Enhancing nanoparticle ink flexibility
    • 6.1.6. Particle free conductive inks and pastes
    • 6.1.7. Particle free ink examples
  • 6.2. Copper conductive ink
    • 6.2.1. Conductive inks: Silver vs copper
    • 6.2.2. Methods of preventing copper oxidisation
    • 6.2.3. Superheated steam approach
    • 6.2.4. Reactive agent metallization
    • 6.2.5. Comparing copper inks
    • 6.2.6. Photocuring/sintering
    • 6.2.7. Photo-sintering
    • 6.2.8. Air cured copper paste
    • 6.2.9. Air curable copper pastes
    • 6.2.10. Pricing strategy and performance of copper inks and pastes
    • 6.2.11. Copper inks with in-situ oxidation prevention
    • 6.2.12. Copper inks with in-situ oxidation prevention
    • 6.2.13. Reducing cuprous oxide by sintering
    • 6.2.14. Silver-coated copper
  • 6.3. Summary: Conductive inks
    • 6.3.1. Trends for conductive inks in FHE applications

7. FLEXIBLE THIN FILM POWER SOURCES

  • 7.1. Flexible Batteries
    • 7.1.1. Introduction to flexible batteries
    • 7.1.2. Printed batteries in skin patches
    • 7.1.3. Applications of printed batteries
    • 7.1.4. Using a thin film battery as an FHE substrate
    • 7.1.5. FHE as a power conditioning circuit.
    • 7.1.6. Directly printed batteries
  • 7.2. Flexible Photovoltaics
    • 7.2.1. Photovoltaic efficiency over time
    • 7.2.2. Organic photovoltaics (OPV)
    • 7.2.3. Hybrid perovskite photovoltaics
  • 7.3. Other flexible power sources.
    • 7.3.1. Energy harvesting from EM spectrum
    • 7.3.2. Thermoelectrics
    • 7.3.3. Thermoelectrics as a power source for wearables
    • 7.3.4. Triboelectrics
  • 7.4. Summary: Thin film power sources.
    • 7.4.1. Power sources for FHE roadmap

8. PRINTED SENSORS

  • 8.1. Capacitive sensors
    • 8.1.1. Printed capacitive sensors
    • 8.1.2. Conductive materials for capacitive sensors
  • 8.2. Other printed sensors
    • 8.2.1. Printable photodetectors
    • 8.2.2. Printable temperature sensors
    • 8.2.3. Gas sensors ('electronic nose')
    • 8.2.4. Electrochemical sensors
    • 8.2.5. 'Sensor-less' sensing of temperature and movement
  • 8.3. Summary: Thin film sensors

9. ASSEMBLING FLEXIBLE HYBRID ELECTRONICS

  • 9.1. Pick-and-place for FHE
    • 9.1.1. Combining printed and placed functionality
    • 9.1.2. Pick-and-place challenges
    • 9.1.3. Pick-and-place flowchart
    • 9.1.4. Direct die attach - an alternative to pick-and-place
    • 9.1.5. Self-assembly: An alternative pick-and-place strategy
    • 9.1.6. Multicomponent R2R line
  • 9.2. Mounting chips on flexible substrates
    • 9.2.1. Flip-chip approach overview
    • 9.2.2. Solder free compliant flexible interconnects
    • 9.2.3. Attachment with thermo-sonic bonding
  • 9.3. FHE design tools and standards
    • 9.3.1. Electronic design automation (EDA) for FHE
    • 9.3.2. Standards for FHE
  • 9.4. Summary: Assembling FHE

10. GOVERNMENT SUPPORTED RESEARCH CENTRES AND PROJECTS.

  • 10.1. FHE manufacturing centres
    • 10.1.1. NextFlex (USA)
    • 10.1.2. Holst Centre (Netherlands)
    • 10.1.3. IMEC (Belgium)
    • 10.1.4. VTT (Finland)
    • 10.1.5. CPI (UK)
    • 10.1.6. Liten CEA-Tech (France)
    • 10.1.7. Korea Institute of Machinery and Materials
  • 10.2. Government funded FHE projects
    • 10.2.1. Examples of UK and EU collaborative projects
    • 10.2.2. SCOPE: Supply chain opportunity for printable electronics
    • 10.2.3. NextFlex project call 4.0
    • 10.2.4. Semi-FlexTech projects 2020
    • 10.2.5. HiFES Program (University of Singapore)
  • 10.3. Summary: Government research centres and projects

