表紙
市場調查報告書

零排放電動車充電:Off-Grid (2020-2030年)

Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040

出版商 IDTechEx Ltd. 商品編碼 929393
出版日期 內容資訊 英文 236 Slides
商品交期: 最快1-2個工作天內
價格
零排放電動車充電:Off-Grid (2020-2030年) Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040
出版日期: 2020年03月24日內容資訊: 英文 236 Slides
簡介

本報告研究電動車充電的Off-Grid零排放 (OGZE) 機會,分析EV充電的光電技術和形式、CIGS (硒化銅銦鎵) PV的車輛充電、太陽能道路,以及可搬型風力、河川、海洋發電、內藏式微電網等各項技術。

第1章 摘要整理與結論

第2章 簡介

第3章 EV充電的光電技術和形式

  • 這些提供所追求的利益與領導者
  • 太陽能發電趨勢和優先事項
  • 晶圓或薄膜PV
  • 薄膜是否較剛性矽更有效率?
  • 5項基本PV機制:狀態、優勢、課題、市場潛力
  • 矽以外的重要PV選項比較
  • 主流車輛充電用的Si替代品生產準備
  • 電池效率研究
  • 形式選擇
  • 形式案例
  • 軟性薄膜版本逐漸獲得占比

第4章 硒化銅銦鎵變得重要

  • 概要
  • 超輕量軟性CIGS
  • 4國的CIGS PV車輛充電
  • 耐颶風行動微電網
  • Renovagen的微電網展開
  • CIGS建築正面

第5章 WILD CARD:2D半導體、量子點、整流天線

  • 2D半導體奈米材料
  • 量子點
  • Rectenna nantenna-diode

第6章 新形式:混凝土、太陽能道路和窗戶

  • 薄型混凝土太陽能:ETH 蘇黎世
  • 太陽能道路為電動車充電
  • 多模式道路和其他結構物
  • 高架 vs 路面PV
  • 透明和半透明PV
  • 太陽能窗戶

第7章 EV充電的新可搬型風力、河川、海洋發電

  • 零排放微電網:太陽能、水力、風力的再發明
  • 太陽能以外的新選項:可搬型、非間歇性
  • 「潮汐」電力選項倣傚風力發電選項
  • 空中風力電力開發商
  • 外海波浪發電技術

第8章 EV充電的內藏式微電網

  • 軍事、現場活動、更簡易安裝的可搬型微電網
  • 微電網規模
  • VERGE和許多太陽能發電
  • Excellerate
  • OffGridBox

第9章 利用風力、太陽能的ZE (零排放) 微電網

  • 概要
  • 不良案例
  • 優良案例:葡萄牙Porto Santo Island
  • Borkum Island:德國
  • Kodiak Island:阿拉斯加
  • King Island:塔斯馬尼亞
  • eVcentres :英國
  • SmartGreenCharge Highways:法國
  • PEARL Project:夏威夷
  • Tesla
  • 其他計畫
  • 車輪上的I-FEVS餐廳
  • 風力和太陽能發電船
  • 能源獨立的電動船機會

第10章 適用於車輛充電的其他ZE OG微電網

  • 農業
  • Brightfield:美國
  • Roadside:德州
  • 可搬型:法國
  • HEP:克羅埃西亞
  • e-move:丹麥
  • Power Research Electronics:荷蘭
  • Ovida Community Hubs :墨爾本
  • Saudi Aramco停車場及電動車充電站
  • 愛荷華大學:美國
  • 作為微電網的私人住宅

第11章 太陽能汽車成為主流:陸、水、空

  • 概要
  • 電動機器人除草機:FarmWise、Naio等
  • Hyundai和Kia
  • Tesla solar Cybertruck
  • Sono Motors, Lightyear
  • Squad - solar city car
  • Sunnyclist Greece :希臘
  • Neeraj及其他太陽能人力車:印度
  • K-Bus:德國、其他

第12章 正能源ZE微電網及無需燃料供應鏈的ZE燃料電池車

目錄

Title:
Zero Emission Electric Vehicle Charging: Off-Grid 2020-2040
Microgrid and on-board charging: land, water, air.

