表紙
市場調查報告書

機器人手術中的創新 (2020-2030年) :技術、企業、市場

Innovations in Robotic Surgery 2020-2030: Technologies, Players & Markets

出版商 IDTechEx Ltd. 商品編碼 929308
出版日期 內容資訊 英文 216 Slides
商品交期: 最快1-2個工作天內
價格
機器人手術中的創新 (2020-2030年) :技術、企業、市場 Innovations in Robotic Surgery 2020-2030: Technologies, Players & Markets
出版日期: 2020年03月23日內容資訊: 英文 216 Slides
簡介

機器人手術市場,預測在2030年為止會超過120億美元。

本報告調查了全球機器人手術市場、並提供4個主要類別 (機器人進行的一般外科、機器人進行的導管及內視鏡引導、機器人進行的外科手術工具的定位、機器人進行的導管及內視鏡引導) 的市場分析,統整了新興技術的調查、主要企業及市場預測等。

第1章 執行摘要

第2章 簡介

第3章 由機器人進行的一般外科

  • 機器人一般外科的進行方式?
  • 可變動式機器人終端執行器
  • 一般外科機器人實施的手術種類
  • 對機器人一般外科企業的投資
  • Intuitive Surgical :機器人手術的先驅
  • Intuitive Surgical :主要資料
  • 達文西外科手術系統
  • 達文西的許可手續
  • 機器人手術訓練的虛擬情境
  • 達文西的競爭對手出現
  • 追隨達文西的途徑
  • 例:TransEnterix
  • 例:Avatera
  • 例:CMR Surgical
  • 例:Titan Medical
  • 例:Medtronic
  • 可變動式手臂
  • 例:Medrobotics
  • 例:韓國科學技術院(KAIST)
  • 手術用可穿戴機器人工具
  • 手術機器人的小型化
  • 例:Virtual Incision
  • 例:香港工科大學
  • 例:Microsure
  • 傳統手術與機器人一般外科手術的組合
  • 例:Galen Robotics
  • 例:Distalmotion
  • 例:Preceyes
  • 手動或機械器具作為電腦支援手術的替代手段
  • 例:FlexDex Surgical
  • 例:Human Xtensions
  • 機器人一般外科手術系統的開發狀況
  • 概要、展望

第4章 機器人進行的導管、內視鏡引導

  • 何謂導管及內視鏡?
  • 由醫療設備機器人進行引導
  • 機器人引導系統的優點
  • 醫學處置的種類
  • Wire的進行方式?
  • 對機器人導管引導企業的投資
  • 主要企業
  • Intuitive Surgical
  • 例:Auris Health
  • Corindus Vascular Robotics
  • Robocath
  • Moray Medical
  • 自主自動操舵:Fraunhofer IPA
  • 自主自動操舵:哈佛大學醫學系
  • 磁力操舵
  • 磁力操舵:定位
  • 磁力操舵:麻省理工學院
  • 磁力操舵:蒙特婁工程學院
  • 機器人導管引導系統的開發情況
  • 概要、展望

第5章 機器人進行的外科手術工具的定位

  • 機器人進行的指引與定位
  • 對機器人設備定位企業的投資
  • 市場、主要企業
  • 機器人整形外科
  • 機器人整形外科系統的主要元件
  • 手術計畫用的術前軟體
  • 維持器具的機器人手臂
  • 追蹤即時設備用的3D攝影機
  • 例: Stryker
  • 例: Medtronic
  • 例: Zimmer Biomet
  • 例: Smith & Nephew
  • 例: Brainlab
  • 例: Orthotaxy
  • 例: Globus Medical
  • 例: Curexo
  • 例: Eindhoven Medical Robotics
  • 機器人整形外科系統的比較
  • 大型整形外科企業收購手術用機器人的原因為何?
  • 機器人腦神經外科 Example: Renishaw
  • 例: Kuka Robotics
  • 例: AiM Medical Robotics
  • Robotic positioning for laser therapy
  • 例: Kuka Robotics
  • 例: Zeiss VisuMax
  • 機器人切片檢查
  • 例: XACT
  • 例: Machnet Medical Robotics
  • 機器人手術器具位置決定系統的開發情況
  • 概要、展望