11. APPLICATIONS AND CASE STUDIES

  • 11.1. Smart packaging and functional RFID
    • 11.1.1. Two approaches to smart packaging
    • 11.1.2. Market need for smart packaging
    • 11.1.3. Smart packaging: Current status
    • 11.1.4. The Internet of Things
    • 11.1.5. Smart packaging and low performance IC demand
    • 11.1.6. RFID is a major application for FHE
    • 11.1.7. RFID sensors
    • 11.1.8. Anatomy of passive HF and UHF tags
    • 11.1.9. Passive UHF RFID Sensors with Printed Electronics
    • 11.1.10. Large flexible ICs reduce attach cost?
    • 11.1.11. Wine temperature sensing label
    • 11.1.12. Printed electronics enabling multi component integration some use NFC as wireless power
    • 11.1.13. Logic based systems
    • 11.1.14. Smart tags with a flexible silicon IC
  • 11.2. Wearable/healthcare monitoring
    • 11.2.1. Electronic skin patches
    • 11.2.2. Product areas with body-worn electrodes
    • 11.2.3. Skin patches with printed attributes
    • 11.2.4. Printed electronics in cardiac skin patches
    • 11.2.5. Cardiac skin patch types: Flexible patch with integrated electrodes
    • 11.2.6. Skin patches for inpatient monitoring
    • 11.2.7. General patient monitoring: a growing focus
    • 11.2.8. Sweat sensing: sweat rate and biomarkers
    • 11.2.9. Chemical sensing in sweat
    • 11.2.10. VivaLNK
    • 11.2.11. VivaLNK
    • 11.2.12. DevInnova / Scaleo Medical
    • 11.2.13. US Military head trauma patch / PARC
    • 11.2.14. Wound monitoring and treatment
    • 11.2.15. Nissha GSI Technologies
    • 11.2.16. Nissha GSI Technologies
    • 11.2.17. Opportunities for printed electronics in skin patches
    • 11.2.18. Opportunity for printed electronics by type of skin patch
    • 11.2.19. Electrode types
    • 11.2.20. Printed functionality in skin patches
    • 11.2.21. Printed functionality in skin patches.
    • 11.2.22. PARC / UCSD
    • 11.2.23. Blue Spark
    • 11.2.24. DevInnova / Scaleo Medical
    • 11.2.25. Nissha GSI Technologies
    • 11.2.26. Novii: Wireless fetal heart rate monitoring
    • 11.2.27. GE/ Kemsense: BioSensors on conventional RFID labels
    • 11.2.28. VTT Activity Badge Demonstrator
    • 11.2.29. Activity Badge Demo manufacturing process flow
    • 11.2.30. Wearable ECG sensor from VTT
    • 11.2.31. Quad Industries - developing healthcare
  • 11.3. Consumer electronics
    • 11.3.1. Flexible Arduino: Making existing circuits flexible
    • 11.3.2. PlasticArm: An electronic nose with FHE
    • 11.3.3. PlasticArm: Utilizing bespoke flexible processesors
    • 11.3.4. Augmented book: Technological overview
    • 11.3.5. Thin finger print sensors using organic photodetectors
    • 11.3.6. LG Sensing Smart Card: Commercial product with a printed antenna to test water salinity. Launched in 2018 in Korea
    • 11.3.7. Human machine interfaces (HMI)
    • 11.3.8. Printed LED lighting
    • 11.3.9. Nth Degree - Printed LEDs
  • 11.4. Automotive & Aeronautical
    • 11.4.1. Automotive
    • 11.4.2. Aerospace
  • 11.5. Industrial and environmental monitoring
    • 11.5.1. FHE for industrial and environmental monitoring: Application sub-categories
    • 11.5.2. FHE and 'Industry 4.0' (smart manufacturing)
    • 11.5.3. FHE wireless sensors in smart factories
    • 11.5.4. Condition monitoring multimodal sensor array
  • 11.6. Summary: Applications and case studies

12. MARKET FORECASTS

  • 12.1. Readiness of FHE for different applications
  • 12.2. Technological readiness levels of technologies underpinning FHE
  • 12.3. FHE Roadmap
  • 12.4. Non-technological barriers to FHE adoption
  • 12.5. FHE market forecasting approach.
  • 12.6. Total FHE circuits forecast
  • 12.7. Total FHE circuits forecast (volume)
  • 12.8. FHE circuits for smart packaging and functional RFID (volume)
  • 12.9. FHE circuits for industrial/environmental monitoring forecast
  • 12.10. FHE circuits for industrial/environmental monitoring (volume)
  • 12.11. FHE circuits for industrial/environmental monitoring (revenue)
  • 12.12. FHE circuits for wearable/healthcare monitoring
  • 12.13. FHE circuits for wearable/healthcare monitoring (volume)
  • 12.14. FHE circuits for wearable/healthcare monitoring (revenue)
  • 12.15. FHE circuits for consumer goods
  • 12.16. FHE circuits for consumer goods (volume)
  • 12.17. FHE circuits for consumer goods (revenue)
  • 12.18. FHE circuits for automotive/aeronautical applications
  • 12.19. FHE circuits for automotive/aeronautical applications (volume)
  • 12.20. Total FHE circuits forecast - including all printed RFID.
  • 12.21. Total FHE circuits forecast - including all printed RFID (volume)
  • 12.22. Total FHE circuits forecast - including printed RFID (revenue)

13. COMPANY PROFILES

  • 13.1. Company profiles list (sorted by category)