"A $15 billion business is emerging for zero-emission, off-grid charging stations for all EVs."

The new IDTechEx report, "Zero-Emission Electric Vehicle Charging: Off-Grid 2020-2040" examines how the electric vehicle business is finding it profitable to respond to criticism that clean vehicles should not be charged with fossil fuel electricity. The purpose of this 230 page report is to enable materials, component, vehicle and infrastructure suppliers and putative suppliers and all others in the value chain to understand this large emerging opportunity for off-grid zero-emission OGZE charging of electric vehicles land, water and airborne.

That is starting to take two basic forms. First is ZE microgrids that are off-grid or capable of being islanded (using the grid as backup called "fringe-of-grid") that charge vehicles - eventually $15 billion in yearly sales on IDTechEx analysis. Second is land and marine vehicles and aircraft progressing to being energy-independent pure-electric vehicles EIEV, another large emerging market. Some readers need a very long-term view so we look at 2020-2040. The methodology of the new research covering over 100 organisations consists mainly of ongoing global visits and interviews by our multi-lingual, PhD level analysts, use of privileged databases including presentations at our own events on the subject. IDTechEx is an independent analyst company located worldwide and with no conflicts of interest.

The executive summary and conclusions presents easily understood, new infograms and graphs revealing off-grid technology options, underlying needs and trends 2020-2040 and which types of EV are suited to OGZE and therefore the primary focus of the report. Learn the types of location matched to the best solutions. Primary conclusions are given for format, chemistry, physics, technology popularity, strategy of photovoltaic leaders, 13 new formats and power electronics 2020-2040. Learn the place of DC microgrids, existing microgrid cost breakdown and action arising. All of this is brought alive by examples of best practice and, given the large off-road opportunity in seven identified industries, the farm, construction site and mine of the future are drawn. Leading solar vehicles are compared and trends explained. Technology roadmap, OGZE charger-microgrid business and solar car business are forecasted 2020-2040.

The introduction covers microgrid design from in-a-box to distributed microgrids and why solar usually wins for vehicle charging stations but new options are added. Understand new wind power and energy independent vehicles. Photovoltaic technologies 2020-2040 are compared in Chapter 3 with silicon winning, single crystal gaining share and identified market niches for other options. Chapter 4 explains why copper indium gallium diselenide is carving one of the largest niches for vehicle charging. Chapter 5 addresses wild cards: 2D semiconductors, quantum dots, rectenna arrays. Chapter 6 closely examines where new PV formats such as thin concrete, solar roads and windows are headed, profiling 15 activities.

Ocean wave power and tidal power in river or sea is now modular and very useful for charging boats, ships, sea-floor mining vehicles and other vehicles near or under the sea so Chapter 7 thoroughly explores this and the progress with tethered drones making electricity with many examples and predictions.

Chapter 8 explains the many containerised microgrids charging EVs. Chapter 9 critically presents examples of ZE microgrids using wind and solar. Chapter 10 does the same for other ZE OG microgrids suitable for vehicle charging then Chapter 11 explains why solar vehicles have become mainstream: land, water, air with examples. The report ends with Chapter 12, "Energy positive ZE and ZE fuel cell vehicles without fuel supply chain".