第6章 用於手術中操作攝影機的機器人系統

  • 機器人手術中攝影機操作
  • 對開發手術中攝影機操作機器人企業的投資
  • 機器人腹腔鏡維持架
  • 例: AKTORmed
  • 例: OR Productivity
  • 例: Storz
  • 機器人手術中成像、顯微鏡檢查
  • 例: Brainlab
  • Example : Zeiss
  • 例: Synaptive Medical
  • 機器人手術中攝影機操作系統的開發情況
  • 概要、展望

第7章 機器人手術系統中的人工智慧

  • 用語說明
  • AI使人類與機器人的相互作用成為可能
  • AI使影像引導機器人手術變容易
  • 在術前計畫使用AI的挑戰
  • AI驅動機器人設備的定位挑戰
  • 機器人手術中的AI:法規情況

第8章 機器人手術系統中觸覺回饋的機制

  • 外科醫生必須「感覺到」正在做的事
  • 機器人手術中的觸覺
  • 觸覺/觸覺介面強化了機器人手術系統
  • 觸覺回饋機制的元件
  • 如何達成觸覺回饋?
  • 使用了哪一種類的感測器?
  • 觸覺機制:機器人手術的挑戰

第9章 市場分析

第10章 結論

第11章 企業檔案

目錄

Title:
Innovations in Robotic Surgery 2020-2030: Technologies, Players & Markets
Robotic general surgery, robotic catheter and endoscope navigation, robotic positioning of surgical tools, robotic systems for intra-operative camera.

The robotic surgery market will reach over $12 billion by 2030.

For centuries, large incisions were the only way to provide surgeons with a full view of the organ they needed to treat. Recovery time for such a taxing procedure is extensive and post-operative complications are a common occurrence. The introduction of minimally invasive surgery (MIS) in operating theatres has drastically improved patient outcomes. Smaller incisions reduce the risk of infection and accelerate recovery. Many studies have shown that MIS procedures result in decreased post-operative hospital stays, a quicker return to the workforce, decreased pain and better immune function.

As attractive as MIS is, there are several drawbacks due to the technical and mechanical nature of the equipment. These limitations make minimally invasive procedures more challenging, reduce their efficiency and increase operating time.

Robotic surgery was developed to overcome the limitations of MIS and to expand its benefits. It is classified as a type of MIS and involves the use of robotic systems to execute surgical procedures. Although it has been around for over thirty years, robotic surgery is still in its infancy. The market is currently in a rapid state of expansion, however, as it has welcomed dozens of new companies in the last decade. The range of technologies, uses and applications of robotic surgery widens with each new entrant. This field is evolving at a considerable pace and is showing no signs of slowing down. Within the last five years, interest in robotic surgery has soared. Investments in companies operating in this space have skyrocketed since 2016, recording an increase of over 300% in three years, and total investment to date has reached $1.36 billion.

This report breaks down the robotic surgery market into four main sectors:

  • Robotic general surgery
  • Robotic catheter and endoscope navigation
  • Robotic positioning of surgical tools
  • Robotic systems for intra-operative camera manipulation

General surgery is perhaps the best known aspect of robotic surgery due to the presence of Intuitive Surgical, the most famous surgical robot company, in this space. Intuitive Surgical's control on the market has forced the diversification of surgical robots as companies are keen to set themselves apart. There are multiple sectors within general surgery in which the company is not active and other manufacturers have targeted in order to distinguish themselves and their technology.

Medical instruments like catheters are widely used to conduct an intervention within the heart or blood vessels. Catheter ablation procedures require the wire to be pushed manually and expose surgeons to harmful X-ray radiation. Robotic systems discussed in this report may eliminate the need to manually manipulate the wire. This could greatly improve patient outcomes by increasing the speed and efficiency of the intervention. Surgeons could be in another room or a different city, controlling the device with a joystick, thereby reducing the level of radiation inflicted on them.

Robotic systems are increasingly being used to facilitate and optimise the positioning of instruments and tools during surgery. They have proven value in orthopaedic and neurosurgery procedures and are being explored as means to improve laser therapy and biopsy outcomes as well. These systems facilitate operating room workflows by ensuring that surgical tools are inserted at the appropriate angle and depth. The level of precision required often can't be achieved by humans, who are prone to involuntary tremors.

Robotic systems for intra-operative camera manipulation are crucial in surgical procedures as they enable surgeons to see the surgical site and their actions within the patient. They provide a stable view of the operating area, avoiding tremors and other disadvantages that occur when the laparoscope is held by a human. These systems negate the need for an assistant, which reduces the cost of surgery.

The report explores emerging technologies, highlights key players and provides market analysis for each sector. It only covers robots that are directly involved in performing surgical procedures. For instance, robotic systems designed for pre-operative planning purposes only (i.e.: not used intra-operatively) are not included. In the context of this report, the term surgery refers to minimally invasive surgery. Open surgery is not discussed as robotic systems are rarely used in these procedures. The focus is on disease diagnosis, management and treatment. Therefore, robots performing biopsies are included. However, fields such as robotic cosmetic, hair or dental surgery are not discussed. The report also excludes rehabilitation and physiotherapy robots as they do not perform surgery. The report also includes a description of the use of artificial intelligence (AI) and haptic feedback in robotic surgery today.

Historical revenue data (2015-2019) for each sector and the key players within them is provided in this report. Forecasts predicting the size of each market in the next decade (2020-2030) are also included. The ten year forecasts are built on information derived from company interviews, financial reports and press releases, among other sources. Parameters used to calculate values include size of the company, product range, number of units sold and pricing. Other factors such as competitive landscape, access to new entrants and regulatory frameworks were used to extrapolate data for the next decade. The report also provides information such as historical revenue data, market drivers & constraints and investments/funding in each sector.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Report scope
  • 1.2. Sectors of robotic surgery covered in this report
  • 1.3. Drivers of the surgical robots market
  • 1.4. Why use robotic surgery?
  • 1.5. Limitations & barriers to adoption
  • 1.6. Mergers & acquisitions in the robotic surgery space
  • 1.7. Investments into robotic surgery companies
  • 1.8. Intuitive Surgical - Key numbers
  • 1.9. Robotic general surgery - Emerging competitors of da Vinci
  • 1.10. Conclusions and outlook - Robotic general surgery
  • 1.11. Robotic catheter and endoscope navigation
  • 1.12. Conclusions and outlook - Robotic catheter navigation
  • 1.13. Robotic positioning of surgical tools
  • 1.14. Conclusions and outlook - Robotic positioning of surgical tools
  • 1.15. Robotic intra-operative camera manipulation
  • 1.16. Conclusions and outlook - Robotic intra-operative camera manipulation
  • 1.17. Market Analysis 2015-2030
  • 1.18. Report summary
  • 1.19. Robotic surgery's multiple benefits have fuelled its rise
  • 1.20. Inherent limitations and conceptual flaws have blocked it
  • 1.21. Competing directly with Intuitive Surgical is highly risky
  • 1.22. Where do the market opportunities lie?
  • 1.23. Does the concept of remote surgery live up to the hype?
  • 1.24. Opportunities for improvement

2. INTRODUCTION

  • 2.1. Report scope
  • 2.2. Open surgery
  • 2.3. Minimally invasive surgery considerably improves recovery time
  • 2.4. Keyhole surgery has non-negligible limitations
  • 2.5. What is robotic surgery?
  • 2.6. History of robotic surgery: an overview
  • 2.7. Early history of robotic surgery
  • 2.8. What operations are surgical robots used for?
  • 2.9. Drivers of the surgical robots market
  • 2.10. Why use robotic surgery?
  • 2.11. Robotic surgery provides enhanced vision
  • 2.12. Limitations & barriers to adoption
  • 2.13. Why are surgical robots so expensive to purchase?
  • 2.14. Regulations & path to market: EU
  • 2.15. Regulations & path to market: USA
  • 2.16. Mergers & acquisitions in the robotic surgery space
  • 2.17. Investments into robotic surgery companies
  • 2.18. Sectors of robotic surgery covered in this report