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Purpose of this report
  • 1.2. Comparison of off-grid technology options
  • 1.3. New power generating technology kVA comparison
  • 1.4. Much more than a story about cleaner chargers
  • 1.5. Primary conclusions: Underlying needs and trends 2020-2040
  • 1.6. Primary conclusions: making the electricity
  • 1.7. Why zero-emission?
  • 1.8. Primary conclusions: off-grid charging by type of location
  • 1.9. Primary conclusions: basic technological options
  • 1.10. Primary conclusions: format, chemistry, physics 2020-2040
  • 1.11. Technology popularity 2020-2040
  • 1.12. Preferred solar technologies for microgrids and vehicles
  • 1.13. Where the PV leaders are headed
  • 1.14. Best practice: Gridserve solar/ battery forecourts UK
  • 1.15. New high power photovoltaic formats
    • 1.15.1. Best practice: EV ARC solar tracking car charger
  • 1.16. Wind power for vehicle charging
  • 1.17. Advanced power electronics becomes important
  • 1.18. DC microgrids slowly coming in
  • 1.19. Primary conclusions: cost breakdown and action arising
  • 1.20. Construction site of the future arriving now with moveable zero emission gensets
  • 1.21. Farm of the future arriving now
  • 1.22. Self-powered, robotic indoor farming
  • 1.23. Mine of the future
  • 1.24. Primary conclusions: solar vehicles are microgrids on wheels
  • 1.25. Market forecasts and technology roadmap 2020-2040
    • 1.25.1. Global charging infrastructure 2020: on-road vehicles
    • 1.25.2. Existing charging stations that could go zero-emission off-grid
    • 1.25.3. Technology and rollout roadmap 2020-2040
    • 1.25.4. OG ZE charging stations number, unit value, market value 2020-2040
    • 1.25.5. Background information: global microgrid market
    • 1.25.6. Solar cars number, unit value, market value 2019-2030
    • 1.25.7. Electric vehicle forecast 2020-2030 number k for 103 categories

2. INTRODUCTION

  • 2.1. Increased versatility but winners and losers
  • 2.2. Microgrid design
    • 2.2.1. Basic configurations and V2G
  • 2.3. Why solar usually wins for vehicle charging stations
  • 2.4. Decentralised microgrids
  • 2.5. Below 100kW wind turbines have become niche
  • 2.6. Wind turbine choices
  • 2.7. Electric vehicle powertrains

3. PHOTOVOLTAIC TECHNOLOGY AND FORMATS FOR CHARGING EVS 2020-2040

  • 3.1. Benefits sought and leaders in providing them
  • 3.2. Photovoltaic trends and priorities 2020-2040
    • 3.2.1. Silicon the winner so far: variants and successes
  • 3.3. Wafer or thin film PV 2020-2040
  • 3.4. Thin film more efficient than rigid silicon 2030-2040?
  • 3.5. Five basic PV mechanisms: status, benefits, challenges, market potential
  • 3.6. Important PV options beyond silicon compared
  • 3.7. Production readiness of Si alternatives for mainstream vehicle charging
  • 3.8. Best research-cell efficiencies 1975-2020
  • 3.9. Choice of format
  • 3.10. Examples of formats
  • 3.11. Flexible thin film versions slowly gain share

4. COPPER INDIUM GALLIUM DISELENIDE BECOMES IMPORTANT

  • 4.1. Overview
  • 4.2. Ultra-light flexible CIGS
  • 4.3. CIGS PV in action charging vehicles in four countries
  • 4.4. Hurricane proof mobile microgrid MIT USA in Puerto Rico
  • 4.5. Renovagen microgrid unrolls
  • 4.6. CIGS building facades

5. WILD CARDS: 2D SEMICONDUCTORS, QUANTUM DOTS, RECTENNA ARRAYS

  • 5.1. 2D semiconductor nanomaterials
  • 5.2. Quantum dot
  • 5.3. Rectenna nantenna-diode

6. NEW FORMATS: CONCRETE, SOLAR ROADS AND WINDOWS

  • 6.1. Thin concrete solar: ETH Zurich
  • 6.2. Solar roads charge EVs
    • 6.2.1. Pavenergy China
    • 6.2.2. The Netherlands introduces SolaRoad paving - March 2019
  • 6.3. Multi-mode roads and other structures
    • 6.3.1. Solar Roadways USA
  • 6.4. Gantry vs road surface PV
  • 6.5. Transparent and translucent PV
  • 6.6. Solar windows
    • 6.6.1. Basic configurations
    • 6.6.2. Review of 13 organisations
    • 6.7. SolarGaps solar blinds