3. ROBOTIC GENERAL SURGERY

  • 3.1. How does robotic general surgery work?
  • 3.2. Flexible robotic end effectors
  • 3.3. Types of procedures performed by general surgery robots
  • 3.4. Investments into robotic general surgery companies
  • 3.5. Intuitive Surgical - The pioneer of robotic surgery
  • 3.6. Intuitive Surgical - Key numbers
  • 3.7. da Vinci Surgical System
  • 3.8. Approved procedures for da Vinci
  • 3.9. Virtual simulations for robotic surgery training
  • 3.10. Emerging competitors of da Vinci
  • 3.11. Following the da Vinci approach
  • 3.12. Example: TransEnterix
  • 3.13. Example: Avatera
  • 3.14. Example: CMR Surgical
  • 3.15. Example: Titan Medical
  • 3.16. Example: Medtronic
  • 3.17. Flexible arms
  • 3.18. Example: Medrobotics
  • 3.19. Example: Korea Advanced Institute of Science and Technology (KAIST)
  • 3.20. Wearable robotic tool for surgery
  • 3.21. Downsizing surgical robots
  • 3.22. Example: Virtual Incision
  • 3.23. Example: Hong Kong Polytechnic University
  • 3.24. Example: Microsure
  • 3.25. Combining conventional and robotic general surgery
  • 3.26. Example: Galen Robotics
  • 3.27. Example: Distalmotion
  • 3.28. Example: Preceyes
  • 3.29. Handheld, mechanical instruments as an alternative to computer-aided surgery
  • 3.30. Example: FlexDex Surgical
  • 3.31. Example: Human Xtensions
  • 3.32. State of development of robotic general surgery systems
  • 3.33. Summary and outlook

4. ROBOTIC CATHETER AND ENDOSCOPE NAVIGATION

  • 4.1. What are catheters and endoscopes?
  • 4.2. Robotic navigation of medical instruments
  • 4.3. Advantages of robotic navigation systems
  • 4.4. Types of intervention
  • 4.5. How does the wire move?
  • 4.6. Investments into robotic catheter navigation companies
  • 4.7. Key players
  • 4.8. Intuitive Surgical
  • 4.9. Example: Auris Health
  • 4.10. Corindus Vascular Robotics
  • 4.11. Robocath
  • 4.12. Moray Medical
  • 4.13. Autonomous active steering: Fraunhofer IPA
  • 4.14. Autonomous active steering: Harvard Medical School
  • 4.15. Magnetic steering
  • 4.16. Magnetic steering: Stereotaxis
  • 4.17. Magnetic steering: Massachusetts Institute of Technology
  • 4.18. Magnetic steering: Polytechnique Montréal
  • 4.19. State of development of robotic catheter navigation systems
  • 4.20. Summary and outlook