7. NEW RELOCATABLE WIND, RIVER AND SEA POWER FOR CHARGING EVS

  • 7.1. Zero emission microgrids: solar, water, wind reinvented
  • 7.2. New options beyond solar: relocatable, much less intermittent
  • 7.3. Open tide "tide stream" power options mimic wind power options
  • 7.4. Airborne Wind Energy developers
    • 7.4.1. Why AWE may be better than a conventional wind turbine
    • 7.4.2. eWind Solutions specifically targets AWE for farms
  • 7.5. Open sea wave power technologies

8. CONTAINERISED MICROGRIDS CHARGING EVS

  • 8.1. Transportable microgrids for military, live events, easier installations
  • 8.2. Scale Microgrid
  • 8.3. VERGE and many with expanding solar
  • 8.4. Excellerate
  • 8.5. OffGridBox

9. ZE MICROGRIDS USING WIND AND SOLAR

  • 9.1. Overview
  • 9.2. Bad practice
  • 9.3. Good practice: Porto Santo Island Portugal
  • 9.4. Borkum Island Germany
  • 9.5. Kodiak Island Alaska
  • 9.6. King Island Tasmania
  • 9.7. eVcentres UK
  • 9.8. SmartGreenCharge Highways France
  • 9.9. PEARL Project Hawaii
  • 9.10. Tesla
    • 9.10.1. Tesla Semi: off grid charging vital for payback
    • 9.10.2. Tesla car charging
  • 9.11. Other projects
  • 9.12. I-FEVS restaurant on wheels
  • 9.13. Wind and solar powered ships
  • 9.14. Energy independent electric ship opportunity

10. OTHER ZE OG MICROGRIDS SUITABLE FOR VEHICLE CHARGING

  • 10.1. Agriculture
    • 10.1.1. Stone Edge Farm microgrid development
    • 10.1.2. Charging electric farm tractors
    • 10.1.3. Solectrac electric tractor charging
  • 10.2. Brightfield USA
  • 10.3. Roadside Texas
  • 10.4. France - transportable versions
  • 10.5. HEP Croatia
  • 10.6. e-move Denmark
  • 10.7. Power Research Electronics Netherlands
  • 10.8. Ovida Community Hubs Melbourne
  • 10.9. Saudi Aramco car parks and electric vehicle charging shelters
  • 10.10. University of Iowa USA
  • 10.11. Private houses as microgrids
    • 10.11.1. Tesla

11. SOLAR VEHICLES GO MAINSTREAM: LAND, WATER, AIR

  • 11.1. Overview
  • 11.2. Electric robot weeders: FarmWise, Naio etc.
  • 11.3. Hyundai and Kia
  • 11.4. Tesla solar Cybertruck
  • 11.5. Sono Motors, Lightyear
  • 11.6. Squad - solar city car
  • 11.7. Sunnyclist Greece
  • 11.8. Neeraj and other solar rickshaws India
  • 11.9. K-Bus Germany
  • 11.10. BYD and others
  • 11.11. Kim il-sung University North Korea
  • 11.12. Solar-powered vehicle to South Pole
  • 11.13. Green Energy Norway
  • 11.14. Detleffs USA
  • 11.15. Midsummer Sweden
  • 11.16. Fraunhofer ISE Germany
  • 11.17. Energy Independent Electric Vehicles
  • 11.18. Technology timeline for solar cars

12. ENERGY POSITIVE ZE MICROGRIDS AND ZE FUEL CELL VEHICLES WITHOUT FUEL SUPPLY CHAIN

  • 12.1. Overview and Powerhouse Brattørkaia
  • 12.2. One microgrid charging buses, cars and boats
  • 12.3. Energy positive vehicles
  • 12.4. Stella Vie and Stella Era
  • 12.5. Fuel cell vehicles without the crippling supply chain