5. ROBOTIC POSITIONING OF SURGICAL TOOLS

  • 5.1. Robotic guidance and positioning
  • 5.2. Investments into robotic instrument positioning companies
  • 5.3. Sectors and key players
  • 5.4. Robotic orthopaedic surgery
  • 5.5. Key components of robotic orthopaedic systems
  • 5.6. Pre-operative software for procedure planning
  • 5.7. Robotic arm holding the instrument
  • 5.8. 3D cameras for real time instrument tracking
  • 5.9. Example: Stryker
  • 5.10. Example: Medtronic
  • 5.11. Example: Zimmer Biomet
  • 5.12. Example: Smith & Nephew
  • 5.13. Example: Brainlab
  • 5.14. Example: Orthotaxy
  • 5.15. Example: Globus Medical
  • 5.16. Example: Curexo
  • 5.17. Example: Eindhoven Medical Robotics
  • 5.18. Comparison of robotic orthopaedic surgery systems
  • 5.19. Why do large orthopaedic companies seek to acquire surgical robots?
  • 5.20. Robotic neurosurgery
  • 5.21. Example: Renishaw
  • 5.22. Example: Kuka Robotics
  • 5.23. Example: AiM Medical Robotics
  • 5.24. Robotic positioning for laser therapy
  • 5.25. Example: Kuka Robotics
  • 5.26. Example: Zeiss VisuMax
  • 5.27. Robotic biopsy
  • 5.28. Example: XACT
  • 5.29. Example: Machnet Medical Robotics
  • 5.30. State of development of robotic surgical tool positioning systems
  • 5.31. Summary and outlook

6. ROBOTIC SYSTEMS FOR INTRA-OPERATIVE CAMERA MANIPULATION

  • 6.1. Robotic intra-operative camera manipulation
  • 6.2. Investments into companies developing intra-operative camera manipulation robots
  • 6.3. Robotic laparoscope holders
  • 6.4. Example: AKTORmed
  • 6.5. Example: OR Productivity
  • 6.6. Example: Storz
  • 6.7. Robotic intra-operative imaging and microscopy
  • 6.8. Example: Brainlab
  • 6.9. Example : Zeiss
  • 6.10. Example: Synaptive Medical
  • 6.11. State of development of robotic intra-operative camera manipulation systems
  • 6.12. Summary and outlook

7. ARTIFICIAL INTELLIGENCE IN ROBOTIC SURGERY SYSTEMS

  • 7.1. Terminologies explained
  • 7.2. AI enables human-robot interaction
  • 7.3. AI facilitates image-guided robotic surgery
  • 7.4. Challenges of using AI for pre-operative planning
  • 7.5. Challenges of AI-driven robotic instrument positioning
  • 7.6. AI in robotic surgery: Legal and regulatory landscape

8. HAPTIC FEEDBACK MECHANISMS IN ROBOTIC SURGERY SYSTEMS

  • 8.1. Surgeons must 'sense' what they are doing
  • 8.2. Haptics in robotic surgery
  • 8.3. Haptics enhance robotic surgery systems
  • 8.4. Components of haptic feedback mechanisms
  • 8.5. How is haptic feedback achieved?
  • 8.6. What types of sensors are used?
  • 8.7. Haptic mechanisms: Challenges for robotic surgery

9. MARKET ANALYSIS

  • 9.1. Chapter overview
  • 9.2. Methodology
  • 9.3. The number of robotic surgery companies will rise exponentially in the next decade
  • 9.4. Historical revenue data - Robotic surgery
  • 9.5. Forecast 2020-2030 - Robotic surgery
  • 9.6. Historical revenue data - Robotic general surgery
  • 9.7. Historical revenue - Intuitive Surgical
  • 9.8. Intuitive Surgical da Vinci systems sold
  • 9.9. Forecast 2020-2030 - Robotic general surgery
  • 9.10. Historical revenue data - Robotic catheter navigation
  • 9.11. Forecast 2020-2030 - Robotic catheter navigation
  • 9.12. Historical revenue data - Robotic surgical tool positioning
  • 9.13. Forecast 2020-2030 - Robotic surgical tool positioning
  • 9.14. Robotic intra-operative camera manipulation: Market share in 2019
  • 9.15. Forecast 2020-2030 - Robotic intra-operative camera manipulation

10. CONCLUSIONS

  • 10.1. Report summary
  • 10.2. Robotic surgery's multiple benefits have fuelled its rise
  • 10.3. Inherent limitations and conceptual flaws have blocked it
  • 10.4. Competing directly with Intuitive Surgical is highly risky
  • 10.5. Where do the market opportunities lie?
  • 10.6. Does the concept of remote surgery live up to the hype?
  • 10.7. Opportunities for improvement

11. COMPANY PROFILES